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Outline
e conformal field theory predictions (1+1d)

e integrability: commuting families of transfer matrices, hamiltonians
e eigenvalues from non-linear integral equations (NLIE)
e functional equations for transfer matrices: T-, Y-systems
— 2d Ising model
— hard hexagons
— 2d RSOS models

e T (-relations
e finite size L and T' = 0, or finite temperature T" and L = oo
e Spin-1/2 Heisenberg chain with non parallel boundary fields
Work in collaboration with H. Frahm, D. Wagner, and with X. Zhang (AvH fellow)

within DFG-Forschergruppe 2316 “Correlations in Integrable Quantum Many-Body Systems”




Why are finite size data interesting?

Central charge ¢ and conformal weights A, A of the underlying CFT from ground state and low
lying excitations

Y
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Spectral data for integrable quantum spin chains
from commuting family of transfer matrices for 2d classical models satisfying Yang-Baxter

T(u)T(v)=TWw)T(u),  forarbitrary u,v

Hamiltonian as derivative
H =9,logT (u)
From now on focus on 7'(v).

Note: Thermodynamics from Trotterization and quantum transfer matrix 7¢7¥ (v) vs. Yang-Yang.




Historical origin of NLIE: inversion identities

2d Ising model in zero field
Transfer matrix as function of spectral parameter: commuting family, inversion identity

T(v—1)T(v+i)= f(v)-id  with known function f(v)

For largest eigenvalue T;,,x(v) there are no zeros in “physical strip”, no poles, hence

o . 1
108 Ty (V) = / s(v—w)log f(w)dw, inshort: logTpa =sxlogf,  s(v):= JooshTv 2

Integral expression is of convolution type. Excitations with additional terms.

“Hard hexagon” model
After suitable normalization of transfer matrix we have functional equation

Tv—1)T(v+i)=id+T(v)
For largest eigenvalue T = T,,,4x
T
logT(v) = Llog tanhZV +sxlog(1+T),

Integral equation of convolution type. Solution by numerical iterations.

Inversion identities / fusion — p.4/25




“Full story” for su(2) / q-deformation / RSOS models
Fused transfer matrices 7 (u) with spin j/2 in auxiliary space, mutually commuting

[Tj(u), Ti(v)] = 0,

So-called T-system: (bilinear) functional relations for j =1,2,3... AK, Pearce (1992)
Ti(v—i)Tj(v+i)=id+T;—1(v)Tj+1(v)

Define
Vi) =Ti-1(MTjt1(v), Jj=12,...

Y-system: forall j =1,2,3,... AK, Pearce (1992)
Yi(v=1)Y;j(v+i) = [1+Y;_1 (v)][1+ Y1 (v)],

higher rank: A. Kuniba, T. Nakanishi, J. Suzuki (1994)
higher rank, discrete Hirota, Backlund flow: Krichever, O. Lipan, P. Wiegmann, A. Zabrodin (1997)




Non-linear integral equations for Y: For Y| (v) the functional equation reads
T
iv—i)Y1(v+i)=1+Y2(v) = logY;(v)=Llog tanhZV—I— s*log(1+Y>3)

where we assumed spin-1/2 in the quantum space.

Rest of functional equations turn into (simpler) integral equations

logY;(v) =sx[log(14+Y;—1)+log(1+Y;11)], j=>2,

Solve the NLIEs, then largest eigenvalue of 77 (v) from

iv—1)T1(v+i)=1+Y1(v) = logTi(v)=Ld(v)+s=*log(l1+7Y;)

These equations hold for any finite L and numerics are as good for L = 1010 as for L = 2:
integral kernel has exponential asymptotics etc.

Conformal data can be obtained without numerics: dilog trick

Fateev, Wiegmann 1981,..., AK, Pearce 1992




Eigenvalue of 77 in scaling limit by use of symmetry of the kernel leads to explicit dilogarithms

N r—3 sin2 (= r—3 sin® (L
2/_mdxe_x10g(1+Yl(x)) = ZL( = ) B ZL(Sinz(E(Ejrj 1)))

g=1 sin” (%q) q=1

= (1_ r(r6—1)> 7562

Arguments of dilogarithms are asymptotics of Y -functions. That generalizes! (Morin-Duchesne,
AK, Pearce 2017)

Excited states
(1) similar equations with additional driving terms

(2) dilogarithms with non standard contours, towers from circling the singularities of the integrand.




(1) structure of TBA equations known from Yang-Yang thermodynamics + Takahashi-Suzuki
(2) algebraic approach to thermodynamics via Trotter+QTM
(M. Suzuki 85; M. Suzuki, M. Inoue 87; T. Koma 87; J. Suzuki, Akutsu, Wadati 90;
Takahashi 91; J. Suzuki, Nagao, Wadati 92; AK 92; Destri, de Vega 92...)

Specific heat (x35) and (inverse) length of the leading magnetic correlation corresponding to the
conformal weight Ay » = 3/80 resp. Ay = 1/40 and A3 3 =1/15 (AK 1992)
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Periodic boundary success story

N
H = Z 6]-6]-+1, (G’]x\;ﬁ’_zl — G)lc,y,z)
=1

e Yang-Baxter: infinite number of conserved charges O, = % logT(x), H= Q)

e magnetization ) ; Gj. commutes with H and Q,,.

logY;(v) = Nlog tanhgv—k s*log(1+Y>3)

log¥>(v) =0 +sx[log(1+Y7)+log(1+7Y3)],
log¥3(v) =0 +sx [log(1+Y>) +log(1+Yy)],




Non-diagonal boundary System with arbitrary boundary fields h;, hy can be written as
N-1
H=) 881 +hj o} +hj oy +/hy oy
j=1

parameters of later use: p := 1/h3, g :== 1/h}, and € := Iy, /h;,. We have Yang-Baxter, reflection
matrix/equation

e infinite number of conserved charges for any p,q,&: O, = Cj,% logT (x), H= Q)

e for ¢ # 0 the magnetization }_; Gi. does not commute with / and Q,,.

logi(v) =di(v) +sxlog(1+12)
log¥a(v) = da(v) +sx [log(1+ Y1) +1log(1+13)],
log¥3(v) =d3(v) +sx [log(1+Y2) +log(1 +Y4)],

with non-trivial driving terms in each line: not so useful (Frahm et al. 2008)




Periodic boundaries: Getting rid of co many NLIEs
Bethe ansatz or similar yields T Q relation

Ti(v)g(v) = @(v—i)g(v+20) +o(v+i)g(v—2i)  (9(v)=")
with polynomial ¢(v) with zeros satisfying the Bethe ansatz equations.

Functional equations may be rewitten as NLIE for two auxiliary functions a, a

1 e~ e kI .
loga(v) = Llog tanhgv—kK*log(l—l—a)—K_*log(1+ﬁ), K(v) := ﬁ/ T elkvgg

T
loga(v) = Llog tanhZV — k4 xlog(1+a)+xxlog(l+1a)

E; :Leo—i—/_oo s'log[(1+a)(1+a)]dv QO‘@Z T R Lal/lw)




Spin-1/2 XX X chain: general integrable boundary conditions

Integrability is proven by the Yang-Baxter equation and Sklyanin’s reflection algebra

Several methods of solution have been applied
e T Q relations in case of roots of unity, special boundary terms (Nepomechie 2002/04)
e Fusion (Frahm, Grelik, Seel, Wirth 2008)

e Separation of variables (Frahm, Seel, Wirth 2008; Nicolli 2012; Faldella, Kitanine, Niccoli
2013; Kitanine, Maillet, Niccoli, Terras 2018)

e Off-diagonal Bethe ansatz: Commuting transfer matrices + inversion identities (J. Cao, W.-L.
Yang, K. Shi, Y. Wang 2013, R.l. Nepomechie 2013, Li, Cao, Yang, Shi, Wang 2014)

e Modified Bethe ansatz (Belliard 2015; Belliard, Pimenta 2015; Crampé N; Avan, Belliard,
Grosjean, Pimenta 2015; Belliard, Rodrigo A Pimenta, Slavnov 2021)

e parallel field case: Alcaraz, Barber, Batchelor, Baxter, Quispel 1987

General integrable boundary conditions — p.12/25




J. Cao, W.-L. Yang, K. Shi, Y. Wang derived the following ansatz for a polynomial 7' (u) that
satisfies a couple of discrete functional equations:

4 1)2N+1 1 Y
) =2 148 g 2
2u?N+1 Qx(u+1)

e P DI +E) (k1) =g =
[u(u—|—l)]2N+1

— N— 2%
+2[(=1)" = (1+¢7)2] Q1 (u)Q2(u)

where Q1 and Q, are polynomials

N N
Q1 (u) = J(u—u) O (u) = (—DN[J(uw+m+1)
I=1 =1
with zeros u; to be determined by analyticity conditions. There are N of them, they are complex
valued...

Almost any established method yields the correct bulk O(N) and boundary O(N") terms of the

ground state. The O(N~!) terms are unknown.
e General integrable boundary conditions — p.13/25




We shift the arguments of the functions

q1(x) == 01 <% X — %) q2(x) := Q2 (% x— %)

Y N D N L) . 2 —2i)
=7 (31-3) = o e e @am TP T am
() () ()
and find that the following auxiliary functions have useful properties:

_ Ma(x) +A3(x) ~ M (x) + A (x) +A3(x)

Q= 2 M(x)3 ’ l+a= ) :

__ M) +hx) _ M)+ Aa(x) +A3(x)

a::= }\,3()6) , l+a= }\,3(.76) )

oo M2 (0) [ () + A2 (x) + A3 ()] 4o MO+ Az (x) +As(x)]
' A (x)A3(x) ’ A (x)A3(x) ’

tJ model like ansatz of suitable auxiliary functions (Juttner, AK 97)
Factorization into “elementary factors” yields integral equations for logs.




3 non-linear integral equations take the compact form

loga log(1+a) K —-X &k .
i
a = a K = — * k = —
loga | =d+Kx | log(l+a) |, K kK k|, (x) s
logc log(1+¢) Kk 0

where k(x) was introduced before and

(2N + 1) logth(x) +y(x — x0) +y(x +x0) + ...
d:= | (2N+1)logth(x) +¥(x —xo) + ¥(x+x0) + ... | »
log[x*(x* — x3)] +10gcCoo + ...

where ¥(.), ¥(.) and ... denote terms containing O(1) expressions of type

["(cst. —ix/4)
["(cst. +1ix/4)

log

Warning: auxiliary functions show windings




Solution for p = —0.6,g = —0.3,§ =0.1 and N = 10

Im log(1 + a)

Re log(1 + a)

0_ /0

| Im log(1 + ¢)

Re log(1 + ¢)

Notice the kinks, otherwise functions are rather boring.

40




Small and large &, short and long chains

Observations:

e The position of the kinks is difficult to understand “intuitively”. For large arguments all driving
terms take “flat values”. And somewhere the functions a and a encircle —1.

e For small § the “kinks” in log a(x) are far from the origin.

e The kinks disappear to infinity for & — 0 (parallel boundary fields) which also enforces ¢ — 0.
Then only two NLIEs for two functions are left.

CFT data for § = 0:
The finite size data for the ground-state energy can be obtained by the dilog-trick.

Two cases to distinguish:
(i) The left or right boundary field is zero (or both): parameter xj = oo
(il) generic case: parameter x finite, but scales like %logN

E —N fg S ’ Va“iSIIi“g bOUIIdaIy ||e|d(S)
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compare Alcaraz, Barber, Batchelor, Baxter, Quispel 1987; Asakawa, Suzuki 1995
General integrable boundary conditions — p.17/25 |




Solution for p = —0.6,g = —0.3,§ = 0.2 and N = 1000.
Shown are real and imaginary parts of log(1 4+ a), and the real valued log(1 + ¢)

[ [
6 .
4‘_ nm' Im log(1 + a) )
I Ny |
T Re log(1+a) ~
ok O~ —_ |
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Functions are still boring. However, for increasing N the two characteristics, xg and kink, move

out to larger arguments and closer to each other — instability.




Solution for p = —0.6,g = —0.3,§ = 0.2 and N = 1000.
Shown are real and imaginary parts of log(1 4 a), and the real valued log(1 + ¢) after every 10
steps of in total 100 iterations.
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Solution for p = —0.6,g = —0.3,§ = 0.2 and N = 1000.
Shown are real and imaginary parts of log(1 4 a), and the real valued log(1 + ¢) after every 10
steps of in total 100 iterations.

Im log(1 + a)

Re log(1 +a) |

v

log(1 + ¢)
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Positions of kinks <+ special roots. The location of the kinks must not be larger than xy.
Parameter x is of order %logN. We impose that the kinks do not increase, i.e. are O(N").
The scaling limit of the equations is — we rescale x and xq by % log N:

1. 14a(x) i

loga(x) zlogdoo—l—ilog Ta) i@ xlog(1+c¢), forxé¢[—1,1]; elsea(x)=0

2 . .

x“—1 1 1
1 =1 Coo log (1 — log(1+a
ogc(x) og(c = >+x—|—ie* og(1+a) 0t og(1+a)

lterations converge
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The dilog-trick is applicable. The finite size data are given by dilogarithms evaluated at the
asymptotics of the auxiliary functions.

The numerical results for finite boundary fields indicate

2
EN_NeO_fs:_;gv(l_ﬁ( -9) )

with ¢ = 2& for small &, and possibly for arbitrary values of & we have




Solution for p = —0.6,g = —0.3,E = 1.2 and N = 12.
Shown are zeros (blue) and poles (red) of 1 +a(x) and c¢(x)
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Question about the thermodynamic limit: Where do the poles go?




Solution for p = —0.6,g = —0.3,§ = 1.2.
Shown are zeros (blue) and poles (red) of 1+ a(x) for N = 10,12
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Resulis:

e presentation of three (!) non-linear integral equations for the Heisenberg chain with broken
conservation of magnetization

e potentially much more powerful than usual numerics (direct Bethe ansatz, Lanczos)
e direct iterative treatment of NLIE suffers from instabilities
e calculations in conjectured scaling limit work
e finite size data depend on orientation of boundary fields
To do:
e check of conjectured scaling limit

e other integrable systems exist with difficult kernels etc.:
the 3 x 3 network model with s/(2[1) symmetry

strongly staggered six-vertex model
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