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Goal: Find ‘Baker and Cat maps’ of many body quantum physics!

@ A proof of random-matrix spectral form factor
PRL 121, 264101 (2018); CMP 387, 597 (2021)

@ Exact local dynamical correlation functions in dual-unitary models:
An example of exact ergodic hierarchy of quantum many-body dynamics
PRL 123, 210601 (2019),

@ Dynamical complexity (entanglement entropy PRX 9, 021033 (2019),
operator entropy SciPost Phys. 8, 067 (2020)), and structural /
perturbative stability of quantum ergodicity PRX 11, 011022 (2021).
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The Quantum Chaos Conjecture (aka BGS conjecture)

Casati, Guarnerri, Valz-Gris 1980, Berry 1981,
Bohigas, Giannoni, Schmidt 1984

The spectral fluctuations of quantum systems with chaotic and ergodic
classical limit are universal and described by Random Matrix Theory (RMT).

The same holds for periodically-driven systems if one instead consid-
ers the statistics of quasi-energies.
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Spectral Form Factor in finite Floquet Systems

The spectrum {¢,} of a unitary one-period propagator
U = T exp(—i [, H(t)dt) as a gas in one dimension

p0) = 22350~ pa).

Spectral density:

Spectral pair correlation function (2-point function):

27

r(¥) = dpp(e + 59)p(p — 59) — 1.

prs
Spectral Form Factor (SFF) (Fourier transform of 2-point function):
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[rU'|* = N?610, tEZ.
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Spectral Form Factor in finite Floquet Systems

The spectrum {Lpn} of a unitary one-period propagator
U =T exp(—i fo (t)dt) as a gas in one dimension

= %T 25(50 — ¥n)-

Spectral density:

Spectral pair correlation function (2-point function):
1 2 1 1
r@) =5 | deple+30)p(p —50) — 1.
™ Jo

Spectral Form Factor (SFF) (Fourier transform of 2-point function):

K NZ [T ettt it(om—wn) 2
(t) o dor(9) Ze — N80
0

= |wU'|" ~N?%60, te.

Caveat: SFF is not self-averaging! Consider instead K (t) = E[K(¢)].
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Comparision to RMT

RMT (No time reversal symmetry):
Kcur(t) =t, t<N.
RMT (With time teversal symmetry):
Koor(t) = 2t — tlog(1 4 2t/N), t<N.

Random (uncorrelated, Poissonian) spectrum {¢y }:

KPoisson = N
RMT vs Real System:
W Boirsom E[K(t)] =E |:Z ei(wm—wn):| .
m,n
® o o
< C Saturation K(t) ~ N beyond
. &6 Heisenberg time ¢t > tu = N =
L 1/Ap.
; | Non-universal (system-specific) be-
t tH: N " haviour below Ehrenfest/Thouless

time t < tp. . o = . -
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For chaotic (hyperbolic) systems, K (7), to all orders in 7", agrees with
RMT! (based on small i asymptotics!)
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For chaotic (hyperbolic) systems, K (1), to all orders in 7", agrees with
RMT! (based on small i asymptotics!)

P p

K(T) ~ Z ZApeiSp/hA;’e—iSp/ /h

First order: diagonal approzimation [Berry, PRSA 1985|, in discrete time:

~(2)) |4, = @)r
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The semiclassics of SFF

For chaotic (hyperbolic) systems, K(7), to all orders in 7", agrees with
RMT! (based on small i asymptotics!)

First order: diagonal approzimation [Berry, PRSA 1985|, in discrete time:
K(r) ~ > Ay /M Az e 0/t 2 (2) 3 AP = (2)r
p p P

To second order, the RMT term is reproduced by considering so-called
Sieber-Richter [Sieber & Richter, Phys. Scr. 2001] pairs of orbits

T
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The semiclassics of SFF

For chaotic (hyperbolic) systems, K (7), to all orders in 7", agrees with
RMT! (based on small i asymptotics!)

First order: diagonal approzimation [Berry, PRSA 1985|, in discrete time:
K(r) ~ YN Ape /M Ay e 0 /M () YA P = ()7
p p P

To second order, the RMT term is reproduced by considering so-called
Sieber-Richter [Sieber & Richter, Phys. Scr. 2001] pairs of orbits

= }f;fij

L

To all orders, RMT terms is reproduced by considering full combinatorics of
self-encountering orbits [Miiller et al, PRL 2004]|
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systems, so no saddle points, no Lyapunov chaos..

Disclaimer: This talk is not about ‘large-N’ QFTs, nor small-A many-body
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What about QCC for many-body systems at ‘A ~ 17
(say for interacting spin 1/2 or fermionic systems)

Disclaimer: This talk is not about ‘large-N’ QFTs, nor small-A many-body
systems, so no saddle points, no Lyapunov chaos..
..Instead, it is about the models like:

L-1
- t 't / o
H = (—JCjCjJrl —J C;iCj+2 + h.c. + annj+1 +V ’I’Ljnj+2), ng = ¢;C;j.
=0
I — — — —!
» @ ®) © o],
J'=V'=0.00 J'=V'=0.02 J'=V'=0.04 J=V'=0.08
05F 1 1 1 H <05
0 ; A B B 0
1 T © T © T ¢ T ™ 1
¢ g
P e b O
J'=V'=0.16 J'=V'=0.32 J'=V'=0.64
05K 1T 1T, 1L s 1=15]%3
—a [=2]
—e [=24
h h h . i,
0 2 4 0 2 40 2 4 0.1
® ® ® =V
From [Rigol and Santos, 2010]...numerical evidence since early 1990’s £
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How about the numerical data on SFF?

Clean non-integrable Kicked Ising Chain [Pineda and TP, PRE 2007]

Tomaz Prosen Exactly solved models of many-body quantum chaos



Only recently first analytic results arrived..

Floquet long-ranged (non-integrable/non-mean field) spin 1/2

chains [arXiv:1712.02665]
PHYSICAL REVIEW X 8, 021062 (2018)

Many-Body Quantum Chaos: Analytic Connection to Random Matrix Theory

Pavel Kos, Marko Ljubotina, and Tomaz Prosen

Physics Department, Faculty of Mathematics and Physics, University of Ljubljana,
Jadranska 19, SI-1000 Ljubljana, Slovenia

®  (Received 5 February 2018; revised manuscript received 12 April 2018; published 8 June 2018)

Floqgeut local quantum circuits with random unitary gates in the
limit of large local Hilbert space dimension ¢ — oo
[PRL 121, 060601 (2018); PRX 8, 041019 (2018)]

Solution of a minimal model for many-body quantum chaos

Amos Chan, Andrea De Luca and J. T. Chalker
Theoretical Physics, Ozford University, 1 Keble Road, Ozford OX1 SNP, United Kingdom
(Dated: December 20, 2017)

Spectral statistics in spatially extended chaotic quantum many-body systems

Amos Chan, Andrea De Luca and J. T. Chalker
Theoretical Physics, Ozford University, 1 Keble Road, Ozford OX1 3NP, United Kingdom .
(Dated: April 4, 2018)
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Kicked Ising model [TP, JPA 1998; PTPS 2000; PRE 2002]

L L
Hyalh;t] = Hilh)+6,(t)Hx, Hilh] =Y {Joioi +hjoi}, Hc=bY of,
j=1

j=1
with Floquet propagator

—iHyg —iHy

UK1:6 (&

J, b: homogeneous spin-coupling and transverse field
h; position dependent longitudinal field
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Kicked Ising model [TP, JPA 1998; PTPS 2000; PRE 2002]

L L
Hyalhit] = Hilh)+6,(t)Hx, Hilh] =Y {Jojoi1 +hio;}, Hx=bY of,
j=1 j=1

with Floquet propagator

—iHy —iHj

Ui =e e

J,b: homogeneous spin-coupling and transverse field
h; position dependent longitudinal field

Remarks:
o KI model is integrable if b =0 or h; = 0.

e For generic h; and b # 0, the model has no symmetries.
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L

j=1

Hyalh;t] = Hih]+6,(t)Hx, Hilh] =Y {Jojoi1 +hjoj}, Hi
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The disorder averaging

L L
Hyalh;t] = Hih]+6,(t)Hx, Hilh] =Y {Jojoi1 +hjoj}, He=bY  of,
j=1 j=1

Consider longitudinal magnetic field h; to be i.i.d. (Gaussian) variable

R(t) = EnK(1)] :/°° <ﬁ dzi:- exp <_(’“‘J2;2")2)> K().

2000 4200
2o 150 — #7| For |J| = |b] = m/4 and o large
500l # 100 %< Lt enough the behaviour seems
o 50 # immediately RMT-like (tr ~
‘E 0 20 40 60 80 " “ il b
<1000 ‘ - o= _
. ’ 2 Interpreting K (t) in terms of
™ oy .
DA a partition function of 2d clas-
500 o o=100r | sical statistical model, we can
- — RMT study SFF analytically in ther-
0 s s modynamic limit!
0 200 400 600 800

] (=] =
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Theorem: For odd t:

L—oo

_ 2t —1
lim K(t) = {Qt ’

t<5
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Theorem: For odd t:
L—oco
Conjecture: For even t:

_ — <
lim K(t):{iz 1, t<5

t>7
Kt)=2t+1,

K((2)=2, K(4) =7, K(6) =13, K(8) = 18, K(10) = 22,
t>12.
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Exact SFF in thermodynamic limit [PRL 121, 264101 (2018)]

Theorem: For odd t:

L—oo

. - 2t—1, t<5
lim K(t)—{% f

Congecture: For even t:

K((2)=2, K(4) =7, K(6) =13, K(8) = 18, K(10) = 22,
K{t)y=2t+1, t>12.
Remarks:

o Results independent of ¢ > 0: The model is ergodic for any disorder
strength (no Floquet-MBL!). In particular, we can take the limit of
a clean system at the end o 0.

o Results independent of h: We can set h = 0 which corresponds to a
limiting integrable system.
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Exact SFF in thermodynamic limit [PRL 121, 264101 (2018)]

Theorem: For odd t:

lim K(t)

L—o0

2—1, t<5
2, t>7"

Congecture: For even t:

Remarks:
o Results independent of o > 0: The model is ergodic for any disorder
strength (no Floquet-MBL!). In particular, we can take the limit of
a clean system at the end o \ 0.
o Results independent of h: We can set h = 0 which corresponds to a
limiting integrable system.

We found a simple locally interacting model with finite dimensional local :
Hilbert space with proven RMT spectral correlations at all time-scales! J .

Tomaz Prosen Exactly solved models of many-body quantum chaos



Key idea in the proof: Space-time duality [PRL 121, 264101 (2018)]

The trace of Uk is equivalent to a partition sum of a classical 2d Ising
model with row-homogeneous field h;:

Uk lh]

; hi
T nl
v hi
A b
f

v i

tr (U [B]) ~ _—

Duality relation:
L
tr (UKI[th =tr (H UKI[hj€]>
j=1

where € = (1~, 1..., 1~) and Uk is a KI model on a ring of size t with twisted
parameters J(J,b), b(J,b).
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Key idea in the proof: Space-time duality [PRL 121, 264101 (2018)]

The trace of Uk is equivalent to a partition sum of a classical 2d Ising
model with row-homogeneous field h;:
Uxilh]

Vi
2
Y hi
A h3
T h3

v i

tr (U{(I [h]) ~ U}(I[}l§€]

Duality relation:
L
tr (UKI[th =tr (H UKI[hj€]>
j=1

where € = (1,1...,1) and Uxi is a KI model on a ring of size ¢ with twisted
parameters J(J,b), b(J,b).

Remarkably: Uxr is unitary for [J| = [b| = 7/4 (Self-dual, J = +.J,b = +b) {
Observed first in [Akila, Waltner, Gutkin and Guhr, JPA 49, 375101 (2016)] .
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~:Ui—>ﬁ,

Consider a unitary gate on a two-qudit system U € U(d?) and define the
following duality transformation
via reshuffling of basis states

Gl @ Ui @ k) = (k| @ (¢|U]i) ® |5) -
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Dual Unitarity [PRL 123, 210601 (2019)]

Consider a unitary gate on a two-qudit system U € U(d?) and define the
following duality transformation

~Ur— U,

via reshuffling of basis states

(Gl @ (U @ k) = (k| @ (E|ULi) @ 13) -

kool
i J

We call a gate dual-Unitary, if not only U is unitary, i.e.

UUt =U'U =1,
but also U is unitary

Tomaz Prosen
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Dual unitary quantum circuits [PRL 123, 210601 (2019)]

One step of a quantum circuit is a unitary over (Cd)®2L
U=0U°"°

where
U° =U%", U° =1, UM,

and I, is a periodic translation IIp|i1) ® |ig) - - - |ir) = |i2) ® |ig) - - |ie) @ |i1).

(here t =2 and L = 6)

DA

[m] =P = =
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Dual unitary quantum circuits [PRL 123, 210601 (2019)]

where

One step of a quantum circuit is a unitary over (C*)®2L

U =1U°"U°

Ue — U®L,

U° = o UCTL,
and I, is a periodic translation IIp|i1) ® |ig) - - - |ie) = |i2) ® |ig) - - |ie) ® |i1).

(here t =2 and L = 6)
Similarly we define dual quantum circuit propagator over (Cd)®2t

U = 7L, 0111,

Tomaz Prosen
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Dual unitary quantum circuits [PRL 123, 210601 (2019)]
One step of a quantum circuit is a unitary over ((Cd)
where

®2L
U =1U°U°

U = U®*

U° = Mo, UCTL,
and I, is a periodic translation IIp|i1) ® |ig) - - - |ir) = |i2) ® |ig) - - |ie) ® |i1).

(here t =2 and L = 6)
Similarly we define dual quantum circuit propagator over ((Cd)®2t

U = U%' I, U®'1LY,.
Clearly we have duality of traces

t 1L
trU0° =t U™,
Tomaz Prosen

=] =

Exactly solved models of many-body quantum chaos






We can provide a complete classification only for d = 2:
U=e(uy@u)-VIJ]- (v- @vy),
where ¢, J € R, ut+,v+ € SU(2) and
4
Relevant examples:

V[J]:exp[_i(faz ® Uz-i—%ay ®o'+Jo"® 0‘2)]
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Problem: Classify all Dual Unitary gates for a given dimension d

We can provide a complete classification only for d = 2:
U=e(uy@u)-VIJ]- (v- @vy),
where ¢, J € R, ug,v+ € SU(2) and

V[J] :exp[fi(goz ® O'I+£O'y ®a¥+Jo" ® O’Z)] .

Relevant examples:
@ SWAP gate U = V[r/4] = S.

o =] = = DA
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Problem: Classify all Dual Unitary gates for a given dimension d

We can provide a complete classification only for d = 2:
U=e(uy@u)-VIJ]- (v- @vy),
where ¢, J € R, ug,v+ € SU(2) and

V[J] :exp[fi(goz ® aer%Uy ®a¥+Jo" ® O’Z)] .

Relevant examples:
@ SWAP gate U = V[r/4] = S.
@ One parameter line of the trotterized XXZ chain

Uxxz = V[J],
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Problem: Classify all Dual Unitary gates for a given dimension d

We can provide a complete classification only for d = 2:
U=e(uy@u)-VIJ]- (v- @vy),

where ¢, J € R, ug,v+ € SU(2) and

V[J] :exp[fi(goz ® az+gay ®a¥+Jo" ® O’Z)] .

Relevant examples:
@ SWAP gate U = V[r/4] = S.
@ One parameter line of the trotterized XXZ chain

Uxxz = V[J],
@ The maximally chaotic self-dual kicked Ising (SDKI) chain

—ihoZ iT o i T T iT oY —iho? i T oY
USDKI:eZUel4U®el4U .V[O].el4UeZU®eZ4U.
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Problem: Classify all Dual Unitary gates for a given dimension d

We can provide a complete classification only for d = 2:
U=e(up @u-) - VIJ]- (v-®v4),

where ¢, J € R, ut,v+ € SU(2) and
T 5 z T z z
VI[J] :exp[—z(za ®o +Zay Qo'+Jo*®0c )}

Relevant examples:

@ SWAP gate U =V[r/4] = S.

@ One parameter line of the trotterized XXZ chain

Uxxz = V|[J],
@ The maximally chaotic self-dual kicked Ising (SDKI) chain

—iho? i T o® i iZoY

Jusp s i T oY —iho?
Uspki =e e€17®e? V[0 et T Re

See [Claeys & Lamacraft, PRL126, 100603 (2021)] for generalization (not
complete classification!) to higher d, and [Gutkin,Braun,Akila,Waltner,Guhr,
arXiv:2001.01298| for generalization of KI model to higher d.
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U1 = (wmod(x_%'l_) Suwn) W=

®u, U= bx(

K(t, L) = Eu[jr U4 ] = Eufir (U] © UL)] = e[ (B[] © O7))"

it
v

«O>» «F»r « . i
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Spectral Form Factor in DUC

Upspy = x®uy YU = ‘x‘
Urt = Wipoqe—t 1) @ WO W = ,

K(t,L) = Eu[lr UL ?) = Eutr (U}, @ UT)"] = tr{(Bu[0] © OF))® = tr T,

K(t,L)=E tr(EUL)ttr(UTL)‘] :]E[' 2
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‘Thermofield-double’ (aka folded) representation of SFF

R - - v
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Theorem [Bertini, Kos, P, CMP 387, 597 (2021)], written for d = 2:

For i.i.d. local 1-qubit gates us, w, with arbitrary smooth (and nonsingular)

distribution over SU(2), and for any dual unitary 2-qubit gates U other than
the SWAP, we have

lim K(t) = dim {Ma,,, Map,.;a,b € {z,y,2},0 € {0,1}} =t

L—oo

@ T 1
0% =12, ®07 @ Log—2,-1 € End((C*)®*), 1€ =7,

2
t—1 t—1
_ 2 : a _ 2 : a b
Ma,b = O’T+§, Mab,L = O’T+§O'T+L451.
7=0 T7=0

] (=] =
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Theorem [Bertini, Kos, P, CMP 387, 597 (2021)], written for d = 2:

For i.i.d. local 1-qubit gates us, w, with arbitrary smooth (and nonsingular)
distribution over SU(2), and for any dual unitary 2-qubit gates U other than
the SWAP, we have

lim K(t) = dim{Ma,,, Map,.;0,b € {z,y,2},0 € {0,1}} =t

L—o0

« T 1
08 =12y ® 0" ® Lae—2,-1 € End((C*)®*), 7€ 5Lt

t—1 t—1
a a b
Ma,u = § O—‘r-&-é: Mab,L = § O—T+§UT+L-§1 .
7=0 7=0

Clearly, the minimal set of generators of the commutant is spanned by ¢
integer-site translation operators. The crux of the proof is to show that
there is no other!
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Dynamical correlation functions in DUC [PRL 123, 210601 (2019)]

Writing the orthonormal set of local observables as a®, a =0,...,d? — 1,
tr [(aa)Taﬁ] = dd,, 5 and choose a® = 1, so all other a® are traceless,
we shall be interested in the following space-time correlator

af
- 2
Daﬁ(xay:t) = dQLLtr [a;"[[}*tag[[jt] — {O— (x —y,t) 2y even 7

C’iﬂ(a: —y,t) 2y odd

O NIE = Nw N No W
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Property 1

If U is dual-unitary, the dynamical correlations are non-zero for ¢ < L/2 only
on the edges of a lightcone spreading at speed +1
CoP (1) = ba,n C° (vt,1),

v==4, o, #0.

o 1
CHAt = 5t

Tomaz Prosen
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The light cone correlations C’iB (t,t) and C*?(—t, t) are given by
1
CeP (vt t) = C—ltr [Mit(aﬁ)aa],

where we introduced the linear maps over End(C?)

My (a) = =try [UT(a ® 1)U = 7
M_(a) = étrz Ui ®au] = -

1
d
tr;[A] denote partial traces over i-th site (i = 1, 2).

Exactly solved models of many-body quantum chaos
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Dynamical correlations tamed!

Decay of correlations is given in terms of d? — 1 eigenvalues A1 o of single
qudit channel (d? x d* matrix) M, and d*> — 1 eigenvalues A_ o of M_

d2— 1 aﬂ
Da‘%m,y,t):{ et gl Sl

)2 2y even
d271 o 2
Ou—y,t 27—1 C+[77( +7) !
(One eigenvalue is always A0 = 1, with eigenoperator a

2y odd
Classification of ergodic behaviours

=1.)

Tomaz Prosen
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Dynamical correlations tamed!

Decay of correlations is given in terms of d? — 1 eigenvalues A1 o of single
qudit channel (d? x d* matrix) M, and d*> — 1 eigenvalues A_ o of M_

2
5. tzd271 Cozﬂ
D*¥(z,y,t) =4 7"

_77()\,,7)% 2y even
Oz —y,t Zd2 i (A +,v)2t 2y odd

(One eigenvalue is always A0 = 1, with eigenoperator a

Classification of ergodic behaviours

@ Non-interacting dynamics

=1.)

all A, 4 =1 (example: SWAP Uli) ® |5)

= 17) ® 1))

Tomaz Prosen
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Dynamical correlations tamed!

Decay of correlations is given in terms of d> — 1 eigenvalues Ay o of single
qudit channel (d? x d* matrix) M, and d* — 1 eigenvalues A_ o of M_.

27 (a3
Do (ary,t) = J Pt Tt €5, (0-)* 2y even
bR - — o
Ou—y,t Zil,:ll C+,B7(>\+,v)2t 2y odd

(One eigenvalue is always A0 = 1, with eigenoperator a’ = 1.)

Classification of ergodic behaviours:
@ Non-interacting dynamics:
all A,y =1 (example: SWAP Uli) ® |j) = |j) ® |i))
@ Non-ergodic (and generically non-integrable) behavior:
3 additional eigenvalue equal to one A,,, =1, v # 0.
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Dynamical correlations tamed!

Decay of correlations is given in terms of d> — 1 eigenvalues Ay o of single
qudit channel (d? x d* matrix) M, and d* — 1 eigenvalues A_ o of M_.

2.1 o 5
D (z,y,t) = Sy=st Z“/z:ll 2%, (A-7)* 2y even
r - — o
Oz —y,t 25:11 C+,B7(>\+n)2t 2y odd

(One eigenvalue is always A0 = 1, with eigenoperator a’ = 1.)

Classification of ergodic behaviours:
@ Non-interacting dynamics:
all A,y =1 (example: SWAP Uli) ® |j) = |j) ® |i))
@ Non-ergodic (and generically non-integrable) behavior:
3 additional eigenvalue equal to one A,,, =1, v # 0.

@ Ergodic but non-mixing behavior:
all Ay 420 # 1, but Iy #0, |\ 4| = 1.
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Dynamical correlations tamed!

Decay of correlations is given in terms of d> — 1 eigenvalues Ay o of single
qudit channel (d? x d* matrix) M, and d* — 1 eigenvalues A_ o of M_.

2 -
Oy—a,t Zd:ll & (/\7,7)% 2y even
d2— (e
690*?/’75 Z-y:ll C+7B»y(>\+,'y)2t 2y odd

Daﬁ(mvyat) = {

(One eigenvalue is always A0 = 1, with eigenoperator a’ = 1.)

Classification of ergodic behaviours:
@ Non-interacting dynamics:
all A,y =1 (example: SWAP Uli) ® |j) = |j) ® |i))
@ Non-ergodic (and generically non-integrable) behavior:
3 additional eigenvalue equal to one A,,, =1, v # 0.
@ Ergodic but non-mixing behavior:
all Ay 420 # 1, but Iy #0, |\ 4| = 1.
@ Ergodic and mixing behavior:
all Ay 20| < 1.
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L. Piroli, B. Bertini, J. I. Cirac and TP, PRB 101, 094304 (2020)
lim (U[UTO, U |¥) =
L—o0

0

142 43 44
Exactly solvable staggered MPS initial states satisfying:
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Operator entanglement in DUC

Analytic computation of Renyi-2 operator entanglement entropy for
spreading of local operators [Bertini, Kos & P, SciPost Phys. 2020]:

Eop(t) = at

where a = 2log d signals maximal chaos.

14 o o o 2 2
1.2
< L
5 t=55
Soosp T
palt.y:a) = trgllay (t)Xay (1) ||= ag 0 g6l " tT60
a 35 06
»t=175
0.4
0.2 — Pred. t=0c0
0. - - -
0. 0.2 0.4 0.6 0.8
J
= =) = = =
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Recent results on space-time dual circuits beyond dual unitarity:

Garratt, Chalker, PRX 11, 021051 (2021); PRL 127, 026802 (2021)

Ippoliti, Khemani, PRL 126, 060501 (2021)
Ippoliti, Rakovszky, Khemani, arXiv:2103.06873
Lu, Grover, arXiv:2103.06356

Lerose, Sonner, Abanin, PRX 11, 021040 (2021)
Sonner, Lerose, Abanin, arXiv:2103.13741

our group: PRX 11, 011022 (2021)
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Structural (perturbative) stability of DUC [PRX 11, 011022 (2021)]

(botylay(t) = =

o = = = =
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Structural (perturbative) stability of DUC [PRX 11, 011022 (2021)]
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Reduced gates/circuits and dual-bistochastic Markov circuits

The U(1)-noise averaged dynamical correlations
Cab(@,t) =B,y Can(@,t),  Ujjpr — Ujjprelot?iHhasiecin

can be formulated in terms of classical bistochastic brickwork Markov
circuits in the basis of diagonal operators |1), |0*) with elementary 2-gate

v M -

€ = 0 corresponds to dual-unutary/dual-bistochastic circuit.

=

0
b
d k)
9

[N
\“%QO

TomazZ Prosen Exactly solved models of many-body quantum chaos



Reduced gates/circuits and dual-bistochastic Markov circuits

The U(1)-noise averaged dynamical correlations
cab(,t) = Eqn, 1Cab(2,),  Ujjgr = Uy jpaeit0i Thitiein

can be formulated in terms of classical bistochastic brickwork Markov
circuits in the basis of diagonal operators |1), |c*) with elementary 2-gate

v -

€ = 0 corresponds to dual-unutary/dual-bistochastic circuit.
Tilling representation of dynamical correlations (1 = pe, e2 = ge):

o o® o

0
b
d k)
g

coc o~
kﬁ’%go

51,1[51,2[51,3/51, 4
(@] O (1)) = Z S2.1|s2.2(s2,3l52,4 = + +..
saCles _Los lssafss alss a -
T
+ + 1+

(-1 S« -+ M- H-¢ [B=+ -1 B~ B 0= M
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Rigorous result on perturbative stability of reduced DUC

To fixed, say 2nd order in €1, €2, we get contributions from the no-loop
(skeleton) diagram

as well as from higher, loop diagrams
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Rigorous result on perturbative stability of reduced DUC

To fixed, say 2nd order in €1, 2, we get contributions from the no-loop
(skeleton) diagram

as well as from higher, loop diagrams

However, if

Ibfl

d
|a|>a+ , or |c\>c+‘e|

B

where o and 3 are, respectively, the largest singular values of

c e a f
(d 9>’ and (b 9)’

then the tile-sum can be explicitly evaluated and shown to be equal to sum ‘
over skeleton diagrams. Proven to give the dominant contribution in the .
‘low density’ regime, while conjectured at any density of perturbed. gates.
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Path integral (aka skeleton) formula for correlation functions

Under the above conditions we recursively block diagonalize TMs:
gy e = DH Ho, . = DH Ho

and obtain:

a6+ ) (pael) () (e e vz

n=1

qu qu (x+—l)( ) xp—n=1ox_—n—1 XGZ+1/2,

(@,(®@(1)) =

Tg = |zx/vs], zx:=txx, A2 >~min(Zy,z_)

1.
logyo |{bslao ()] e et
0.1| -= Gate 2 —o-Gate 5
0 . o Cate 3
@
-10 S 001
20 &
&
=30 0.001
—40
L 50 .
0.0001 s

=} 12N G4
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Another dual-unitary paradigm: IRF circuits

[TP, Chaos 2021]

=
99—

—
-9

U™ = 57 ()] 1)) @ 15) @ k)il © (] @ (K|, win € U(d)

i.3,k,3"

An example of IRF circuits: reversible 3-site Margolus cellular automata, e
cf. Rule 54 - reviewed in [JSTAT (2021) 074001]. [
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Chaos Round-a-Face

Tomaz Prosen
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Unitarity and dual-unitarity of IRF gates:
11 &K=t |

Consequently, only non-vanishing correlators along 2-leg ladders
31
b ‘ A
I A
4 4
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o First exact results on spectral statistics of extended quantum lattice
systems, when thermodynamic limit taken first
The main challenges for future work:
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o First exact results on spectral statistics of extended quantum lattice
systems, when thermodynamic limit taken first
The main challenges for future work:

o Exact results in finite systems, finite size corrections?
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Conclusions

o First exact results on spectral statistics of extended quantum lattice
systems, when thermodynamic limit taken first

The main challenges for future work:
o Exact results in finite systems, finite size corrections?

e Statements about eigenstates:
dual unitary circuits as models where ETH* can be proven?

1 Eigenstate thermalization hypothesis
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