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CFT and finite size-scaling

Why are finite size data interesting?

Central charge c and conformal weights ∆, ∆̄ of the underlying CFT from ground state and low

lying excitations

E0 = Le0 −
πv

6L
c+o(1/L)

Ex −E0 =
2π

L
v(∆+ ∆̄)+o(1/L) , Px −P0 =

2π

L
(∆− ∆̄)+o(1/L)

Spectral data for integrable quantum spin chains

from commuting family of transfer matrices for 2d classical models satisfying Yang-Baxter

T (u)T (v) = T (v)T (u), for arbitrary u,v

Hamiltonian as derivative

H = ∂u logT (u)

From now on focus on T (v).

Note: Thermodynamics from Trotterization and quantum transfer matrix T QTM(v) vs. Yang-Yang.
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Historical origin of NLIE: inversion identities

2d Ising model in zero field

Transfer matrix as function of spectral parameter: commuting family, inversion identity

T (v− i)T(v+ i) = f (v) · id with known function f (v)

For largest eigenvalue Tmax(v) there are no zeros in “physical strip”, no poles, hence

logTmax(v) =

∫ ∞

−∞
s(v−w) log f (w)dw, in short : logTmax = s∗ log f , s(v) :=

1

4coshπv/2

Integral expression is of convolution type. Excitations with additional terms.

“Hard hexagon” model

After suitable normalization of transfer matrix we have functional equation

T (v− i)T (v+ i) = id +T(v)

For largest eigenvalue T = Tmax

logT (v) = L log tanh
π

4
v+ s∗ log(1+T),

Integral equation of convolution type. Solution by numerical iterations.
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Fusion analysis, T -system, Y -system... robust/universal

“Full story” for su(2) / q-deformation / RSOS models

Fused transfer matrices Tj(u) with spin j/2 in auxiliary space, mutually commuting

[Tj(u),Tl(v)] = 0,

So-called T -system: (bilinear) functional relations for j = 1,2,3... AK, Pearce (1992)

Tj(v− i)Tj(v+ i) = id +Tj−1(v)Tj+1(v)

Define

Yj(v) := Tj−1(v)Tj+1(v), j = 1,2, ....

Y -system: for all j = 1,2,3, ... AK, Pearce (1992)

Yj(v− i)Yj(v+ i) = [1+Yj−1(v)][1+Yj+1(v)],

higher rank: A. Kuniba, T. Nakanishi, J. Suzuki (1994)

higher rank, discrete Hirota, Bäcklund flow: Krichever, O. Lipan, P. Wiegmann, A. Zabrodin (1997)
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Non-linear integral equations... here for ground-state

Non-linear integral equations for Y : For Y1(v) the functional equation reads

Y1(v− i)Y1(v+ i) = 1+Y2(v) ⇒ logY1(v) = L log tanh
π

4
v+ s∗ log(1+Y2)

where we assumed spin-1/2 in the quantum space.

Rest of functional equations turn into (simpler) integral equations

logYj(v) = s∗ [log(1+Yj−1)+ log(1+Yj+1)], j ≥ 2,

Solve the NLIEs, then largest eigenvalue of T1(v) from

T1(v− i)T1(v+ i) = 1+Y1(v) ⇒ logT1(v) = Lφ(v)+ s∗ log(1+Y1)

These equations hold for any finite L and numerics are as good for L = 1010 as for L = 2:

integral kernel has exponential asymptotics etc.

Conformal data can be obtained without numerics: dilog trick

Fateev, Wiegmann 1981,..., AK, Pearce 1992
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Explicit finite size corrections in terms of dilogarithm integrals

Eigenvalue of T1 in scaling limit by use of symmetry of the kernel leads to explicit dilogarithms

2

∫ ∞

−∞
dxe−x log(1+Y1(x)) =

r−3

∑
q=1

L

(

sin2
(

π
r−1

)

sin2
(

π
r−1 q

)

)

−
r−3

∑
q=1

L

(

sin2
(

π
r

)

sin2
(

π
r
(q+1)

)

)

=

(

1−
6

r(r−1)

)
π2

6

Arguments of dilogarithms are asymptotics of Y -functions. That generalizes! (Morin-Duchesne,

AK, Pearce 2017)

Excited states

(1) similar equations with additional driving terms

(2) dilogarithms with non standard contours, towers from circling the singularities of the integrand.
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Thermodynamics of RSOS quantum chains

(1) structure of TBA equations known from Yang-Yang thermodynamics + Takahashi-Suzuki

(2) algebraic approach to thermodynamics via Trotter+QTM

(M. Suzuki 85; M. Suzuki, M. Inoue 87; T. Koma 87; J. Suzuki, Akutsu, Wadati 90;

Takahashi 91; J. Suzuki, Nagao, Wadati 92; AK 92; Destri, de Vega 92...)

Specific heat (×5) and (inverse) length of the leading magnetic correlation corresponding to the

conformal weight ∆2,2 = 3/80 resp. ∆2,2 = 1/40 and ∆3,3 = 1/15 (AK 1992)

Thermodynamics for RSOS chains – p.8/25



Spin-1/2 XXX chain: periodic boundary

Periodic boundary success story

H =
N

∑
j=1

~σ j~σ j+1, (σ
x,y,z
N+1 = σ

x,y,z
1 )

• Yang-Baxter: infinite number of conserved charges Qn =
dn

dxn logT (x), H = Q1

• magnetization ∑ j σz
j commutes with H and Qn.

logY1(v) = N log tanh
π

4
v+ s∗ log(1+Y2)

logY2(v) = 0 + s∗ [log(1+Y1)+ log(1+Y3)],

logY3(v) = 0 + s∗ [log(1+Y2)+ log(1+Y4)],

...
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Spin-1/2 XXX chain: general integrable boundary condition

Non-diagonal boundary System with arbitrary boundary fields h1, hN can be written as

H =
N−1

∑
j=1

~σ j~σ j+1 +hz
1 ·σ

z
1 +hz

N ·σz
N +hx

N ·σx
N

parameters of later use: p := 1/hz
1, q := 1/hz

N and ξ := hx
N/hz

N . We have Yang-Baxter, reflection

matrix/equation

• infinite number of conserved charges for any p,q,ξ: Qn =
dn

dxn logT (x), H = Q1

• for ξ 6= 0 the magnetization ∑ j σz
j does not commute with H and Qn.

logY1(v) = d1(v)+ s∗ log(1+Y2)

logY2(v) = d2(v)+ s∗ [log(1+Y1)+ log(1+Y3)],

logY3(v) = d3(v)+ s∗ [log(1+Y2)+ log(1+Y4)],

...

with non-trivial driving terms in each line: not so useful (Frahm et al. 2008)
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Finite size data from T Q relation and alternative NLIE

Periodic boundaries: Getting rid of ∞ many NLIEs

Bethe ansatz or similar yields T Q relation

T1(v)q(v) = ϕ(v− i)q(v+2i)+ϕ(v+ i)q(v−2i)
(
ϕ(v) = vL

)

with polynomial q(v) with zeros satisfying the Bethe ansatz equations.

Functional equations may be rewitten as NLIE for two auxiliary functions a, a

loga(v) = L log tanh
π

4
v+κ∗ log(1+a)−κ− ∗ log(1+a), κ(v) :=

1

2π

∫ ∞

−∞

e−|k|

ek + e−k
eikvdk

loga(v) = L log tanh
π

4
v−κ+ ∗ log(1+a)+κ∗ log(1+a)

EL = Le0+

∫ ∞

−∞
s′ log[(1+a)(1+a)]dv

AK, Batchelor 90; AK, Batchelor, Pearce 91; AK 92; Destri, de Vega 92, 95; J. Suzuki 98

Nota bene: a(v) = ϕ(v)q(v−3i)/ϕ(v−2i)q(v+ i), a(v) = 1/a(v)
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Spin-1/2 XXX chain: general integrable boundary conditions

Integrability is proven by the Yang-Baxter equation and Sklyanin’s reflection algebra

Several methods of solution have been applied

• T Q relations in case of roots of unity, special boundary terms (Nepomechie 2002/04)

• Fusion (Frahm, Grelik, Seel, Wirth 2008)

• Separation of variables (Frahm, Seel, Wirth 2008; Nicolli 2012; Faldella, Kitanine, Niccoli

2013; Kitanine, Maillet, Niccoli, Terras 2018)

• Off-diagonal Bethe ansatz: Commuting transfer matrices + inversion identities (J. Cao, W.-L.

Yang, K. Shi, Y. Wang 2013, R.I. Nepomechie 2013, Li, Cao, Yang, Shi, Wang 2014)

• Modified Bethe ansatz (Belliard 2015; Belliard, Pimenta 2015; Crampé N; Avan, Belliard,

Grosjean, Pimenta 2015; Belliard, Rodrigo A Pimenta, Slavnov 2021)

• parallel field case: Alcaraz, Barber, Batchelor, Baxter, Quispel 1987
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(Alternative) Inhomogeneous T Q-relation

J. Cao, W.-L. Yang, K. Shi, Y. Wang derived the following ansatz for a polynomial T (u) that

satisfies a couple of discrete functional equations:

T (u) =
2(u+1)2N+1

2u+1
(u+ p)[(1+ξ2)

1
2 u+q]

Q1(u−1)

Q2(u)

+
2u2N+1

2u+1
(u− p+1)[(1+ξ2)

1
2 (u+1)−q]

Q2(u+1)

Q1(u)

+2[(−1)N − (1+ξ2)
1
2 ]

[u(u+1)]2N+1

Q1(u)Q2(u)

where Q1 and Q2 are polynomials

Q1(u) =
N

∏
l=1

(u−µl) Q2(u) = (−1)N
N

∏
l=1

(u+µl +1)

with zeros µ j to be determined by analyticity conditions. There are N of them, they are complex

valued...

Almost any established method yields the correct bulk O(N) and boundary O(N0) terms of the

ground state. The O(N−1) terms are unknown.
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Functional equations: Definition of auxiliary functions

We shift the arguments of the functions

q1(x) := Q1

(
i

2
x−

1

2

)

q2(x) := Q2

(
i

2
x−

1

2

)

t(x) = T

(
i

2
x−

1

2

)

= Φ1(x)
q1(x+2i)

q2(x)
︸ ︷︷ ︸

λ1(x)

+Φ2(x)
1

q1(x)q2(x)
︸ ︷︷ ︸

λ2(x)

+Φ3(x)
q2(x−2i)

q1(x)
︸ ︷︷ ︸

λ3(x)

and find that the following auxiliary functions have useful properties:

a :=
λ2(x)+λ3(x)

λ1(x)
, 1+a=

λ1(x)+λ2(x)+λ3(x)

λ1(x)
,

a :=
λ1(x)+λ2(x)

λ3(x)
, 1+a=

λ1(x)+λ2(x)+λ3(x)

λ3(x)
,

c :=
λ2(x) [λ1(x)+λ2(x)+λ3(x)]

λ1(x)λ3(x)
, 1+ c=

[λ1(x)+λ2(x)] [λ2(x)+λ3(x)]

λ1(x)λ3(x)
,

tJ model like ansatz of suitable auxiliary functions (Jüttner, AK 97)

Factorization into “elementary factors” yields integral equations for logs.
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Non-linear integral equations

3 non-linear integral equations take the compact form







loga

loga

logc







= d +K ∗







log(1+a)

log(1+a)

log(1+ c)






, K =







κ −κ k

−κ κ k∗

k∗ k 0






, k(x) :=−

i

x− i0+

where κ(x) was introduced before and

d :=







(2N +1) log th(x)+ γ(x− x0)+ γ(x+ x0)+ ...

(2N +1) log th(x)+ γ̃(x− x0)+ γ̃(x+ x0)+ ...

log[x2(x2 − x2
0)]+ logc∞ + ...






,

where γ(.), γ̃(.) and ... denote terms containing O(1) expressions of type

log
Γ(cst.− ix/4)

Γ(cst.+ ix/4)

Warning: auxiliary functions show windings
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Numerical solution to NLIE: ground-state

Solution for p =−0.6,q =−0.3,ξ = 0.1 and N = 10

-40 -20 0 20 40

-6

-4

-2

0

2

4

6

Notice the kinks, otherwise functions are rather boring.
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Small and large ξ, short and long chains

Observations:

• The position of the kinks is difficult to understand “intuitively”. For large arguments all driving

terms take “flat values”. And somewhere the functions a and a encircle −1.

• For small ξ the “kinks” in loga(x) are far from the origin.

• The kinks disappear to infinity for ξ → 0 (parallel boundary fields) which also enforces c→ 0.

Then only two NLIEs for two functions are left.

CFT data for ξ = 0:

The finite size data for the ground-state energy can be obtained by the dilog-trick.

Two cases to distinguish:

(i) The left or right boundary field is zero (or both): parameter x0 = ∞

(ii) generic case: parameter x0 finite, but scales like 2
π logN

EN −Ne0 − fs =−
πv

24N
·







1, vanishing boundary field(s)

1−6 =−5, non-vanishing boundary fileds

compare Alcaraz, Barber, Batchelor, Baxter, Quispel 1987; Asakawa, Suzuki 1995
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Numerical solution to NLIE: increasing N

Solution for p =−0.6,q =−0.3,ξ = 0.2 and N = 1000.

Shown are real and imaginary parts of log(1+a), and the real valued log(1+ c)

Functions are still boring. However, for increasing N the two characteristics, x0 and kink, move

out to larger arguments and closer to each other → instability.
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Numerical solution to NLIE: initial transition too low

Solution for p =−0.6,q =−0.3,ξ = 0.2 and N = 1000.

Shown are real and imaginary parts of log(1+a), and the real valued log(1+ c) after every 10

steps of in total 100 iterations.
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Numerical solution to NLIE: initial transition too high

Solution for p =−0.6,q =−0.3,ξ = 0.2 and N = 1000.

Shown are real and imaginary parts of log(1+a), and the real valued log(1+ c) after every 10

steps of in total 100 iterations.
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Thermodynamic limit

Positions of kinks ↔ special roots. The location of the kinks must not be larger than x0.

Parameter x0 is of order 2
π logN. We impose that the kinks do not increase, i.e. are O(N0).

The scaling limit of the equations is – we rescale x and x0 by 2
π logN:

loga(x) = log ã∞ +
1

2
log

1+a(x)

1+ ā(x)
−

i

x− iε
∗ log (1+ c) , for x /∈ [−1,1]; else a(x) = 0

logc(x) = log

(

c̃∞
x2 −1

x2

)

+
i

x+ iε
∗ log (1+a)−

i

x− iε
∗ log (1+ ā)
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Finite size data

The dilog-trick is applicable. The finite size data are given by dilogarithms evaluated at the

asymptotics of the auxiliary functions.

The numerical results for finite boundary fields indicate

EN −Ne0 − fs =−
πv

24N

(

1−6

(

1−
φ

π

)2
)

with φ = 2ξ for small ξ, and possibly for arbitrary values of ξ we have

cosφ =
1−ξ2

1+ξ2
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Location of zeros and poles for 1+(x) and c(x)

Solution for p =−0.6,q =−0.3,ξ = 1.2 and N = 12.

Shown are zeros (blue) and poles (red) of 1+a(x) and c(x)

Question about the thermodynamic limit: Where do the poles go?
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Location of zeros and poles for 1+a(x) for N = 10 and 12

Solution for p =−0.6,q =−0.3,ξ = 1.2.

Shown are zeros (blue) and poles (red) of 1+a(x) for N = 10,12
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Summary

Results:

• presentation of three (!) non-linear integral equations for the Heisenberg chain with broken

conservation of magnetization

• potentially much more powerful than usual numerics (direct Bethe ansatz, Lanczos)

• direct iterative treatment of NLIE suffers from instabilities

• calculations in conjectured scaling limit work

• finite size data depend on orientation of boundary fields

To do:

• check of conjectured scaling limit

• other integrable systems exist with difficult kernels etc.:

the 3× 3̄ network model with sl(2|1) symmetry

strongly staggered six-vertex model
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