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Goal: Find ‘Baker and Cat maps’ of many body quantum physics!

1 A proof of random-matrix spectral form factor
PRL 121, 264101 (2018); CMP 387, 597 (2021)

2 Exact local dynamical correlation functions in dual-unitary models:
An example of exact ergodic hierarchy of quantum many-body dynamics
PRL 123, 210601 (2019),

3 Dynamical complexity (entanglement entropy PRX 9, 021033 (2019),
operator entropy SciPost Phys. 8, 067 (2020)), and structural /
perturbative stability of quantum ergodicity PRX 11, 011022 (2021).
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The Quantum Chaos Conjecture (aka BGS conjecture)

Casati, Guarnerri, Valz-Gris 1980, Berry 1981,
Bohigas, Giannoni, Schmidt 1984

The spectral fluctuations of quantum systems with chaotic and ergodic
classical limit are universal and described by RandomMatrix Theory (RMT).

The same holds for periodically-driven systems if one instead consid-
ers the statistics of quasi-energies.
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Figure 1. Examples of trajectories of a particle bouncing in a cavity: (a) non-chaotic circular and (b) chaotic
Bunimovich stadium. The images were taken from scholarpedia [60].
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From Liouville’s integrability theorem [59], it follows that there is a canonical trans-
formation (p, q) ! (I,⇥) (where I,⇥ are called action-angle variables) such that
H(p, q) = H(I) [58]. As a result, the solutions of the equations of motion for the action-
angle variables are trivial: Ij(t) = I0

j = constant, and ⇥j(t) = ⌦jt + ⇥j(0). For obvious
reasons, the motion is referred to as taking place on an N -dimensional torus, and it is
not chaotic.

To get a feeling for the di↵erences between integrable and chaotic systems, in Fig. 1,
we illustrate the motion of a particle in both an integrable and a chaotic two-dimensional
cavity [60]. Figure 1(a) illustrates the trajectory of a particle in an integrable circular
cavity. It is visually apparent that the trajectory is a superposition of two periodic mo-
tions along the radial and angular directions. This is a result of the system having two
conserved quantities, energy and angular momentum [61]. Clearly, the long-time aver-
age of the particle density does not correspond to a uniform probability which covers
phase space. Figure 1(b), on the other hand, shows a trajectory of a particle in a chaotic
Bunimovich stadium [10], which looks completely random. If one compares two trajec-
tories that are initially very close to each other in phase space one finds that, after a
few bounces against the walls, they become uncorrelated both in terms of positions and
directions of motion. This is a consequence of chaotic dynamics.

There are many examples of dynamical systems that exhibit chaotic behavior. A nec-
essary, and often su�cient, condition for chaotic motion to occur is that the number of
functionally independent conserved quantities (integrals of motion), which are in involu-
tion, is smaller than the number of degrees of freedom. Otherwise, as mentioned before,
the system is integrable and the dynamics is “simple”. This criterion immediately tells us
that the motion of one particle, without internal degrees of freedom, in a one-dimensional
system, described by a static Hamiltonian, is integrable. The energy provides a unique
(up to a sign) relation between the coordinate and the momentum of the particle. In two
dimensions, energy conservation is not su�cient to constrain the two components of the
momentum at a given position in space, and chaos is possible. However, if an additional
conservation law is present, e.g., angular momentum in the example of Fig. 1(a), then
the motion is regular. As a generalization of the above, a many-particle system is usu-
ally considered chaotic if it does not have an extensive number of conserved quantities.
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3. Quantum Chaos in Physical Systems

3.1. Examples of Wigner-Dyson and Poisson Statistics

Random matrix statistics has found many applications since its introduction by Wigner.
They extend far beyond the framework of the original motivation, and have been inten-
sively explored in many fields (for a recent comprehensive review, see Ref. [93]). Examples
of quantum systems whose spectra exhibit Wigner-Dyson statistics are: (i) heavy nuclei
[94], (ii) Sinai billiards (square or rectangular cavities with circular potential barriers in
the center) [85], which are classically chaotic as the Bunimovich stadium in Fig. 1, (iii)
highly excited levels5 of the hydrogen atom in a strong magnetic field [95], (iv) Spin-1/2
systems and spin-polarized fermions in one-dimensional lattices [69, 70]. Interestingly, the
Wigner-Dyson statistics is also the distribution of spacings between zeros of the Riemann
zeta function, which is directly related to prime numbers. In turn, these zeros can be
interpreted as Fisher zeros of the partition function of a particular system of free bosons
(see Appendix B). In this section, we discuss in more detail some examples originating
from over 30 years of research.
Heavy nuclei - Perhaps the most famous example demonstrating the Wigner-Dyson
statistics is shown in Fig. 2. That figure depicts the cumulative data of the level spacing
distribution obtained from slow neutron resonance data and proton resonance data of
around 30 di↵erent heavy nuclei [71, 96]. All spacings are normalized by the mean level
spacing. The data are shown as a histogram and the two solid lines depict the (GOE)
Wigner-Dyson distribution and the Poisson distribution. One can see that the Wigner-
Dyson distribution works very well, confirming Wigner’s original idea.

Figure 2. Nearest neighbor spacing distribution for the “Nuclear Data Ensemble” comprising 1726 spacings

(histogram) versus normalized (to the mean) level spacing. The two lines represent predictions of the random

matrix GOE ensemble and the Poisson distribution. Taken from Ref. [96]. See also Ref. [71].

Single particle in a cavity - Next, let us consider a much simpler setup, namely, the
energy spectrum of a single particle in a cavity. Here, we can contrast the Berry-Tabor
and BGS conjectures. To this end, in Fig. 3, we show the distribution of level spacings
for two cavities: (left panel) an integrable rectangular cavity with sides a and b such
that a/b = 4

p
5 and ab = 4⇡ and (right panel) a chaotic cavity constructed from two

circular arcs and two line segments (see inset) [80]. These two plots beautifully confirm
the two conjectures. The distribution on the left panel, as expected from the Berry-Tabor
conjecture, is very well described by the Poisson distribution. This occurs despite the fact

5The low-energy spectra of this system exhibits Poissonian level statistics. This is understandable as, at low

energies, the motion of the equivalent classical system is regular [95]. See also Fig. 4.
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Figure 1. One of the regions proven by Sinai to
be classically chaotic is this region Ω
constructed from line segments and circular
arcs.

Traditionally, analysis of the spectrum recovers
information such as the total area of the billiard,
from the asymptotics of the counting function
N(λ) = #{λn ≤ λ}: As λ → ∞, N(λ) ∼ area

4π
λ

(Weyl’s law). Quantum chaos provides completely
different information: The claim is that we should
be able to recover the coarse nature of the dynam-
ics of the classical system, such as whether they
are very regular (“integrable”) or “chaotic”. The
term integrable can mean a variety of things, the
least of which is that, in two degrees of freedom,
there is another conserved quantity besides ener-
gy, and ideally that the equations of motion can be
explicitly solved by quadratures. Examples are the
rectangular billiard, where the magnitudes of the
momenta along the rectangle’s axes are conserved,
or billiards in an ellipse, where the product of an-
gular momenta about the two foci is conserved,
and each billiard trajectory repeatedly touches a
conic confocal with the ellipse. The term chaotic
indicates an exponential sensitivity to changes
of initial condition, as well as ergodicity of the
motion. One example is Sinai’s billiard, a square
billiard with a central disk removed; another class
of shapes investigated by Sinai, and proved by him
to be classically chaotic, includes the odd region
shown in Figure 1. Figure 2 gives some idea of how
ergodicity arises. There are many mixed systems
where chaos and integrability coexist, such as the
mushroom billiard—a semicircle atop a rectangu-
lar foot (featured on the cover of the March 2006
issue of the Notices to accompany an article by
Mason Porter and Steven Lansel).

Figure 2. This figure gives some idea of how
classical ergodicity arises in Ω.

s = 0 1 2 3 4

y = e�s

Figure 3. It is conjectured that the distribution
of eigenvalues π2(m2/a2 + n2/b2) of a
rectangle with sufficiently incommensurable
sides a, b is that of a Poisson process. The
mean is 4π/ab by simple geometric reasoning,
in conformity with Weyl’s asymptotic formula.
Here are plotted the statistics of the gaps
λi+1 − λi found for the first 250,000
eigenvalues of a rectangle with side/bottom
ratio 4

√
5 and area 4π , binned into intervals of

0.1, compared to the expected probability
density e−s .
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s = 0 1 2 3 4

GOE distribution

Figure 4. Plotted here are the normalized gaps
between roughly 50,000 sorted eigenvalues

for the domain Ω, computed by Alex Barnett,
compared to the distribution of the

normalized gaps between successive
eigenvalues of a large random real symmetric
matrix picked from the “Gaussian Orthogonal

Ensemble”, where the matrix entries are
independent (save for the symmetry

requirement) and the probability distribution
is invariant under orthogonal transformations.

One way to see the effect of the classical dy-
namics is to study local statistics of the energy
spectrum, such as the level spacing distribution
P(s), which is the distribution function of nearest-
neighbor spacings λn+1 − λn as we run over all
levels. In other words, the asymptotic propor-
tion of such spacings below a given bound x is∫ x
−∞ P(s)ds. A dramatic insight of quantum chaos

is given by the universality conjectures for P(s):
• If the classical dynamics is integrable, then

P(s) coincides with the corresponding quantity for
a sequence of uncorrelated levels (the Poisson en-
semble) with the same mean spacing: P(s) = ce−cs ,
c = area/4π (Berry and Tabor, 1977).
• If the classical dynamics is chaotic, then P(s)

coincides with the corresponding quantity for the
eigenvalues of a suitable ensemble of random
matrices (Bohigas, Giannoni, and Schmit, 1984).
Remarkably, a related distribution is observed for
the zeros of Riemann’s zeta function.

Not a single instance of these conjectures is
known, in fact there are counterexamples, but
the conjectures are expected to hold “generically”,
that is unless we have a good reason to think oth-
erwise. A counterexample in the integrable case
is the square billiard, where due to multiplici-

ties in the spectrum, P(s) collapses to a point
mass at the origin. Deviations are also seen in the
chaotic case in arithmetic examples. Nonetheless,
empirical studies offer tantalizing evidence for
the “generic” truth of the conjectures, as Figures
3 and 4 show.

Some progress on the Berry-Tabor conjecture in
the case of the rectangle billiard has been achieved
by Sarnak, by Eskin, Margulis, and Mozes, and by
Marklof. However, we are still far from the goal
even there. For instance, an implication of the
conjecture is that there should be arbitrarily large
gaps in the spectrum. Can you prove this for
rectangles with aspect ratio 4

√
5?

The behavior of P(s) is governed by the statis-
tics of the number N(λ, L) of levels in windows
whose location λ is chosen at random, and whose
length L is of the order of the mean spacing
between levels. Statistics for larger windows also
offer information about the classical dynamics and
are often easier to study. An important example
is the variance of N(λ, L), whose growth rate is
believed to distinguish integrability from chaos [1]
(in “generic” cases; there are arithmetic counterex-
amples). Another example is the value distribution
ofN(λ, L), normalized to have mean zero and vari-
ance unity. It is believed that in the chaotic case
the distribution is Gaussian. In the integrable case
it has radically different behavior: For large L, it
is a system-dependent, non-Gaussian distribution
[2]. For smaller L, less is understood: In the case
of the rectangle billiard, the distribution becomes
Gaussian, as was proved recently by Hughes and
Rudnick, and by Wigman.

Further Reading
[1] M. V. Berry, Quantum chaology (The Bakerian
Lecture), Proc. R. Soc. A 413 (1987), 183-198.

[2] P. Bleher, Trace formula for quantum integrable
systems, lattice-point problem, and small divisors, in
Emerging applications of number theory (Minneapolis,
MN, 1996), 1–38, IMA Vol. Math. Appl., 109, Springer,
New York, 1999.

[3] J. Marklof, Arithmetic Quantum Chaos, and
S. Zelditch, Quantum ergodicity and mixing of eigen-
functions, in Encyclopedia of mathematical physics,
Vol. 1, edited by J.-P. Françoise, G. L. Naber, and T. S.
Tsun, Academic Press/Elsevier Science, Oxford, 2006.
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Figure 3. (Left panel) Distribution of 250,000 single-particle energy level spacings in a rectangular two-
dimensional box with sides a and b such that a/b = 4

p
5 and ab = 4⇡. (Right panel) Distribution of 50,000

single-particle energy level spacings in a chaotic cavity consisting of two arcs and two line segments (see inset).
The solid lines show the Poisson (left panel) and the GOE (right panel) distributions. From Ref. [80].

that the corresponding classical system has only two degrees of freedoms [recall that in
the argument used to justify the Berry-Tabor conjecture, Eqs. (21)–(23), we relied on
having many degrees of freedom]. The right panel depicts a level distribution that is in
perfect agreement with the GOE, in accordance with the BGS conjecture.
Hydrogen atom in a magnetic field - A demonstration of a crossover between Pois-
son statistics and Wigner-Dyson statistics can be seen in another single-particle system
– a hydrogen atom in a magnetic field. The latter breaks the rotational symmetry of the
Coulomb potential and hence there is no conservation of the total angular momentum. As
a result, the classical system has coexistence of regions with both regular (occurring at
lower energies) and chaotic (occurring at higher energies) motion [98]. Results of numeri-
cal simulations (see Fig. 4) show a clear interpolation between Poisson and Wigner-Dyson

level statistics as the dimensionless energy (denoted by Ê) increases [95]. Note that at
intermediate energies the statistics is neither Poissonian nor Wigner-Dyson, suggesting

Figure 4. The level spacing distribution of a hydrogen atom in a magnetic field. Di↵erent plots correspond to
di↵erent mean dimensionless energies Ê, measured in natural energy units proportional to B2/3, where B is the
magnetic field. As the energy increases one observes a crossover between Poisson and Wigner-Dyson statistics.
The numerical results are fitted to a Brody distribution (solid lines) [87], and to a semi-classical formula due to
Berry and Robnik (dashed lines) [97]. From Ref. [95].
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Spectral Form Factor in finite Floquet Systems

The spectrum {ϕn} of a unitary one-period propagator
U = T exp(−i

∫ 1

0
H(t)dt) as a gas in one dimension

Spectral density:

ρ(ϕ) =
2π

N
∑

n

δ(ϕ− ϕn).

Spectral pair correlation function (2-point function):

r(ϑ) =
1

2π

∫ 2π

0

dϕρ(ϕ+ 1
2
ϑ)ρ(ϕ− 1

2
ϑ)− 1.

Spectral Form Factor (SFF) (Fourier transform of 2-point function):

K(t) =
N 2

2π

∫ 2π

0

dϑr(ϑ)eitϑ =
∑

m,n

eit(ϕm−ϕn) −N 2δt,0

=
∣∣trU t

∣∣2 −N 2δt,0, t ∈ Z.
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The spectrum {ϕn} of a unitary one-period propagator
U = T exp(−i

∫ 1

0
H(t)dt) as a gas in one dimension

Spectral density:

ρ(ϕ) =
2π

N
∑

n

δ(ϕ− ϕn).

Spectral pair correlation function (2-point function):

r(ϑ) =
1

2π

∫ 2π

0

dϕρ(ϕ+ 1
2
ϑ)ρ(ϕ− 1

2
ϑ)− 1.

Spectral Form Factor (SFF) (Fourier transform of 2-point function):

K(t) =
N 2

2π

∫ 2π

0

dϑr(ϑ)eitϑ =
∑

m,n

eit(ϕm−ϕn) −N 2δt,0

=
∣∣trU t

∣∣2 −N 2δt,0, t ∈ Z.

Caveat: SFF is not self-averaging! Consider instead K̄(t) = E[K(t)].
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Comparision to RMT

RMT (No time reversal symmetry):

KCUE(t) = t, t < N .

RMT (With time teversal symmetry):

KCOE(t) = 2t− t log(1 + 2t/N ), t < N .

Random (uncorrelated, Poissonian) spectrum {ϕn}:

KPoisson ≡ N .

RMT vs Real System:












A
N

Poisson

x

i I t

tt tEN t

E[K(t)] = E

[∑

m,n

ei(ϕm−ϕn)
]
.

Saturation K̄(t) ∼ N beyond
Heisenberg time t > tH = N =
1/∆ϕ.

Non-universal (system-specific) be-
haviour below Ehrenfest/Thouless
time t < tT.
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The semiclassics of SFF

For chaotic (hyperbolic) systems, K(τ), to all orders in τn, agrees with
RMT! (based on small ~ asymptotics!)
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The semiclassics of SFF

For chaotic (hyperbolic) systems, K(τ), to all orders in τn, agrees with
RMT! (based on small ~ asymptotics!)

First order: diagonal approximation [Berry, PRSA 1985], in discrete time:

K(τ) ∼
τ∑

p

τ∑

p′
Ape

iSp/~A∗p′e
−iSp′/~ ' (2)

τ∑

p

|Ap|2 = (2)τ
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The semiclassics of SFF

For chaotic (hyperbolic) systems, K(τ), to all orders in τn, agrees with
RMT! (based on small ~ asymptotics!)

First order: diagonal approximation [Berry, PRSA 1985], in discrete time:

K(τ) ∼
τ∑

p

τ∑

p′
Ape

iSp/~A∗p′e
−iSp′/~ ' (2)

τ∑

p

|Ap|2 = (2)τ

To second order, the RMT term is reproduced by considering so-called
Sieber-Richter [Sieber & Richter, Phys. Scr. 2001] pairs of orbits

4

Figure 1. Bunch of 72 (pseudo-)orbits differing in two three-encounters and one
two-encounter (a pseudo-orbit is a set of several disjoined orbits; see below).
Different orbits not resolved except in blowups of encounters.

Figure 2. Sieber–Richter pair.

where two stretches of an orbit are close (see figure 2). Full agreement with all coefficients cn

from RMT was established by the present authors in [13, 14].
In none of these works, oscillatory contributions could be obtained (note however

courageous forays by Keating [16] and Bogomolny and Keating [17]), due to the fact that
Gutzwiller’s formula for the level density is divergent. To enforce convergence, one needs to
allow for complex energies with imaginary parts large compared to the mean level spacing,
Im ✏ � 1. Oscillatory terms proportional to e2i✏ then become exponentially small and cannot be
resolved within the conventional semiclassical approach.

In [18], we proposed a way around this difficulty that we here want to elaborate in detail.
The key idea is to represent the correlation function through derivatives of a generating function
involving spectral determinants. Two such representations are available and entail different
semiclassical periodic-orbit expansions. One of them recovers the non-oscillatory part of the
asymptotic expansion (3), essentially in equivalence to [12]–[14]; the other representation
breaks new ground by giving the oscillatory part of (3).

The full random-matrix result also, and in fact most naturally, arises within an alternative
semiclassical approximation scheme proposed by Berry and Keating in [19]. That scheme
constrains the semiclassical periodic-orbit expansion of the spectral determinants det(E � H)
to be real and to converge for real energy argument. Inserted into the generating function
the resulting ‘Riemann–Siegel lookalike formula’ for det(E � H) was shown in [20] to

New Journal of Physics 11 (2009) 103025 (http://www.njp.org/)
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To all orders, RMT terms is reproduced by considering full combinatorics of
self-encountering orbits [Müller et al, PRL 2004]
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What about QCC for many-body systems at ‘~ ∼ 1’?
(say for interacting spin 1/2 or fermionic systems)

Disclaimer: This talk is not about ‘large-N ’ QFTs, nor small-~ many-body
systems, so no saddle points, no Lyapunov chaos..
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What about QCC for many-body systems at ‘~ ∼ 1’?
(say for interacting spin 1/2 or fermionic systems)

Disclaimer: This talk is not about ‘large-N ’ QFTs, nor small-~ many-body
systems, so no saddle points, no Lyapunov chaos..
..Instead, it is about the models like:

H =

L−1∑

j=0

(−Jc†jcj+1 − J ′c†jcj+2 + h.c.+ V njnj+1 + V ′njnj+2), nj = c†jcj .August 2, 2016 Advances in Physics Review
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Figure 5. (a)–(g) Level spacing distribution of spinless fermions in a one-dimensional lattice with Hamiltonian

(40). They are the average over the level spacing distributions of all k-sectors (see text) with no additional
symmetries (see Ref. [69] for details). Results are reported for L = 24, N = L/3, J = V = 1 (unit of energy), and

J 0 = V 0 (shown in the panels) vs the normalized level spacing !. The smooth continuous lines are the Poisson
and Wigner-Dyson (GOE) distributions. (h) Position of the maximum of P (!), denoted as !max, vs J 0 = V 0, for

three lattice sizes. The horizontal dashed line is the GOE prediction. Adapted from Ref. [69].

spacing statistics becomes indistinguishable of the RMT prediction at smaller values of
the integrability breaking parameters. This suggests that, at least for this class of mod-
els, an infinitesimal integrability breaking perturbation is su�cient to generate quantum
chaos in the thermodynamic limit. Recent numerical studies have attempted to quantify
how the strength of the integrability breaking terms should scale with the system size
for the GOE predictions to hold in one dimension [105, 106]. These works suggest that
the strength needs to be / L�3 for this to happen, but the origin of such a scaling
is not understood. Moreover, it is unclear how generic these results are. In particular,
in disordered systems that exhibit many-body localization, it has been argued that the
transition from the Poisson to the Wigner-Dyson statistics occurs at a finite value of the
interaction strength. This corresponds to a finite threshold of the integrability breaking
perturbation even in the thermodynamic limit (see Ref. [51] and references therein).

3.2. The Structure of Many-Body Eigenstates

As we discussed in Sec. 2, RMT makes important predictions about the random nature of
eigenstates in chaotic systems. According to Eq. (12), any eigenvector of a matrix belong-
ing to random matrix ensembles is a random unit vector, meaning that each eigenvectors
is evenly distributed over all basis states. However, as we show here, in real systems the
eigenstates have more structure. As a measure of delocalization of the eigenstates over a
given fixed basis one can use the information entropy:

Sm ⌘ �
X

i

|ci
m|2 ln |ci

m|2, (41)

where

|mi =
X

i

ci
m|ii (42)

is the expansion of the eigenstate |mi over some fixed basis |ii. For the GOE, this entropy,
irrespective of the choice of basis, should be SGOE = ln(0.48D) + O(1/D) [93], where
D is the dimensionality of the Hilbert space. However, numerical analyses of various

21

From [Rigol and Santos, 2010]. . . numerical evidence since early 1990’s
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How about the numerical data on SFF?

Clean non-integrable Kicked Ising Chain [Pineda and TP, PRE 2007]
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Only recently first analytic results arrived..

Floquet long-ranged (non-integrable/non-mean field) spin 1/2
chains [arXiv:1712.02665]

 

Many-Body Quantum Chaos: Analytic Connection to Random Matrix Theory
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A key goal of quantum chaos is to establish a relationship between widely observed universal spectral
fluctuations of clean quantum systems and random matrix theory (RMT). Most prominent features of such
RMT behavior with respect to a random spectrum, both encompassed in the spectral pair correlation
function, are statistical suppression of small level spacings (correlation hole) and enhanced stiffness of the
spectrum at large spectral ranges. For single-particle systems with fully chaotic classical counterparts, the
problem has been partly solved by Berry [Proc. R. Soc. A 400, 229 (1985)] within the so-called diagonal
approximation of semiclassical periodic-orbit sums, while the derivation of the full RMT spectral form
factor KðtÞ (Fourier transform of the spectral pair correlation function) from semiclassics has been
completed by Müller et al. [Phys. Rev. Lett. 93 , 014103 (2004)]. In recent years, the questions of long-time
dynamics at high energies, for which the full many-body energy spectrum becomes relevant, are coming to
the forefront even for simple many-body quantum systems, such as locally interacting spin chains. Such
systems display two universal types of behaviour which are termed the “many-body localized phase” and
“ergodic phase.” In the ergodic phase, the spectral fluctuations are excellently described by RMT, even for
very simple interactions and in the absence of any external source of disorder. Here we provide a clear
theoretical explanation for these observations. We compute KðtÞ in the leading two orders in t and show its
agreement with RMT for nonintegrable, time-reversal invariant many-body systems without classical
counterparts, a generic example of which are Ising spin-1=2 models in a periodically kicking transverse
field. In particular, we relate KðtÞ to partition functions of a class of twisted classical Ising models on a ring
of size t; hence, the leading-order RMT behavior KðtÞ ≃ 2t is a consequence of translation and reflection
symmetry of the Ising partition function.

DOI: 10.1103/PhysRevX.8.021062 Subject Areas: Quantum Physics, Statistical Physics,
Strongly Correlated Materials

I. INTRODUCTION

Random matrix theory (RMT) was introduced into
physics in the 1950s by Wigner [1] to provide a statistical
description of nuclear resonance or excitation spectra. It
should be intuitively clear that a system consisting of a few
tens of nucleons coupled via short- and long-range inter-
actions is complicated enough that a successful description
of experimental spectral fluctuations in terms of an ensem-
ble of random Hamiltonians with independent stochastic
matrix elements is not that surprising. An example of a
robust phenomenological measure of fluctuations is the
statistical variance of the number of energy levels in an

interval of fixed length ΔE which, in RMT and exper-
imental nuclear spectra [2], grows as ∼ log jρ̄ΔEj (known
as spectral stiffness), rather than ∼

ffiffiffiffiffiffiffiffiffiffi
ρ̄ΔE

p
as in the

Poissonian random spectrum (ρ̄ is the average density of
states). The atomic spectra observed already by 1960
exhibited the so-called “level repulsion,” which can be
quantitatively explained [3] with Wigner’s RMT. However,
in the early 1980s a much more surprising fact was
revealed, namely, that RMT also works extremely well
for capturing spectral fluctuations of simple single-particle
systems whose corresponding classical dynamics are com-
pletely chaotic, such as dispersive (Sinai) billiards or
hydrogen or Rydberg atoms in external magnetic or micro-
wave fields. These observations [4–6], termed the quantum
chaos conjecture, which has been concisely stated in
Ref. [7], have driven the field of quantum chaos for
decades. The first, partial explanation for the success of
RMT in simple chaotic systems came from Berry’s semi-
classical (small effective ℏ) calculation [8] of the spectral
form factor KðtÞ in terms of a double sum over classical
unstable periodic orbits, which we explain below. KðtÞ is
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Floqeut local quantum circuits with random unitary gates in the
limit of large local Hilbert space dimension q →∞
[PRL 121, 060601 (2018); PRX 8, 041019 (2018)]

Floquet long-ranged (non-integrable) spin chains

Floquet local quantum circuits with random unitary gates and local Hilbert 
space dimension q.

Very recent analytical results!

Tomaž Prosen Exactly solved models of many-body quantum chaos



What about fermionic or spin 1/2 systems with strictly local interactions?
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Kicked Ising model [TP, JPA 1998; PTPS 2000; PRE 2002]

HKI[h; t] = HI[h]+δp(t)HK, HI[h] ≡
L∑

j=1

{
Jσzjσ

z
j+1 + hjσ

z
j

}
, HK ≡ b

L∑

j=1

σxj ,

with Floquet propagator

UKI = e−iHKe−iHI .

J, b: homogeneous spin-coupling and transverse field
hj position dependent longitudinal field
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Kicked Ising model [TP, JPA 1998; PTPS 2000; PRE 2002]

HKI[h; t] = HI[h]+δp(t)HK, HI[h] ≡
L∑

j=1

{
Jσzjσ

z
j+1 + hjσ

z
j

}
, HK ≡ b

L∑

j=1

σxj ,

with Floquet propagator

UKI = e−iHKe−iHI .

J, b: homogeneous spin-coupling and transverse field
hj position dependent longitudinal field

Remarks:
KI model is integrable if b = 0 or hj ≡ 0.
For generic hj and b 6= 0, the model has no symmetries.
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The disorder averaging

HKI[h; t] = HI[h]+δp(t)HK, HI[h] ≡
L∑

j=1

{
Jσzjσ

z
j+1 + hjσ

z
j

}
, HK ≡ b

L∑

j=1

σxj ,
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The disorder averaging

HKI[h; t] = HI[h]+δp(t)HK, HI[h] ≡
L∑

j=1

{
Jσzjσ

z
j+1 + hjσ

z
j

}
, HK ≡ b

L∑

j=1

σxj ,

Consider longitudinal magnetic field hj to be i.i.d. (Gaussian) variable

K̄(t) = Eh[K(t)] =

∫ ∞

−∞

(
L∏

j=1

dhj√
2πσ

exp

(
− (hj − h̄)2

2σ2

))
K(t).

For |J | = |b| = π/4 and σ large
enough the behaviour seems
immediately RMT-like (tT ∼
1)
Interpreting K̄(t) in terms of
a partition function of 2d clas-
sical statistical model, we can
study SFF analytically in ther-
modynamic limit!
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Exact SFF in thermodynamic limit [PRL 121, 264101 (2018)]

Theorem: For odd t:

lim
L→∞

K̄(t) =

{
2t− 1 , t ≤ 5

2t , t ≥ 7
.
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Exact SFF in thermodynamic limit [PRL 121, 264101 (2018)]

Theorem: For odd t:

lim
L→∞

K̄(t) =

{
2t− 1 , t ≤ 5

2t , t ≥ 7
.

Conjecture: For even t:

K̄(2) = 2, K̄(4) = 7, K̄(6) = 13, K̄(8) = 18, K̄(10) = 22,

K̄(t) = 2t+ 1, t ≥ 12.
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Exact SFF in thermodynamic limit [PRL 121, 264101 (2018)]

Theorem: For odd t:

lim
L→∞

K̄(t) =

{
2t− 1 , t ≤ 5

2t , t ≥ 7
.

Conjecture: For even t:

K̄(2) = 2, K̄(4) = 7, K̄(6) = 13, K̄(8) = 18, K̄(10) = 22,

K̄(t) = 2t+ 1, t ≥ 12.

Remarks:
Results independent of σ > 0: The model is ergodic for any disorder
strength (no Floquet-MBL!). In particular, we can take the limit of
a clean system at the end σ ↘ 0.
Results independent of h̄: We can set h̄ = 0 which corresponds to a
limiting integrable system.
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Exact SFF in thermodynamic limit [PRL 121, 264101 (2018)]

Theorem: For odd t:

lim
L→∞

K̄(t) =

{
2t− 1 , t ≤ 5

2t , t ≥ 7
.

Conjecture: For even t:

K̄(2) = 2, K̄(4) = 7, K̄(6) = 13, K̄(8) = 18, K̄(10) = 22,

K̄(t) = 2t+ 1, t ≥ 12.

Remarks:
Results independent of σ > 0: The model is ergodic for any disorder
strength (no Floquet-MBL!). In particular, we can take the limit of
a clean system at the end σ ↘ 0.
Results independent of h̄: We can set h̄ = 0 which corresponds to a
limiting integrable system.

We found a simple locally interacting model with finite dimensional local
Hilbert space with proven RMT spectral correlations at all time-scales!
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Key idea in the proof: Space-time duality [PRL 121, 264101 (2018)]

The trace of U tKI is equivalent to a partition sum of a classical 2d Ising
model with row-homogeneous field hj :The trace is equivalent to the partition function of a classical Ising model in 2d

UKI[h]

ŨKI[h
z
3✏]

tr (U t
KI[h]) ⇠

Natural Duality Relation

tr (U t
KI[h]) = tr

⇣QL
j=1 ŨKI[hj✏]

⌘

unitary for |J | = |b| = ⇡
4ŨKI[hj✏]

Duality

Duality relation:

tr (UKI[h])t = tr

(
L∏

j=1

ŨKI[hjε]

)

where ε = (1, 1 . . . , 1) and ŨKI is a KI model on a ring of size t with twisted
parameters J̃(J, b), b̃(J, b).
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Key idea in the proof: Space-time duality [PRL 121, 264101 (2018)]

The trace of U tKI is equivalent to a partition sum of a classical 2d Ising
model with row-homogeneous field hj :The trace is equivalent to the partition function of a classical Ising model in 2d

UKI[h]

ŨKI[h
z
3✏]

tr (U t
KI[h]) ⇠

Natural Duality Relation

tr (U t
KI[h]) = tr

⇣QL
j=1 ŨKI[hj✏]

⌘

unitary for |J | = |b| = ⇡
4ŨKI[hj✏]

Duality

Duality relation:

tr (UKI[h])t = tr

(
L∏

j=1

ŨKI[hjε]

)

where ε = (1, 1 . . . , 1) and ŨKI is a KI model on a ring of size t with twisted
parameters J̃(J, b), b̃(J, b).

Remarkably: ŨKI is unitary for |J | = |b| = π/4 (Self-dual, J = ±J̃ , b = ±b̃)
Observed first in [Akila, Waltner, Gutkin and Guhr, JPA 49, 375101 (2016)]
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Dual Unitarity [PRL 123, 210601 (2019)]

Consider a unitary gate on a two-qudit system U ∈ U(d2) and define the
following duality transformation

∼: U 7−→ Ũ ,

via reshuffling of basis states

〈j| ⊗ 〈`|Ũ |i〉 ⊗ |k〉 = 〈k| ⊗ 〈`|U |i〉 ⊗ |j〉 .

7

Supplemental Material for
“Exact Correlation Functions for Dual-Unitary Lattice Models in 1+1 Dimensions”
Here we report some useful information complementing the main text. In particular

- In Section I we report a detailed derivation of the diagrammatic fusion rules (10) and (11);

- In Section II we prove the contracting nature of M±;

- In Section III we derive a simple parametrisation of all 4 ⇥ 4 dual-unitary matrices;

- In Section IV we derive a quantum unitary circuit formulation of the self-dual kicked Ising model;

- In Section V we identify all possible occurrences of unimodular eigenvalues of M± for d = 2;

I. DUALITY AND FUSION RULES

In this section we derive the diagrammatic fusion rules (10) and (11). Let us begin by writing the matrix elements
of the quantum gate as

Ukl
ij = hk| ⌦ hl| U |ii ⌦ |ji )

i j

k l

, (sm-1)

then the duality mapping amounts to a Choi-Jamiołkowski reshuffling [22–24]

Ũ jl
ik = Ukl

ij . (sm-2)

The direct fusion rules are the straightforward tensor network expression of the unitarity of U :

X

p,q

(U†)k`
pqU

pq
ij = (U †U)k`

ij = �ik�j` )

ji

k `

=
X

p,q

ji

k `

p q =

i j

k `

, (sm-3)

X

p,q

Uk`
pq (U†)pq

ij = (UU†)k`
ij = �ik�j` )

ji

k `

=
X

p,q

ji

k `

p q =

i j

k `

, (sm-4)

while the dual fusion rules amount to two different equivalent expressions of the unitarity of Ũ :
X

pq

(U†)`qkpU
jp
iq =

X

pq

Ukp
`q U jp

iq =
X

pq

Ũqp
`k Ũ qp

ij =
X

pq

(Ũ†)`kqpŨ
qp
ij = (Ũ †Ũ)`kij = �i`�jk

)

i

j

`

k =
X

p,q

=

i

j

`

k

i

j

`

kpq , (sm-5)

X

p,q

(U†)p`
qkUqj

pi =
X

pq

U qk
p` U qj

pi =
X

p,q

Ũ `k
pq Ũ ij

pq =
X

pq

Ũ ij
pq(Ũ

†)pq
`k = (Ũ Ũ †)ij

`k = �i`�jk

)

i

j

`

k =
X

p,q

=

i

j

`

k

i

j

`

kp q . (sm-6)

Here (· · · ) denotes complex conjugation.
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while the dual fusion rules amount to two different equivalent expressions of the unitarity of Ũ :
X
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(U†)`qkpU
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Ukp
`q U jp

iq =
X

pq
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X
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=
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X

p,q

(U†)p`
qkUqj

pi =
X

pq

U qk
p` U qj

pi =
X

p,q

Ũ `k
pq Ũ ij

pq =
X

pq

Ũ ij
pq(Ũ

†)pq
`k = (Ũ Ũ †)ij

`k = �i`�jk

)

i

j

`

k =
X

p,q

=

i

j

`

k

i

j

`

kp q . (sm-6)

Here (· · · ) denotes complex conjugation.

We call a gate dual-Unitary, if not only U is unitary, i.e.

UU† = U†U = 1,

but also Ũ is unitary
Ũ Ũ† = Ũ†Ũ = 1.
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Dual unitary quantum circuits [PRL 123, 210601 (2019)]

One step of a quantum circuit is a unitary over (Cd)⊗2L

U = UoUe

where
Ue = U⊗L, Uo = Π2LUeΠ†2L

and Π` is a periodic translation Π`|i1〉⊗ |i2〉 · · · |i`〉 ≡ |i2〉⊗ |i3〉 · · · |i`〉⊗ |i1〉.

2

where Ũ 2 End(H⌦2t
1 ) is the “dual transfer matrix”

Ũ = T2tŨ
⌦tT†

2tŨ
⌦t . (6)

In this paper we consider unitary local gates U such that
Ũ is also unitary. Namely, we require

UU† = U†U = , (7)

Ũ Ũ† = Ũ†Ũ = . (8)

We call ‘dual-unitary’ local gates fulfilling both (7) and
(8) (these conditions immediately imply that U and Ũ
are also unitary). In the following we show that dual-
unitary gates provide a remarkable testing ground for
studying dynamical correlations in many-body quantum
systems. They allow us to classify exactly a number of
qualitatively different physical behaviours [20].

Before continuing, we note that the systems under
exam admit a convenient graphical representation. One
depicts operators as boxes with a number of incoming
and outgoing legs corresponding to the number of local
sites they act on. Each leg (or wire) carries a Hilbert
space H1. For instance, operators acting on a single site
are represented as a line with a bullet •, while the local
gate and its Hermitian conjugate are represented as

U = , U† = . (9)

We stress that, even if we use a symmetric symbol for
U , we assume no symmetry under reflection (left to right
flip) and time reversal (up to down flip). For example,
the relations (7) and (8) are respectively represented by
the following direct and dual “fusion rules” (see Sec. I of
the Supplemental Material (SM))

= = , (10)

= , = . (11)

Here we consider dynamical correlation functions of local
operators in the general time-translation invariant, ‘tra-
cial’, or infinite temperature state. These quantities are
defined as follows

D↵�(x, y, t) ⌘ 1

d2L
tr
⇥
a↵

xU�ta�
y Ut

⇤
, (12)

where x, y 2 1
2Z2L, t 2 N and {a↵

x}↵=0,....,d2�1 denotes a
basis of the space of local operators at site x, i.e., a basis
of End(H1). We assume that a↵ are Hilbert-Schmidt
orthonormal tr

⇥
(a↵)†a�

⇤
= d �↵,� and choose a0 = , so

all other a↵ are traceless, i.e., tr[a↵] = 0 for ↵ 6= 0.

A graphical quantum circuit representation of the ex-
pression (12) is as follows

0

1

2

3

1
2

3
2

5
2

0 1 2 3�2 �1 1
2

3
2

5
2

7
2

� 3
2

� 1
2

a�

a↵

1

d2L

⌧

x

,
(13)

where the boundary conditions in both directions are pe-
riodic. This graph also pictures the space-time lattice of
the circuit, defined by (x, ⌧) 2 1

2Z2L ⇥ 1
2Z2t. Note that

we choose our coordinate system in such a way that ‘time’
and ‘space’ have the same units.

Since U�ta0
xUt = a0

x, we have for all ↵ 6= 0

D00(x, y, t) = 1, D0↵(x, y, t) = D↵0(x, y, t) = 0. (14)

Using the two-site shift invariance (2) we find

D↵�(x, y, t) =

(
C↵�

� (x � y, t) 2y even
C↵�

+ (x � y, t) 2y odd
, (15)

where we set C↵�
± (x, t) ⌘ D↵�(x + 1⌥1

4 , 1⌥1
4 , t).

We are now in a position to derive the main result of
this letter: an exact closed expression for (12). The calcu-
lation can be subdivided in two main steps, summarised
in the following two properties.

Property 1. If U is dual-unitary, the dynamical corre-
lations are non-zero for t  L/2 only on the edges of a
lightcone spreading at speed 1

C↵�
⌫ (x, t) = �x,⌫tC

↵�
⌫ (⌫t, t) , ⌫ = ±, ↵, � 6= 0 . (16)

Proof. The most intuitive way to prove this property is
by using the graphical representation (9,13). Let us show
it considering ⌫ = + as the procedure for ⌫ = � is totally
analogous.

By repeated use of the direct fusion rules (10) we can
simplify every contribution out of the light-cone spread-
ing at speed 1 from a�

0 . This is a simple consequence of
the causal structure of the time evolution. Pictorially, we

(here t = 2 and L = 6)
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and Π` is a periodic translation Π`|i1〉⊗ |i2〉 · · · |i`〉 ≡ |i2〉⊗ |i3〉 · · · |i`〉⊗ |i1〉.

2

where Ũ 2 End(H⌦2t
1 ) is the “dual transfer matrix”

Ũ = T2tŨ
⌦tT†

2tŨ
⌦t . (6)

In this paper we consider unitary local gates U such that
Ũ is also unitary. Namely, we require

UU† = U†U = , (7)

Ũ Ũ† = Ũ†Ũ = . (8)

We call ‘dual-unitary’ local gates fulfilling both (7) and
(8) (these conditions immediately imply that U and Ũ
are also unitary). In the following we show that dual-
unitary gates provide a remarkable testing ground for
studying dynamical correlations in many-body quantum
systems. They allow us to classify exactly a number of
qualitatively different physical behaviours [20].

Before continuing, we note that the systems under
exam admit a convenient graphical representation. One
depicts operators as boxes with a number of incoming
and outgoing legs corresponding to the number of local
sites they act on. Each leg (or wire) carries a Hilbert
space H1. For instance, operators acting on a single site
are represented as a line with a bullet •, while the local
gate and its Hermitian conjugate are represented as

U = , U† = . (9)

We stress that, even if we use a symmetric symbol for
U , we assume no symmetry under reflection (left to right
flip) and time reversal (up to down flip). For example,
the relations (7) and (8) are respectively represented by
the following direct and dual “fusion rules” (see Sec. I of
the Supplemental Material (SM))

= = , (10)

= , = . (11)

Here we consider dynamical correlation functions of local
operators in the general time-translation invariant, ‘tra-
cial’, or infinite temperature state. These quantities are
defined as follows

D↵�(x, y, t) ⌘ 1

d2L
tr
⇥
a↵

xU�ta�
y Ut

⇤
, (12)

where x, y 2 1
2Z2L, t 2 N and {a↵

x}↵=0,....,d2�1 denotes a
basis of the space of local operators at site x, i.e., a basis
of End(H1). We assume that a↵ are Hilbert-Schmidt
orthonormal tr

⇥
(a↵)†a�

⇤
= d �↵,� and choose a0 = , so

all other a↵ are traceless, i.e., tr[a↵] = 0 for ↵ 6= 0.

A graphical quantum circuit representation of the ex-
pression (12) is as follows
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5
2

0 1 2 3�2 �1 1
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2
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2

� 3
2

� 1
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1

d2L

⌧

x

,
(13)

where the boundary conditions in both directions are pe-
riodic. This graph also pictures the space-time lattice of
the circuit, defined by (x, ⌧) 2 1

2Z2L ⇥ 1
2Z2t. Note that

we choose our coordinate system in such a way that ‘time’
and ‘space’ have the same units.

Since U�ta0
xUt = a0

x, we have for all ↵ 6= 0

D00(x, y, t) = 1, D0↵(x, y, t) = D↵0(x, y, t) = 0. (14)

Using the two-site shift invariance (2) we find

D↵�(x, y, t) =

(
C↵�

� (x � y, t) 2y even
C↵�

+ (x � y, t) 2y odd
, (15)

where we set C↵�
± (x, t) ⌘ D↵�(x + 1⌥1

4 , 1⌥1
4 , t).

We are now in a position to derive the main result of
this letter: an exact closed expression for (12). The calcu-
lation can be subdivided in two main steps, summarised
in the following two properties.

Property 1. If U is dual-unitary, the dynamical corre-
lations are non-zero for t  L/2 only on the edges of a
lightcone spreading at speed 1

C↵�
⌫ (x, t) = �x,⌫tC

↵�
⌫ (⌫t, t) , ⌫ = ±, ↵, � 6= 0 . (16)

Proof. The most intuitive way to prove this property is
by using the graphical representation (9,13). Let us show
it considering ⌫ = + as the procedure for ⌫ = � is totally
analogous.

By repeated use of the direct fusion rules (10) we can
simplify every contribution out of the light-cone spread-
ing at speed 1 from a�

0 . This is a simple consequence of
the causal structure of the time evolution. Pictorially, we

(here t = 2 and L = 6)

Similarly we define dual quantum circuit propagator over (Cd)⊗2t

Ũ = Ũ⊗tΠ2tŨ
⊗tΠ†2t.
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Similarly we define dual quantum circuit propagator over (Cd)⊗2t

Ũ = Ũ⊗tΠ2tŨ
⊗tΠ†2t.

Clearly we have duality of traces

trUt = tr ŨL .
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Problem: Classify all Dual Unitary gates for a given dimension d

We can provide a complete classification only for d = 2:

U = eiφ(u+ ⊗ u−) · V [J ] · (v− ⊗ v+) ,

where φ, J ∈ R, u±, v± ∈ SU(2) and

V [J ]=exp
[
−i
(π

4
σx ⊗ σx+

π

4
σy ⊗ σy+Jσz ⊗ σz

)]
.

Relevant examples:
1 SWAP gate U = V [π/4] = S.
2 One parameter line of the trotterized XXZ chain

UXXZ = V [J ] ,

3 The maximally chaotic self-dual kicked Ising (SDKI) chain

USDKI =e−ihσ
z

ei
π
4
σx⊗ eiπ4 σx · V [0] · eiπ4 σye−ihσz⊗ eiπ4 σy.
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3 The maximally chaotic self-dual kicked Ising (SDKI) chain

USDKI =e−ihσ
z

ei
π
4
σx⊗ eiπ4 σx · V [0] · eiπ4 σye−ihσz⊗ eiπ4 σy.

See [Claeys & Lamacraft, PRL126, 100603 (2021)] for generalization (not
complete classification!) to higher d, and [Gutkin,Braun,Akila,Waltner,Guhr,
arXiv:2001.01298] for generalization of KI model to higher d.
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Spectral Form Factor in DUC
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and different shades illustrate distinct matrices. The function mod(x, n) indicates the
remainder upon division by n. Note that leftmost and rightmost gates are connected
because of periodic boundary conditions.

Finally, we point out that the dynamics generated by (2) are time-reversal invariant
if there exist a unitary operator K ∈ U(d2L) such that [1]

KULK† = UT
L and KT = ±K, (8)

where (·)T denotes transposition in the canonical basis (5) and (·)† Hermitian conjuga-
tion. Symmetric and antisymmetric matrices correspond respectively to cases where the
anti-unitary operator implementing time reversal on the Hilbert space squares to plus or
minus one [1]. The first, “regular”, kind of time-reversal symmetry emerges in physical
systems with integer total angular momentum and is associated with orthogonal ensem-
bles of RMT, while the second characterises systems with half-odd integer spin and is
associated with symplectic ensembles [1].

2.2. Our setting. Here we consider local gates of the form

Ux+ 1
2 ,

1
2
= (ux ⊗ ux+ 1

2
)U = , (9a)

Ux,1 = (wmod(x− 1
2 ,L)

⊗ wx )W = , x ∈ ZL , (9b)

where U,W ∈ U(d2) act non-trivially on a pair of neighbouring qudits and ux , wx ∈
U(d) on a single one (we hence represented them graphically as balls acting on a single
wire). Therefore we have

UL =
0

1

1
2

1
2

3
2

5
21 2 3 · · ·

. (10)

In particular, it is immediate to see that, choosing local gates (9a)–(9b) with

U = UT , W = WT , wx = uTx , ∀ x ∈ ΛL , (11)

the condition (8) is fulfilled with

K =
∏

x∈ZL+ 1
2

ηx,L(W ) = KT . (12)

Namely, the dynamics generated by (10) are time-reversal invariant. Here we only con-
sider the non-time-reversal-invariant case, i.e., gates (9a, 9b) not fulfilling (11).

We remark that in (9a)–(9b) we assumed the 2-site gates U,W to be the same for
all x . In physical terms this means that we consider interactions that are homogeneous
in space, while we allow for some position-dependent ‘external fields’ (encoded in the
single-site gates ux , wx ). The extension of our results to fully inhomogeneous systems
is discussed in Sect. 3.2.
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K(t, L) = Eu[|trUtL|2] = Eu[tr (U†L ⊗ UTL)t] = tr[(Eu[Ũ†t ⊗ ŨTt ])L = trTL.
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Random Matrix Spectral Form Factor of Dual-Unitary Quantum Circuits 7

In particular, in the thermodynamic limit L ! 1 (N ! 1) this result
simplifies to

lim
N!1

KCUE(t, N ) = t. (19)

The main result of our paper is the proof that one recovers the r.h.s. of (19) by
computing exactly the expression (14) for a broad class of Floquet quantum
circuits.

2.5 Spectral form factor of Floquet quantum circuits

For local quantum circuits the SFF (14) can be represented diagrammatically
as follows

K(t, L) = E
h
tr(UL)ttr(U†

L)t
i

= E

" #
, (20)

where we represented the trace in the forward time sheet (tr Ut
L) using the

diagram (10) and that in the backward time sheet (tr (U†
L)t) by introducing

U † = , W † = , u†
x, w†

x = . (21)

Once again shades of the same colour denote di↵erent matrices. Note that
top and bottom lines at the same positions within both sheets are connected
because of the traces.

Tomaž Prosen Exactly solved models of many-body quantum chaos



‘Thermofield-double’ (aka folded) representation of SFF
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where we introduced “doubled” or thickened wires

= , (23)

and “doubled” gates

= = U ⊗U∗, = = W ⊗ W ∗,

= = ux ⊗ u∗
x , wx ⊗ w∗

x . (24)

Here and in the following (·)∗ denotes complex conjugation in the canonical basis (5).

2.6. Local disorder averaging. As mentioned in Sect. 2.3 the definition of SFF requires
an average. Since our interest is mainly on clean systems, we consider averages over
onsite disorder that can be made arbitrary weak. This kind of disorder is arguably the
most harmless form of disorder that one can introduce in the system because it does
not couple different sites. In particular, we focus on the following generic model of on-
site disorder where the local gates (9a)–(9b) are specified by fixed unitary interactions
U,W ∈ U(d2), and site-dependent local gates ux , wx ∈ SU(d) of the general form

ux = eiθ0,x ·σ , wx = eiθ1,x ·σ
T
, x ∈ ΛL , θ ι,x ∈ Rd2−1. (25)

The vector σ = (σ1, σ2, . . . , σd2−1) is formed by Generalised Gell–Mann matrices
σa [30] (Pauli matrices for d = 2, Gell–Mann matrices for d = 3, etc.), the Hermitian
generators of su(d), and σ T = (σ T

1 , σ T
2 , . . . , σ T

d2−1) is the vector of the corresponding
transposed generators. The expectation can be explicitly written in terms of a factorised
measure as:

E[ f ] =
∫

f (θ)
L−1∏

x=0

1∏

ι,ι′=0

gιι′(θ ι,x+ ι′
2
)dd

2−1θ
ι,x+ ι′

2
, θ ≡ (θ ι,x )

ι=0,1
x∈ΛL

. (26)

where gιι′ ∈ L1[Rd2−1] are arbitrary probability densities of i.i.d. random variables θ ι,x .
Note that distributions on integer (ι′ = 0) and half-odd-integer (ι′ = 1) sublattices are
generally different.

2.7. Space-time duality. The key property ofE[·] (26) is the factorizationwith respect to
a spatial coordinate x . This means that, even though the diagram (22) cannot be thought
of as the trace of the product of t transfer matrices in the time direction (because the
average couples different time layers), it can be thought of as the trace of the product of
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In particular, in the thermodynamic limit L ! 1 (N ! 1) this result
simplifies to

lim
N!1

KCUE(t, N ) = t. (19)

The main result of our paper is the proof that one recovers the r.h.s. of (19) by
computing exactly the expression (14) for a broad class of Floquet quantum
circuits.

2.5 Spectral form factor of Floquet quantum circuits

For local quantum circuits the SFF (14) can be represented diagrammatically
as follows

K(t, L) = E
h
tr(UL)ttr(U†

L)t
i

= E

" #
, (20)

where we represented the trace in the forward time sheet (tr Ut
L) using the

diagram (10) and that in the backward time sheet (tr (U†
L)t) by introducing

U † = , W † = , u†
x, w†

x = . (21)

Once again shades of the same colour denote di↵erent matrices. Note that
top and bottom lines at the same positions within both sheets are connected
because of the traces.

604 B. Bertini, P. Kos, and T. Prosen

L transfer matrices in the space direction. Specifically,

K (t, L) = E
[ ]

E
[ ]

E
[ ]

E
[ ]

E
[ ]

. (27)

In equations this is expressed as

K (t, L) = E
[(
trUt

L
) (
trUt

L
)∗] = E

[
tr
(
UL ⊗ U∗

L
)t]

= E

[

tr

(
L∏

x=1

Ũt (x) ⊗ Ũt (x)∗
)]

= tr
(
E
[
Ũt ⊗ Ũ∗

t

])L

= trTL , (28)

where the tensor product operates between the two different time sheets, and we intro-
duced the following definitions:

(i) “Dual” Floquet operator propagating in the space-direction over the Hilbert space
H2t of 2t qudits, explicitly depending on the position x ∈ ZL :

Ũt (x) :=
∏

τ∈Zt+ 1
2

ητ,t (Ũ (ux− 1
2

⊗ wT
x− 1

2
))

∏

τ∈Zt

ητ,t (W̃ (wx ⊗ uTx )). (29)

Here Ũ , W̃ ∈ End(H2) are the “dual” 2-body interaction gates defined via the space-
time duality mapping ˜ :End(H2) → End(H2). Specifically, for any O ∈ End(H2)
with matrix elements

Oi1i2, j1 j2 = 〈i1| ⊗ 〈i2| O | j1〉 ⊗ | j2〉 , (30)

we define

Õ jl,ik := Oi j,kl , i, j, k, l ∈ {0, 1, . . . , d − 1}. (31)

We see that Ũi j,kl and W̃i j,kl correspond to a particular reshuffling of the indices of
Ui j,kl and Wi j,kl .

(ii) SFF–transfer matrix:

T := E
[
Ũt ⊗ Ũ∗

t
]

∈ End(H2t ⊗ H2t ). (32)

Note that T does not depend on position x due the to identical distribution of
(θ ι,x− 1

2
, θ ι,x ) for all x ∈ ZL .
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Theorem [Bertini, Kos, P, CMP 387, 597 (2021)], written for d = 2:

For i.i.d. local 1-qubit gates ux, wx with arbitrary smooth (and nonsingular)
distribution over SU(2), and for any dual unitary 2-qubit gates U other than
the SWAP, we have

lim
L→∞

K(t) = dim {Ma,ι,Mab,ι; a, b ∈ {x, y, z}, ι ∈ {0, 1}}′ = t

σατ = 12τ ⊗ στ ⊗ 12t−2τ−1 ∈ End((C2)⊗2t), τ ∈ 1

2
Z2t,

Ma,ι =

t−1∑

τ=0

σaτ+ ι
2
, Mab,ι =

t−1∑

τ=0

σaτ+ ι
2
σb
τ+ ι+1

2
.
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2
.

Clearly, the minimal set of generators of the commutant is spanned by t
integer-site translation operators. The crux of the proof is to show that
there is no other!
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Dynamical correlation functions in DUC [PRL 123, 210601 (2019)]

Writing the orthonormal set of local observables as aα, α = 0, . . . , d2 − 1,
tr
[
(aα)†aβ

]
= d δα,β and choose a0 = 1, so all other aα are traceless,

we shall be interested in the following space-time correlator

Dαβ(x, y, t) ≡ 1

d2L
tr
[
aαxU−taβyUt

]
=

{
Cαβ− (x− y, t) 2y even
Cαβ+ (x− y, t) 2y odd

,

2

where Ũ 2 End(H⌦2t
1 ) is the “dual transfer matrix”

Ũ = T2tŨ
⌦tT†

2tŨ
⌦t . (6)

In this paper we consider unitary local gates U such that
Ũ is also unitary. Namely, we require

UU† = U†U = , (7)

Ũ Ũ† = Ũ†Ũ = . (8)

We call ‘dual-unitary’ local gates fulfilling both (7) and
(8) (these conditions immediately imply that U and Ũ
are also unitary). In the following we show that dual-
unitary gates provide a remarkable testing ground for
studying dynamical correlations in many-body quantum
systems. They allow us to classify exactly a number of
qualitatively different physical behaviours [20].

Before continuing, we note that the systems under
exam admit a convenient graphical representation. One
depicts operators as boxes with a number of incoming
and outgoing legs corresponding to the number of local
sites they act on. Each leg (or wire) carries a Hilbert
space H1. For instance, operators acting on a single site
are represented as a line with a bullet •, while the local
gate and its Hermitian conjugate are represented as

U = , U† = . (9)

We stress that, even if we use a symmetric symbol for
U , we assume no symmetry under reflection (left to right
flip) and time reversal (up to down flip). For example,
the relations (7) and (8) are respectively represented by
the following direct and dual “fusion rules” (see Sec. I of
the Supplemental Material (SM))

= = , (10)

= , = . (11)

Here we consider dynamical correlation functions of local
operators in the general time-translation invariant, ‘tra-
cial’, or infinite temperature state. These quantities are
defined as follows

D↵�(x, y, t) ⌘ 1

d2L
tr
⇥
a↵

xU�ta�
y Ut

⇤
, (12)

where x, y 2 1
2Z2L, t 2 N and {a↵

x}↵=0,....,d2�1 denotes a
basis of the space of local operators at site x, i.e., a basis
of End(H1). We assume that a↵ are Hilbert-Schmidt
orthonormal tr

⇥
(a↵)†a�

⇤
= d �↵,� and choose a0 = , so

all other a↵ are traceless, i.e., tr[a↵] = 0 for ↵ 6= 0.

A graphical quantum circuit representation of the ex-
pression (12) is as follows

0

1

2

3

1
2

3
2

5
2

0 1 2 3�2 �1 1
2

3
2

5
2

7
2

� 3
2

� 1
2

a�

a↵

1

d2L

⌧

x

,
(13)

where the boundary conditions in both directions are pe-
riodic. This graph also pictures the space-time lattice of
the circuit, defined by (x, ⌧) 2 1

2Z2L ⇥ 1
2Z2t. Note that

we choose our coordinate system in such a way that ‘time’
and ‘space’ have the same units.

Since U�ta0
xUt = a0

x, we have for all ↵ 6= 0

D00(x, y, t) = 1, D0↵(x, y, t) = D↵0(x, y, t) = 0. (14)

Using the two-site shift invariance (2) we find

D↵�(x, y, t) =

(
C↵�

� (x � y, t) 2y even
C↵�

+ (x � y, t) 2y odd
, (15)

where we set C↵�
± (x, t) ⌘ D↵�(x + 1⌥1

4 , 1⌥1
4 , t).

We are now in a position to derive the main result of
this letter: an exact closed expression for (12). The calcu-
lation can be subdivided in two main steps, summarised
in the following two properties.

Property 1. If U is dual-unitary, the dynamical corre-
lations are non-zero for t  L/2 only on the edges of a
lightcone spreading at speed 1

C↵�
⌫ (x, t) = �x,⌫tC

↵�
⌫ (⌫t, t) , ⌫ = ±, ↵, � 6= 0 . (16)

Proof. The most intuitive way to prove this property is
by using the graphical representation (9,13). Let us show
it considering ⌫ = + as the procedure for ⌫ = � is totally
analogous.

By repeated use of the direct fusion rules (10) we can
simplify every contribution out of the light-cone spread-
ing at speed 1 from a�

0 . This is a simple consequence of
the causal structure of the time evolution. Pictorially, we
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Property 1

If U is dual-unitary, the dynamical correlations are non-zero for t ≤ L/2 only
on the edges of a lightcone spreading at speed ±1

Cαβν (x, t) = δx,νtC
αβ
ν (νt, t) , ν = ±, α, β 6= 0 .

3

have

C↵�
+ (x, t)=

1

d4t a�

a↵

. (17)

At this point, it is convenient to distinguish three cases:
(i) x = t; (ii) x = t � 1

2 ; (iii) x 6= t � 1
2 , t. Let us start

considering the case (iii), using the dual fusion rules (11)
we have

C↵�
+ (x, t)=

1

d4t�1 a�

a↵

. (18)

From this picture it is clear that the dual fusion rules (11)
can be ‘telescoped’ until the operator a� is encountered.
Namely

C↵�
+ (x, t)=

1

d4t�1 a�

a↵

, (19)

where the central loop represents the trace of a� factoring
out. Using that for � 6= 0 the operators a� are traceless,
we then conclude that the correlation vanishes.

Consider now the case (ii). Using the dual fusion rules
(11) we find

C↵�
+

�
t � 1

2 , t
�
=

1

d4t a�

a↵

. (20)

Here the loop giving tr[a↵] factors out so we again con-
clude that the whole expression vanishes. We then
showed that the only remaining possibility is the case
(i). This concludes the proof.

Property 2. The light cone correlations C↵�
+ (t, t) and

C↵�
� (�t, t) are given by

C↵�
⌫ (⌫t, t) =

1

d
tr
⇥
M2t

⌫ (a�)a↵
⇤
, (21)

where we introduced the linear maps over End(Cd)

M+(a) =
1

d
tr1

⇥
U †(a ⌦ )U

⇤
=

1

d
a , (22)

M�(a) =
1

d
tr2

⇥
U†( ⌦ a)U

⇤
=

1

d
a . (23)

tri[A] denote partial traces over i-th site (i = 1, 2).

Proof. We again prove the property for C↵�
+ (t, t), using

the graphical representation. A completely analogous
reasoning applies for C↵�

� (�t, t).
By repeated use of the fusion rules (10) we can reduce

C↵�
+ (t, t) to the following form

C↵�
+ (t, t)=

1

d2t+1 a�

a↵

. (24)
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Property 2

The light cone correlations Cαβ+ (t, t) and Cαβ− (−t, t) are given by

Cαβν (νt, t) =
1

d
tr
[
M2t

ν (aβ)aα
]
,

where we introduced the linear maps over End(Cd)

3

have

C↵�
+ (x, t)=

1

d4t a�

a↵

. (17)

At this point, it is convenient to distinguish three cases:
(i) x = t; (ii) x = t � 1

2 ; (iii) x 6= t � 1
2 , t. Let us start

considering the case (iii), using the dual fusion rules (11)
we have

C↵�
+ (x, t)=

1

d4t�1 a�

a↵

. (18)

From this picture it is clear that the dual fusion rules (11)
can be ‘telescoped’ until the operator a� is encountered.
Namely

C↵�
+ (x, t)=

1

d4t�1 a�

a↵

, (19)

where the central loop represents the trace of a� factoring
out. Using that for � 6= 0 the operators a� are traceless,
we then conclude that the correlation vanishes.

Consider now the case (ii). Using the dual fusion rules
(11) we find

C↵�
+

�
t � 1

2 , t
�
=

1

d4t a�

a↵

. (20)

Here the loop giving tr[a↵] factors out so we again con-
clude that the whole expression vanishes. We then
showed that the only remaining possibility is the case
(i). This concludes the proof.

Property 2. The light cone correlations C↵�
+ (t, t) and

C↵�
� (�t, t) are given by

C↵�
⌫ (⌫t, t) =

1

d
tr
⇥
M2t

⌫ (a�)a↵
⇤
, (21)

where we introduced the linear maps over End(Cd)

M+(a) =
1

d
tr1

⇥
U †(a ⌦ )U

⇤
=

1

d
a , (22)

M�(a) =
1

d
tr2

⇥
U†( ⌦ a)U

⇤
=

1

d
a . (23)

tri[A] denote partial traces over i-th site (i = 1, 2).

Proof. We again prove the property for C↵�
+ (t, t), using

the graphical representation. A completely analogous
reasoning applies for C↵�

� (�t, t).
By repeated use of the fusion rules (10) we can reduce

C↵�
+ (t, t) to the following form

C↵�
+ (t, t)=

1

d2t+1 a�

a↵

. (24)

tri[A] denote partial traces over i-th site (i = 1, 2).
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Dynamical correlations tamed!

Decay of correlations is given in terms of d2 − 1 eigenvalues λ+,α of single
qudit channel (d2 × d2 matrix)M+, and d2 − 1 eigenvalues λ−,α ofM−.

Dαβ(x, y, t) =

{
δy−x,t

∑d2−1
γ=1 cαβ−,γ(λ−,γ)2t 2y even

δx−y,t
∑d2−1
γ=1 cαβ+,γ(λ+,γ)2t 2y odd

(One eigenvalue is always λν,0 = 1, with eigenoperator a0 = 1.)

Classification of ergodic behaviours:
1 Non-interacting dynamics:

all λν,γ = 1 (example: SWAP U |i〉 ⊗ |j〉 = |j〉 ⊗ |i〉)
2 Non-ergodic (and generically non-integrable) behavior:

∃ additional eigenvalue equal to one λν,γ = 1, γ 6= 0.
3 Ergodic but non-mixing behavior:

all λν,γ 6=0 6= 1, but ∃γ 6= 0, |λν,γ | = 1.
4 Ergodic and mixing behavior:

all |λν,γ 6=0| < 1.
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Exactly solvable chaotic local quenches

L. Piroli, B. Bertini, J. I. Cirac and TP, PRB 101, 094304 (2020)

lim
L→∞

〈Ψ|U−tO1Ut|Ψ〉 =PIROLI, BERTINI, CIRAC, AND PROSEN PHYSICAL REVIEW B 101, 094304 (2020)

O1

. . . −3 −2 −1 0 +1 +2 +3 +4 . . .

FIG. 1. Pictorial representation of a time-dependent one-point
correlation function. In the figure, an initial two-site shift invariant
MPS |!L

0 〉 is time evolved by applying t = 4 layers of unitary gates.
The operator O1, localized at j = 1, is represented by a small black
dot, while black dashed lines enclose the transverse transfer matrix
E (t ) [cf. Eq. (22)].

concreteness on the case where t is even, we can define

E(t) = , .EO1(t) =O1

1

2

3

...

t + 1

t + 2

...

2t

2t + 1
2t + 2

1

2

3

...

t + 1

t + 2

...

2t

2t + 1
2t + 2

(22)

Here, the right outcoming 2t + 2 legs correspond to the
input space on which E (t ) and EO1 (t ) act on. The va-
lidity of Eq. (21) is straightforwardly established. Indeed,
one can simply note that the graphical representation for
tr[Ek (t )EO1 (t )Ek (t )], which is obtained by placing 2k + 1
transfer matrices side by side, is the same as for the expec-
tation value of 〈!t |O1|!t 〉 in a chain of 4k + 2 sites (where
periodic boundary conditions are implemented).

Next, suppose that the largest eigenvalue λ0 of E (t ) is
nondegenerate; more precisely, suppose that its algebraic
multiplicity [namely, the number of diagonal elements in the
Jordan form of E (t ) that are equal to λ0] is 1 and that there are
no other eigenvalues with the same absolute value. Then, for
large L

〈
!L

t

∣∣!L
t

〉
= tr[E (t )L] # λL

0 , (23)

where we used that the length of the system is 2L. Since
〈!L

t |!L
t 〉 = 〈!L

0 |!L
0 〉, Eq. (18) implies λ0 = 1. In turn, this

yields

lim
L→∞

〈
!L

t

∣∣O1
∣∣!L

t

〉
= 〈L|EO1 (t )|R〉, (24)

where we denoted by |L〉 and |R〉 the left and right eigenstates
of E (t ) associated with λ0, with the normalization 〈L|R〉 = 1.
In general, the evaluation of Eq. (24) can only be done numer-
ically for small times. However, for dual-unitary circuits there
exist a class of states for which |L〉 and |R〉 can be determined
exactly.

Consider in particular an initial two-site shift invariant
MPS, as defined in Eq. (17), and suppose that there exists a
χ -dimensional matrix S such that

d∑

k=1

(AiBk )S(AjBk )† = 1
d

δi, jS. (25)

Then, one can show that

|R〉 =
t+1⊗

k=2



 1√
d

d∑

j=1

| j〉k ⊗ | j〉2t−k+3





⊗




χ∑

α,β=1

Sβ,α |β〉1 ⊗ |α〉2t+2



 (26)

is a right eigenstate of E (t ) with eigenvalue λ0 = 1. Here,
Sα,β = 〈α|S|β〉 are the matrix elements of S in the basis
{|α〉}χα=1 of the auxiliary space associated with the initial
MPS. The proof can be carried out graphically by noting that
Eq. (25) can be represented as

= 1
d

, (27)

where we introduced the following notation:

Sβ,α =

α

β

. (28)

Indeed, as shown in Fig. 2, this allows one to compute the
action of E (t ) on |R〉 by making use of the diagrams in
Eqs. (10) and (27).

The above discussion motivates us to introduce the notion
of solvable initial states for the quantum dynamics, and take
Eq. (27) as a defining property of solvability. A priori, how-
ever, this condition alone is not sufficient to guarantee the
uniqueness of the leading eigenvalue, which is necessary, for
instance, to obtain Eq. (24). Accordingly, we say that a two-
site shift invariant MPS [as defined in Eq. (17)] is solvable
with respect to the class of dual-unitary quantum circuits if
the following two conditions are satisfied:

C1. The transfer matrix E (t ) has a unique eigenvalue
λ0 with largest absolute value, λ0 = 1 and λ0 has algebraic
multiplicity 1 ∀ t ∈ N.
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FIG. 1. Pictorial representation of a time-dependent one-point
correlation function. In the figure, an initial two-site shift invariant
MPS |!L

0 〉 is time evolved by applying t = 4 layers of unitary gates.
The operator O1, localized at j = 1, is represented by a small black
dot, while black dashed lines enclose the transverse transfer matrix
E (t ) [cf. Eq. (22)].
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Here, the right outcoming 2t + 2 legs correspond to the
input space on which E (t ) and EO1 (t ) act on. The va-
lidity of Eq. (21) is straightforwardly established. Indeed,
one can simply note that the graphical representation for
tr[Ek (t )EO1 (t )Ek (t )], which is obtained by placing 2k + 1
transfer matrices side by side, is the same as for the expec-
tation value of 〈!t |O1|!t 〉 in a chain of 4k + 2 sites (where
periodic boundary conditions are implemented).

Next, suppose that the largest eigenvalue λ0 of E (t ) is
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multiplicity [namely, the number of diagonal elements in the
Jordan form of E (t ) that are equal to λ0] is 1 and that there are
no other eigenvalues with the same absolute value. Then, for
large L

〈
!L

t

∣∣!L
t

〉
= tr[E (t )L] # λL

0 , (23)

where we used that the length of the system is 2L. Since
〈!L

t |!L
t 〉 = 〈!L

0 |!L
0 〉, Eq. (18) implies λ0 = 1. In turn, this
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lim
L→∞

〈
!L

t

∣∣O1
∣∣!L

t

〉
= 〈L|EO1 (t )|R〉, (24)

where we denoted by |L〉 and |R〉 the left and right eigenstates
of E (t ) associated with λ0, with the normalization 〈L|R〉 = 1.
In general, the evaluation of Eq. (24) can only be done numer-
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Indeed, as shown in Fig. 2, this allows one to compute the
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Eqs. (10) and (27).

The above discussion motivates us to introduce the notion
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Eq. (27) as a defining property of solvability. A priori, how-
ever, this condition alone is not sufficient to guarantee the
uniqueness of the leading eigenvalue, which is necessary, for
instance, to obtain Eq. (24). Accordingly, we say that a two-
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Operator entanglement in DUC

Analytic computation of Renyi-2 operator entanglement entropy for
spreading of local operators [Bertini, Kos & P, SciPost Phys. 2020]:

Eop(t) = αt

where α = 2 log d signals maximal chaos.

SciPost Physics Submission

The complex conjugation (·)⇤ is defined such that

⇤hn|O⇤|mi⇤ = (hn|O|mi)⇤ , (18)

meaning that the vectorization mapping is linear (and not antilinear!) with respect to both,
the ket and the bra parts1.

For convenience we arrange the states |ni ⌦ |mi⇤ in H ⌦ H in such a way that the time
evolution generated by U† ⌦ U†⇤ is “local in space”. Specifically,

|i1 . . . i2Li ⌦ |j1 . . . j2Li⇤ = |i1 j1i ⌦ · · · |i2L j2Li , (19)

where {|ii ; i = 1, 2, . . . , d} is a real, orthonormal basis of H1. In general, for any set of states
|ai , |bi · · · 2 H1, we use a compact notation |a b . . .i = |ai ⌦ |bi ⌦ · · · .

The mapping defined in this way is directly represented by folding the circuit

a 7�! d(2L�1)/2

a

, (20)

where each thick wire carries a d2 dimensional local Hilbert space H1 ⌦ H1

= (21)

and we introduced the “double gate”

=W = . (22)

Note that the red gate is upside down, meaning that U is transposed (c.f. (U†)⇤ = UT on the
r.h.s. of (17)). Finally, we also introduced the (normalised) local states associated to to the
identity operator

1p
d

7�! 1p
d

= ⌘ |�i , (23)

1We can always decide to choose a fixed canonical basis such that |ni⇤ = |ni.

7

SciPost Physics Submission

With our choices of operator and subsystem the graphical representation for the reduced
density matrix reads as

⇢A(t, y; a) = trĀ[|ay(t)ihay(t)|]= a
a†aa†aa†aa†aa† . (29)

In the representation (29) we took y < t  L. We considered the right inequality, because
we are interested in the thermodynamic limit and the results no longer depend on L for
L � t, while we take the left inequality, t > y, because in the opposite case the reduced
density matrix is pure and hence the entanglement vanishes. This is due to the fact that in
quantum circuits there is a strict lightcone for the propagation of information: nothing can
propagate faster than a given maximal velocity (this is stricter than the Lieb-Robinson bound
which allows for exponentially small corrections). In particular, in our units (see Eq. (20))
the maximal velocity is 1. Finally, we assumed y to be an integer. The case of half-integer y
can be recovered by the reflection R of the chain around the bond between 0 and 1/2. This
results in

|ay(t, U)ihay(t, U)| 7! R |ay(t, U)ihay(t, U)| R† = |a1/2�y(t, SUS†)iha1/2�y(t, SUS†)| , (30)

where S is the “swap-gate”
S(a ⌦ b)S† = b ⌦ a , (31)

and we designate explicitly the dependence on the local gate. From now on we always take y
to be integer.

Using the representation (29) we see that the calculation of trA[⇢n
A(t, y; a)] is reduced to

that of a partition function of a vertex model (generically with complex weights). For instance,

9
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Figure 4: The slope �S(2)(y, t�1/2) = S(2)(y, t)�S(2)(y, t�1) and the constant o↵set factor
µ2(y, t) (much more sensitive) versus the parameter J for a dual unitary gate with r = 0.5,
� = 0.7, ✓ = 0 (see Appendix C for the definition of the gate). We show the results for
operators a1 = �3 (left panel) and a2 = ↵1�1 + ↵2�2 + ↵3�3 a fixed random operator with
↵1 = 0.3289, ↵2 = 0.0696, ↵3 = 0.6221. The points correspond to exact numerical results,
and the lines are the predictions using the conjecture (78). The operator is initialised at
y = 0, and we set t = 7 for the right panel.

Figure 5: The slope of Rényi n = 2 entanglement entropy for the operator �3 evolving ac-
cording to (non-dual-unitary) U(4) Haar-random gates. In the clean case we average over 10
realisations, in the noisy case over 20 (100 for t  6). The results suggest that the slope is
close to log 2, which is half of the maximal slope. Note that this agrees well with large d result
from [37], where we get the slope 26

5(
p

2 � 1) log 2 ⇡ 0.9941 log 2, if we use the parameters
sspread, vb for d = 2 (cf. Ref. [37] for a definition of these parameters).

are then given by
�
|e0x+1i = |�. . . � 3 3 �. . .�|{z}

x�1

i , |e0x+2i = |�. . . � 3 r1 3 �. . .�|{z}
x�2

i , . . . , |e02xi = |3 rx�1 3i
 
, (82)
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Recent results on space-time dual circuits beyond dual unitarity:

Garratt, Chalker, PRX 11, 021051 (2021); PRL 127, 026802 (2021)

Ippoliti, Khemani, PRL 126, 060501 (2021)
Ippoliti, Rakovszky, Khemani, arXiv:2103.06873
Lu, Grover, arXiv:2103.06356

Lerose, Sonner, Abanin, PRX 11, 021040 (2021)
Sonner, Lerose, Abanin, arXiv:2103.13741

our group: PRX 11, 011022 (2021)
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Structural (perturbative) stability of DUC [PRX 11, 011022 (2021)]

5

hbx+y|ay(t)i =

b

a

=

b

a

. (13)

Here we conveniently rotated the picture by 45� in the
clockwise direction and, for concreteness, we depicted
correlation functions for integer coordinates y 2 Z and
x 2 Z. The cases with half-integer coordinates can be
treated in an analogous fashion: if y 2 Z+1/2 the states
at the bottom ( and #) are exchanged, while when
x + y 2 Z + 1/2 those at the top ( and #) are ex-
changed.

We see that in this representation correlation functions
correspond to partition functions of a statistical mechan-
ical model (with complex weights determined by the ten-
sor W ) defined on a rectangular lattice of dimensions

x+ = t + dxe x� = t + 1 � dxe, y 2 Z, (14)

x+ = t + 1 + dxe x� = t � dxe, y 2 Z +
1

2
, (15)

where we introduced the ceiling function d·e, such that
dxe 2 Z and x  dxe < x + 1 for any x 2 R (this
definition applies also for negative x). Moreover, we note
that for values of x such that x±  0 the correlations
vanish identically. For definiteness, from now on we will

always consider y = 0 unless otherwise stated.
In the representation (13), it is natural to think of the

correlations in terms of horizontal and vertical transfer
matrices

Aab
x = · · ·

ba

x

, (16)

Cab
x = · · ·

ba

x

, (17)

as follows

hbx|a0(t)i =

8
><
>:

ha# . . .# |(A##x� )x+�1A#b
x� |# . . .#i = h# . . .# b|(C##

x+
)x��1Ca#

x+
|# . . .#i, x 2 Z + 1

2 ,

ha# . . .# |(A##x� )x+ |# . . .# bi = h# . . .# |C#b
x+

(C##
x+

)x��2Ca#
x+

|# . . .#i, x 2 Z
. (18)

Note that the above transfer matrices fulfil the following
two properties

i) Aab
x and Cab

x are contracting, i.e. their eigenvalues lie
on the closed unit disk around 0 in the complex plane,
for all a, b. This is a consequence of the unitarity of
W and can be established following the derivation in
Appendix A of Ref. [13].

ii) The state |#i⌦x is an eigenvector of A##x and C##
x

with eigenvalue one. This is a direct consequence of the

unitality relations (11).

The folding mapping described in this subsection turns
the evolution of operators in the quantum circuit defined
by the elementary gate U into that of states in a larger
(super) quantum circuit defined by the elementary gate
W . In this language the correlation functions are nothing
but matrix elements of powers of the evolution operator

W =
O

x2ZL+1/2

Wx,x+1/2

O

x2ZL

Wx,x+1/2, (19)
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Note that the above transfer matrices fulfil the following
two properties

i) Aab
x and Cab

x are contracting, i.e. their eigenvalues lie
on the closed unit disk around 0 in the complex plane,
for all a, b. This is a consequence of the unitarity of
W and can be established following the derivation in
Appendix A of Ref. [13].

ii) The state |#i⌦x is an eigenvector of A##x and C##
x

with eigenvalue one. This is a direct consequence of the

unitality relations (11).

The folding mapping described in this subsection turns
the evolution of operators in the quantum circuit defined
by the elementary gate U into that of states in a larger
(super) quantum circuit defined by the elementary gate
W . In this language the correlation functions are nothing
but matrix elements of powers of the evolution operator

W =
O

x2ZL+1/2

Wx,x+1/2

O

x2ZL

Wx,x+1/2, (19)

Uη = UDU · eiηP
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where �x denotes the Kronecker delta function and
mod(m, n) ⌘ m mod n is the mod function. As dis-
cussed in Ref. [11], depending on the spectrum of the
transfer matrices A##du,1 and C##

du,1, these correlations can
show four increasing degrees of ergodicity ranging from
non-interacting behaviour — where correlations are all
constant — to the ergodic and mixing one — where all
correlations decay exponentially. In particular, by pro-
viding a complete parametrisation of dual-unitary gates
for d = 2, Ref. [11] showed that the ergodic and mixing
case is typical (i.e. it has measure one in the parametri-
sation space).

Finally, we stress that if the double gate is defined as
in (10) and U fulfils (21), then also W and W † fulfil an
analogous diagrammatic relation. This is however not
needed to obtain the results of this subsection. We only
need the conditions (20), which we dub “dual-unitality”.
Even though the two conditions are equivalent when the
gate W comes from a folded quantum circuit, Eq. (20)
is less restrictive and can hold in a more general setting.
For example in Appendix A we show that this property
arises in Markov circuits where the local evolution matrix
is bistochastic in both space and time directions.

III. STRATEGY AND RESULTS

The goal of this paper is to develop a perturbative ex-
pansion of correlation functions around the dual-unitary
point. The idea is to consider circuits with a number
of non-dual-unitary gates U⌘ composed of a dual-unitary
term Udu and a non-dual-unitary correction. To have
gates that are manifestly unitary we consider perturba-

tions of the multiplicative form

U⌘ = Uduei⌘P , (30)

where P is a generic hermitian 2-qudit operator and non-
negative real parameter ⌘ sets the strength of the pertur-
bation. The folded gate W⌘ can then be written as

W⌘ =
⇣
e�i⌘P ⌦ ei⌘P T

⌘
Wdu. (31)

Note that any quantum gate can be written in the form
(30). Therefore, the expression (30) is the most general
perturbation preserving the circuit-structure of the time
evolution.

When representing correlation functions as partition
functions in a lattice of doubled gates (cf. (13)) one can
think of the gates W⌘, for ⌘ > 0, as defects. Even though
the methods that we develop are applicable to arbitrary
distributions of defects, for the sake of clarity in the main
text we only consider the case where all defects are the
same, namely there is a non-random systematic breaking
of dual-unitarity. For comparison, we consider in Ap-
pendix C the opposite extreme case of random defects
independently distributed at each space-time point. To
better control the perturbation theory it is useful to also
modulate the number of defects in the lattice. To this
aim we introduce an additional parameter: the density
� of defects. We fixed the density because the actual
arrangement of the defects does not affect appreciably
the physics: one can imagine to randomly place �x+x�
defects among the x+x� gates in the lattice (13). For
simplicity, however, it will be sometimes useful to imag-
ine the defects covering a regular sublattice of (13) with
lattice spacings ⌫+ and ⌫�, such that � = 1/⌫+⌫�. For
example

hbx|a0(t)i =

b

a

⌫�

⌫+

. (32)

It follows directly from the above definitions that in both
limiting cases, ⌘ ! 0 or � ! 0, we recover a dual-unitary
circuit. The two perturbations, however, are highly in-

equivalent. In particular, the case of small density � ⌧ 1
is substantially easier to treat than that of small strength
⌘ ⌧ 1 and allows for rigorous results. This difference can
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bation. The folded gate W� can then be written as
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Wdu. (31)

Note that any quantum gate can be written in the form
(30). Therefore, the expression (30) is the most general
perturbation preserving the circuit-structure of the time
evolution.

When representing correlation functions as partition
functions in a lattice of doubled gates (cf. (13)) one can
think of the gates W�, for � > 0, as defects. Even though
the methods that we develop are applicable to arbitrary
distributions of defects, for the sake of clarity in the main
text we only consider the case where all defects are the
same, namely there is a non-random systematic breaking
of dual-unitarity. For comparison, we consider in Ap-
pendix C the opposite extreme case of random defects
independently distributed at each space-time point. To
better control the perturbation theory it is useful to also
modulate the number of defects in the lattice. To this
aim we introduce an additional parameter: the density
� of defects. We fixed the density because the actual
arrangement of the defects does not affect appreciably
the physics: one can imagine to randomly place �x+x�
defects among the x+x� gates in the lattice (13). For
simplicity, however, it will be sometimes useful to imag-
ine the defects covering a regular sublattice of (13) with
lattice spacings �+ and ��, such that � = 1/�+��. For
example

�bx|a0(t)� =

b

a

��

�+

. (32)

It follows directly from the above definitions that in both
limiting cases, � � 0 or � � 0, we recover a dual-unitary
circuit. The two perturbations, however, are highly in-

equivalent. In particular, the case of small density � � 1
is substantially easier to treat than that of small strength
� � 1 and allows for rigorous results. This difference can

=
P

8

be appreciated through a simple combinatoric argument:
While for small � one can work with a single partition
function with a small number of defects and large dual-
unitary islands, separating the dual-unitary islands for
non-zero � generates a complicated sum of terms. In
particular, the number of contributions at a given or-
der �n corresponds to the number of ways to dispose n
identical objects in x+x� identical drawers and becomes
exponentially large in the volume x+x� for large enough
n.

Remarkably, in this paper we find that — under cer-
tain conditions on the unperturbed dual-unitary gate
Wdu — the leading order contribution to the correlations
can be directly computed in both cases and, surprisingly,
takes the same form. Specifically, we observe that — at
the leading order in time — correlations are still deter-
mined by the 1d transfer matrices A��

du,1 and C��
du,1 (cf.

Eqs. (26)–(28)). The difference is that, instead of being
contracted along straight lines as in (26) and (28), now
the maps can also be contracted along zig-zag lines like

b

a

(33)

which we dub “skeleton diagrams”. In particular, the
correlation between two arbitrary points in the causal
light cone is obtained by summing the contributions of
all skeleton diagrams connecting the two points. The
turns in the diagrams are generated by the defects, this
means that for � < 1 all the possible positions of the
turns are restricted to a sub-lattice, while for � = 1 the
turns can be anywhere in the lattice. Note that all skele-
ton diagrams with down- or left- turns are forbidden.
Indeed, these diagrams are cut by the rules (11) and do
not contribute to the correlation. Such decomposition of
the correlation function can be interpreted as a discrete
path-integral on the 2d lattice (32).

To explain how and under what conditions this simpli-
fication arises we proceed in two steps. First, in Sec. IV,
we present rigorous results in a toy setting where the
wires in (32) are two dimensional and the doubled gates
four dimensional — we dub this case “reduced gates”.
Second, in Sec. V, we use a combination of analytical
arguments and numerical observations to show that the
phenomenology identified in the toy setting holds true for
generic d4-dimensional doubled gates.

Let us summarise our results in the above two cases.
At the end, for a comparison, we also provide a summary

of the results we obtained for random, independently dis-
tributed perturbations (details are in Appendix C).

A. Results on Reduced Gates

We begin by noting that, since the doubled/folded
gates have dimension d4, one cannot reduce the dimen-
sion of these gates below 16 by lowering the local Hilbert
space dimension d. However, as explained in Sec. IV, it
is possible to reduce the problem by considering unper-
turbed dual-unitary gates with random U(1) noise (de-
scribing for example random magnetic fields in a fixed
direction for spin 1/2 degrees of freedom, d = 2) and fo-
cussing on the correlations averaged over the noise. In
this case each wire in (32) becomes effectively a two-state
system and we consider the following basis

B = {|�� , |��}, (34)

where |�� corresponds to the identity operator and |��
is orthogonal to it (it corresponds to the only non-trivial
one-site traceless operator preserved by the average).
The most general averaged folded two-body gate can be
expressed in the basis B � B as

w := =

�
��

1 0 0 0
0 p� a b
0 c q� d
0 e f g

�
�� , (35)

where we used lower case w and thin lines to highlight
that the wires are just two-dimensional and the gate is
hence four-dimensional.

Since the gate w is obtained via an average it is not
unitary. However, we see that (35) fulfils the condi-
tions (11). Moreover, we see that the gate also fulfils
the conditions (20) if we set � = 0, namely

wdu := =

�
��

1 0 0 0
0 0 a b
0 c 0 d
0 e f g

�
�� . (36)

The parameter � can then be interpreted as the dual-
unitarity breaking parameter in this setting. Indeed, ex-
pressing the elements of w in terms of those of W� (see
Appendix B 1) we find that � = O(�) where � is the
strength of the perturbation in (31). On the other hand,
all other parameters in w are O(�0). In words this means
that � vanishes for vanishing �, while all other parameters
in w are in general non-zero.

More generally, from the explicit parametrisation of
Appendix B 1 we also find that wij � [�1, 1] and that
the gate becomes a bistochastic matrix (see the definition
(A7)) when conjugated with H � H, where

H :=
1�
2

�
1 1
1 �1

�
, (37)
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be appreciated through a simple combinatoric argument:
While for small � one can work with a single partition
function with a small number of defects and large dual-
unitary islands, separating the dual-unitary islands for
non-zero ⌘ generates a complicated sum of terms. In
particular, the number of contributions at a given or-
der ⌘n corresponds to the number of ways to dispose n
identical objects in x+x� identical drawers and becomes
exponentially large in the volume x+x� for large enough
n.

Remarkably, in this paper we find that — under cer-
tain conditions on the unperturbed dual-unitary gate
Wdu — the leading order contribution to the correlations
can be directly computed in both cases and, surprisingly,
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the leading order in time — correlations are still deter-
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du,1 (cf.
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b

a

(33)

which we dub “skeleton diagrams”. In particular, the
correlation between two arbitrary points in the causal
light cone is obtained by summing the contributions of
all skeleton diagrams connecting the two points. The
turns in the diagrams are generated by the defects, this
means that for � < 1 all the possible positions of the
turns are restricted to a sub-lattice, while for � = 1 the
turns can be anywhere in the lattice. Note that all skele-
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To explain how and under what conditions this simpli-
fication arises we proceed in two steps. First, in Sec. IV,
we present rigorous results in a toy setting where the
wires in (32) are two dimensional and the doubled gates
four dimensional — we dub this case “reduced gates”.
Second, in Sec. V, we use a combination of analytical
arguments and numerical observations to show that the
phenomenology identified in the toy setting holds true for
generic d4-dimensional doubled gates.

Let us summarise our results in the above two cases.
At the end, for a comparison, we also provide a summary

of the results we obtained for random, independently dis-
tributed perturbations (details are in Appendix C).

A. Results on Reduced Gates

We begin by noting that, since the doubled/folded
gates have dimension d4, one cannot reduce the dimen-
sion of these gates below 16 by lowering the local Hilbert
space dimension d. However, as explained in Sec. IV, it
is possible to reduce the problem by considering unper-
turbed dual-unitary gates with random U(1) noise (de-
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direction for spin 1/2 degrees of freedom, d = 2) and fo-
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B = {|#i , | i}, (34)

where |#i corresponds to the identity operator and | i
is orthogonal to it (it corresponds to the only non-trivial
one-site traceless operator preserved by the average).
The most general averaged folded two-body gate can be
expressed in the basis B ⌦ B as
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0 e f g

1
CA , (35)

where we used lower case w and thin lines to highlight
that the wires are just two-dimensional and the gate is
hence four-dimensional.

Since the gate w is obtained via an average it is not
unitary. However, we see that (35) fulfils the condi-
tions (11). Moreover, we see that the gate also fulfils
the conditions (20) if we set " = 0, namely

wdu := =

0
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1 0 0 0
0 0 a b
0 c 0 d
0 e f g

1
CA . (36)

The parameter " can then be interpreted as the dual-
unitarity breaking parameter in this setting. Indeed, ex-
pressing the elements of w in terms of those of W⌘ (see
Appendix B 1) we find that " = O(⌘) where ⌘ is the
strength of the perturbation in (31). On the other hand,
all other parameters in w are O(⌘0). In words this means
that " vanishes for vanishing ⌘, while all other parameters
in w are in general non-zero.

More generally, from the explicit parametrisation of
Appendix B 1 we also find that wij 2 [�1, 1] and that
the gate becomes a bistochastic matrix (see the definition
(A7)) when conjugated with H ⌦ H, where
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Reduced gates/circuits and dual-bistochastic Markov circuits

The U(1)-noise averaged dynamical correlations

cab(x, t) = E{hj,t}Cab(x, t), Uj,j+1 → Uj,j+1e
ihj,tσ

z
j+ihj+1,tσ

z
j+1

can be formulated in terms of classical bistochastic brickwork Markov
circuits in the basis of diagonal operators |1〉, |σz〉 with elementary 2-gateð33Þ

which we dub “skeleton diagrams.” In particular, the
correlation between two arbitrary points in the causal
light cone is obtained by summing the contributions of all
skeleton diagrams connecting the two points. The turns in
the diagrams are generated by the defects, which means
that for δ < 1 all the possible positions of the turns are
restricted to a sublattice, while for δ ¼ 1 the turns can be
anywhere in the lattice. Note that all skeleton diagrams
with down or left turns are forbidden. Indeed, these
diagrams are cut by the rules (11) and do not contribute
to the correlation. Such decomposition of the correlation
function can be interpreted as a discrete path integral on
the 2D lattice (32).
To explain how and under what conditions this simpli-

fication arises, we proceed in two steps. First, in Sec. IV, we
present rigorous results in a toy setting where the wires in
Eq. (32) are two dimensional and the doubled gates four
dimensional—we dub this case “reduced gates.” Second, in
Sec. V, we use a combination of analytical arguments
and numerical observations to show that the phenome-
nology identified in the toy setting holds true for generic
d4-dimensional doubled gates.
Let us summarize our results in the above two cases. At

the end, for a comparison, we also provide a summary of
the results we obtain for random, independently distributed
perturbations (details are in Appendix C).

A. Results on reduced gates

We begin by noting that, since the doubled or folded
gates have dimension d4, one cannot reduce the dimension
of these gates below 16 by lowering the local Hilbert space
dimension d. However, as explained in Sec. IV, it is
possible to reduce the problem by considering unperturbed
dual-unitary gates with random Uð1Þ noise (describing, for
example, random magnetic fields in a fixed direction for
spin 1=2 degrees of freedom, d ¼ 2) and focusing on the
correlations averaged over the noise. In this case, each wire
in Eq. (32) becomes effectively a two-state system, and we
consider the following basis:

B ¼ fj○i; j●ig; ð34Þ

where j○i corresponds to the identity operator and j●i is
orthogonal to it (it corresponds to the only nontrivial one-
site traceless operator preserved by the average). The most
general averaged folded two-body gate can be expressed in
the basis B ⊗ B as

ð35Þ

where we use lowercase w and thin lines to highlight that
the wires are just two dimensional and the gate is, hence,
four dimensional.
Since the gate w is obtained via an average, it is not

unitary. However, we see that Eq. (35) fulfills the con-
ditions (11). Moreover, we see that the gate also fulfils the
conditions (20) if we set ε ¼ 0, namely,

ð36Þ

The parameter ε can then be interpreted as the dual-
unitarity breaking parameter in this setting. Indeed,
expressing the elements of w in terms of those of Wη

(see Appendix B 1), we find that ε ¼ OðηÞ, where η is the
strength of the perturbation in Eq. (31). On the other hand,
all other parameters in w are Oðη0Þ. In words, this
expression means that ε vanishes for vanishing η, while
all other parameters in w are, in general, nonzero.
More generally, from the explicit parametrization in

Appendix B 1, we also find that wij ∈ ½−1; 1% and that
the gate becomes a bistochastic matrix [see the definition
(A7)] when conjugated with H ⊗ H, where

H ≔
1ffiffiffi
2

p
"
1 1

1 −1

#
ð37Þ

is the Hadamard transformation. As shown in Appendix A,
this result means that the evolution generated by w can be
mapped to that of a Markov circuit defined on a chain of
two-state systems. Remarkably, we also observe the oppo-
site: Every local propagator of a Markov circuit on two-
state systems can be mapped into a Uð1Þ-averaged unitary
gate. This observation means that all our results on reduced
gates are also applicable to Markov circuits.
For reduced gates, all nontrivial correlations are propor-

tional to h●xj●0ðtÞi, and we find the following three
main results.
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ε = 0 corresponds to dual-unutary/dual-bistochastic circuit.
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orthogonal to it (it corresponds to the only nontrivial one-
site traceless operator preserved by the average). The most
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where we use lowercase w and thin lines to highlight that
the wires are just two dimensional and the gate is, hence,
four dimensional.
Since the gate w is obtained via an average, it is not

unitary. However, we see that Eq. (35) fulfills the con-
ditions (11). Moreover, we see that the gate also fulfils the
conditions (20) if we set ε ¼ 0, namely,
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The parameter ε can then be interpreted as the dual-
unitarity breaking parameter in this setting. Indeed,
expressing the elements of w in terms of those of Wη

(see Appendix B 1), we find that ε ¼ OðηÞ, where η is the
strength of the perturbation in Eq. (31). On the other hand,
all other parameters in w are Oðη0Þ. In words, this
expression means that ε vanishes for vanishing η, while
all other parameters in w are, in general, nonzero.
More generally, from the explicit parametrization in

Appendix B 1, we also find that wij ∈ ½−1; 1% and that
the gate becomes a bistochastic matrix [see the definition
(A7)] when conjugated with H ⊗ H, where

H ≔
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2
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is the Hadamard transformation. As shown in Appendix A,
this result means that the evolution generated by w can be
mapped to that of a Markov circuit defined on a chain of
two-state systems. Remarkably, we also observe the oppo-
site: Every local propagator of a Markov circuit on two-
state systems can be mapped into a Uð1Þ-averaged unitary
gate. This observation means that all our results on reduced
gates are also applicable to Markov circuits.
For reduced gates, all nontrivial correlations are propor-

tional to h●xj●0ðtÞi, and we find the following three
main results.
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Tilling representation of dynamical correlations (ε1 = pε, ε2 = qε):
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the analysis and methodology for general unitary and Kraus circuits. Using parametrisation (19) and
identifying the tiles:

= 1 = a = b = c = d = e = f = g = Á1 = Á2

the general 2≠point correlator is given by a sum of all possible tilings (forbidding dangling ends of
lines) of (t+1≠ ÁxË)◊ (t+ ÁxË) rectangle with in/out boundary condition on lowerleft/upperright tile

È x| 0 (t)Í =
ÿ

sijœtiles

s1,1

s2,1

s3,1

s1,2

s2,2

s3,2

s1,3

s2,3

s3,3

s1,4

s2,4

s3,4

= + + . . .

+ + + . . . . (20)

where the value of each tiling diagram is the product over the values of the tiles. Clearly, the diagrams
should contain no loops when either of the branchings are zero, b = d = 0, or e = f = 0. In this case
the sum (20) contains only a polynomial number (in x, t) of distinct nonvanishing terms and can be
easily explicitly summed up. In general, the tile-representation (20) allows us to make a systematic
near dual-unitary expansion in orders of Á1,2 which represent the number of ‘turns’. For the choice
of coordinates x, t of (20) the lowest order terms are O(Á1Á2). The simplest, no-loop (or skeleton)
diagram (non-dual-unitary gates correspond to green squares) reads

. (21)

while all other O(Á1Á2) contributions (with fixed location of non-dual-unitary gates) corresponding to
1- and 2-loop diagrams are

, , . (22)

Using a remarkable algebraic property of the row and column transfer matrices of Markov circuits
(see [86] for details and preliminary results) one can show that if either of the following conditions

|a| > a2 + |bf |
1 ≠ –

, or |c| > c2 + |de|
1 ≠ —

, (23)

are satisfied, the combinatorial sum (20) can be explicitly evaluated (to all orders in Á1,2) and equals the
sum over skeleton diagrams only. This statement is rigorous in the dilute limit where only a vanishing
fraction of the gates are perturbed (i.e., are non-dual-bistochastic) while numerical evidence strongly
suggests that it holds even for density 1 of perturbed gates. Proving the last claim and elaborating the
method to treat perturbed dual-bistochastic, dual-unitary, and dual-quantum-bistochastic systems of
general type, as well as to study thresholds (23) and compare them with actual physical ergodicity-
breaking transitions (on which they shall provide rigorous bounds) is the main research avenue of
QUEST.

2.3 Chaotic boundaries/impurities for quantum lattice systems
Crucial for progress of understanding ETH is the ability to analytically compute or control dynamical
correlation functions in finite systems for asymptotically long times, e.g. via formula (3) or its finite
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Rigorous result on perturbative stability of reduced DUC

To fixed, say 2nd order in ε1, ε2, we get contributions from the no-loop
(skeleton) diagram
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as well as from higher, loop diagrams
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1 ≠ —

, (23)

are satisfied, the combinatorial sum (20) can be explicitly evaluated (to all orders in Á1,2) and equals the
sum over skeleton diagrams only. This statement is rigorous in the dilute limit where only a vanishing
fraction of the gates are perturbed (i.e., are non-dual-bistochastic) while numerical evidence strongly
suggests that it holds even for density 1 of perturbed gates. Proving the last claim and elaborating the
method to treat perturbed dual-bistochastic, dual-unitary, and dual-quantum-bistochastic systems of
general type, as well as to study thresholds (23) and compare them with actual physical ergodicity-
breaking transitions (on which they shall provide rigorous bounds) is the main research avenue of
QUEST.

2.3 Chaotic boundaries/impurities for quantum lattice systems
Crucial for progress of understanding ETH is the ability to analytically compute or control dynamical
correlation functions in finite systems for asymptotically long times, e.g. via formula (3) or its finite

as well as from higher, loop diagrams
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the analysis and methodology for general unitary and Kraus circuits. Using parametrisation (19) and
identifying the tiles:
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ÿ
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= + + . . .

+ + + . . . . (20)

where the value of each tiling diagram is the product over the values of the tiles. Clearly, the diagrams
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diagram (non-dual-unitary gates correspond to green squares) reads

. (21)

while all other O(Á1Á2) contributions (with fixed location of non-dual-unitary gates) corresponding to
1- and 2-loop diagrams are

, , . (22)

Using a remarkable algebraic property of the row and column transfer matrices of Markov circuits
(see [86] for details and preliminary results) one can show that if either of the following conditions

|a| > a2 + |bf |
1 ≠ –

, or |c| > c2 + |de|
1 ≠ —

, (23)

are satisfied, the combinatorial sum (20) can be explicitly evaluated (to all orders in Á1,2) and equals the
sum over skeleton diagrams only. This statement is rigorous in the dilute limit where only a vanishing
fraction of the gates are perturbed (i.e., are non-dual-bistochastic) while numerical evidence strongly
suggests that it holds even for density 1 of perturbed gates. Proving the last claim and elaborating the
method to treat perturbed dual-bistochastic, dual-unitary, and dual-quantum-bistochastic systems of
general type, as well as to study thresholds (23) and compare them with actual physical ergodicity-
breaking transitions (on which they shall provide rigorous bounds) is the main research avenue of
QUEST.

2.3 Chaotic boundaries/impurities for quantum lattice systems
Crucial for progress of understanding ETH is the ability to analytically compute or control dynamical
correlation functions in finite systems for asymptotically long times, e.g. via formula (3) or its finite

However, if

|a| > a2 +
|bf |

1− α , or |c| > c2 +
|de|

1− β
where α and β are, respectively, the largest singular values of

(
c e
d g

)
, and

(
a f
b g

)
,

then the tile-sum can be explicitly evaluated and shown to be equal to sum
over skeleton diagrams. Proven to give the dominant contribution in the
‘low density’ regime, while conjectured at any density of perturbed gates.
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Path integral (aka skeleton) formula for correlation functions

Under the above conditions we recursively block diagonalize TMs:

straight paths described above, Eq. (38) establishes non-
trivial correlations between integer and half-odd integer
points.

2. Non-dual-unitary solvable cases

Surprisingly, the tiles (57) contain another nontrivial
solvable limit that is not dual unitary. Indeed, there can be
no loops in the paths whenever the “split weights” f and e
or the “merge weights” b and d are zero. Consequently,
when ðe; fÞ ¼ ð0; 0Þ or ðb; dÞ ¼ ð0; 0Þ, the only allowed
paths are the skeleton diagrams described in Sec. III [see,
e.g., the first two diagrams on the rhs in Eq. (58)]. In this
case, we can directly evaluate the correlation function (58)
by summing all skeleton diagrams. In particular, if the
defects cover a regular sublattice as in Eq. (32), one obtains
the expression (38).
The formula (38) can be derived by straightforward

combinatorics. Let us detail its derivation considering the
case x ∈ Z as an example. We begin by noting that, since
the path goes from the bottom left corner to the upper right
one, it must involve the same number n of right and up
turns, with weights, respectively, given by pε and qε. The
minimum number of such turns is 0 (it contributes only for
x− ¼ 1), while the maximum, minðx̃þ; x̃− − 1Þ, is set by the
size of the defect’s sublattice [the rescaled light-cone
coordinates x̃% are defined in Eq. (39)]. For each fixed
n, one has n turns, xþ − n horizontal segments, contrib-
uting with a factor axþ−n, and x− − 1 − n vertical ones,
contributing with a factor cx−−1−n. To count all the possible
ways in which the elementary pieces can be combined, we
can consider the horizontal and the vertical directions
separately. In the horizontal direction, we need to distribute
n indistinguishable pairs of turns (first up and then right) in
x̃þ positions, leading to the combinatorial factor

!
x̃þ
n

"
: ð60Þ

In the vertical direction, we are instead more constrained.
Indeed, the first and last turns must be in the first and last
row, respectively. The other n − 1 pairs can be distributed
freely in the remaining x̃− − 2 positions, leading to

!
x̃− − 2

n − 1

"
: ð61Þ

Putting it all together, we obtain the desired result. For
defects on irregular sublattices, the reasoning is similar, but
one has different combinatorial coefficients depending on
the actual shape of the sublattice.

C. Perturbation theory around the dual-unitary point

Let us now consider the case of circuits that are perturbed
away from the dual-unitary point. Namely, we consider the

setting introduced in Sec. III: Among the xþx− gates in the
lattice (13), there are ð1 − δÞxþx− dual-unitary gates and
δxþx− perturbations (or defects) breaking dual unitarity
[see the pictorial representation in Eq. (32)]. As discussed
in Sec III, we use two parameters to control the perturba-
tions: strength ε [which is proportional to η in Eq. (31) for
small η] and density δ. We begin by considering the case of
perturbation in the density of defects, which allows for a
more rigorous analysis. Later, we see that, surprisingly,
most of the rigorous conclusions drawn in that case apply
also for small ε and arbitrary δ ≤ 1.

1. Low density, unit strength

We begin our analysis by focusing on fixed defects with
arbitrary strength ε placed on a regular sublattice as in
Eq. (32). In this case, there are regular strips (vertical and
horizontal) composed only of dual-unitary gates. Whenever
the widths ν% [cf. Eq. (32)] of these strips become large
enough, we can simplify the contribution by considering
only the leading eigenvectors of the strips’ transfer matrices
a○○

du;x and c○○

du;x. These are defined as in Eqs. (16) and (17)
but using the 4 × 4 dual-unitary (or, rather, dual-bistochastic)
gate wdu [cf. Eq. (36)], namely,

ð62Þ

ð63Þ

To treat these matrices, we make use of the following
rigorous result, proved in Appendix D.
Property 1.—The matrices a○○

du;x and c○○

du;x take the
following block diagonal form:

a○○

du;x ¼ p○

x;0 þ a
Xx

k¼1

p○

x;k þ r1;x; ð64Þ

c○○

du;x ¼ p○

x;0 þ c
Xx

k¼1

p○

x;k þ r2;x; ð65Þ

where we define

p○

x;0 ≔ j○i⊗xh○j⊗x;

p○

x;k ≔ j○…○●|fflfflfflfflffl{zfflfflfflfflffl}
k

○…○ih○…○●|fflfflfflfflffl{zfflfflfflfflffl}
k

○…○j; ð66Þ
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no loops in the paths whenever the “split weights” f and e
or the “merge weights” b and d are zero. Consequently,
when ðe; fÞ ¼ ð0; 0Þ or ðb; dÞ ¼ ð0; 0Þ, the only allowed
paths are the skeleton diagrams described in Sec. III [see,
e.g., the first two diagrams on the rhs in Eq. (58)]. In this
case, we can directly evaluate the correlation function (58)
by summing all skeleton diagrams. In particular, if the
defects cover a regular sublattice as in Eq. (32), one obtains
the expression (38).
The formula (38) can be derived by straightforward

combinatorics. Let us detail its derivation considering the
case x ∈ Z as an example. We begin by noting that, since
the path goes from the bottom left corner to the upper right
one, it must involve the same number n of right and up
turns, with weights, respectively, given by pε and qε. The
minimum number of such turns is 0 (it contributes only for
x− ¼ 1), while the maximum, minðx̃þ; x̃− − 1Þ, is set by the
size of the defect’s sublattice [the rescaled light-cone
coordinates x̃% are defined in Eq. (39)]. For each fixed
n, one has n turns, xþ − n horizontal segments, contrib-
uting with a factor axþ−n, and x− − 1 − n vertical ones,
contributing with a factor cx−−1−n. To count all the possible
ways in which the elementary pieces can be combined, we
can consider the horizontal and the vertical directions
separately. In the horizontal direction, we need to distribute
n indistinguishable pairs of turns (first up and then right) in
x̃þ positions, leading to the combinatorial factor

!
x̃þ
n

"
: ð60Þ

In the vertical direction, we are instead more constrained.
Indeed, the first and last turns must be in the first and last
row, respectively. The other n − 1 pairs can be distributed
freely in the remaining x̃− − 2 positions, leading to

!
x̃− − 2

n − 1

"
: ð61Þ

Putting it all together, we obtain the desired result. For
defects on irregular sublattices, the reasoning is similar, but
one has different combinatorial coefficients depending on
the actual shape of the sublattice.

C. Perturbation theory around the dual-unitary point

Let us now consider the case of circuits that are perturbed
away from the dual-unitary point. Namely, we consider the

setting introduced in Sec. III: Among the xþx− gates in the
lattice (13), there are ð1 − δÞxþx− dual-unitary gates and
δxþx− perturbations (or defects) breaking dual unitarity
[see the pictorial representation in Eq. (32)]. As discussed
in Sec III, we use two parameters to control the perturba-
tions: strength ε [which is proportional to η in Eq. (31) for
small η] and density δ. We begin by considering the case of
perturbation in the density of defects, which allows for a
more rigorous analysis. Later, we see that, surprisingly,
most of the rigorous conclusions drawn in that case apply
also for small ε and arbitrary δ ≤ 1.

1. Low density, unit strength

We begin our analysis by focusing on fixed defects with
arbitrary strength ε placed on a regular sublattice as in
Eq. (32). In this case, there are regular strips (vertical and
horizontal) composed only of dual-unitary gates. Whenever
the widths ν% [cf. Eq. (32)] of these strips become large
enough, we can simplify the contribution by considering
only the leading eigenvectors of the strips’ transfer matrices
a○○

du;x and c○○

du;x. These are defined as in Eqs. (16) and (17)
but using the 4 × 4 dual-unitary (or, rather, dual-bistochastic)
gate wdu [cf. Eq. (36)], namely,

ð62Þ

ð63Þ

To treat these matrices, we make use of the following
rigorous result, proved in Appendix D.
Property 1.—The matrices a○○

du;x and c○○

du;x take the
following block diagonal form:

a○○

du;x ¼ p○

x;0 þ a
Xx

k¼1

p○

x;k þ r1;x; ð64Þ

c○○

du;x ¼ p○

x;0 þ c
Xx

k¼1

p○

x;k þ r2;x; ð65Þ

where we define

p○

x;0 ≔ j○i⊗xh○j⊗x;

p○

x;k ≔ j○…○●|fflfflfflfflffl{zfflfflfflfflffl}
k
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○…○j; ð66Þ
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and obtain:

1. Exactly solvable cases

Apart from the dual-unitary point ε ¼ 0, the gate (35) has
four additional nontrivial exactly solvable points:

ðiÞ p ¼ 0; ðiiÞ q ¼ 0;

ðiiiÞ b ¼ d ¼ 0; ðivÞ e ¼ f ¼ 0;

where the parameters that are not set to zero can
take arbitrary values. As shown in Sec. IV B, in
all these cases the correlation functions are exactly given
by the sum of skeleton diagrams. In particular, consid-
ering a regular sublattice of defects as in Eq. (32),
we find

h●xj●0ðtÞi ¼

8
>>>>><

>>>>>:

axþδx−−1 þ
X̄n1

n¼1

ðpqε2Þnðx̃þn Þð
x̃−−2
n−1 Þa

xþ−ncx−−n−1 x ∈ Z;

qε
X̄n2

n¼0

ðpqε2Þnðx̃þ−1n Þðx̃−−1n Þaxþ−n−1cx−−n−1 x ∈ Zþ 1=2;

ð38Þ

where we introduce the integers n̄1 ¼ minðx̃þ; x̃− − 1Þ and
n̄2 ¼ minðx̃− − 1; x̃þ − 1Þ [34] and the rescaled light-cone
coordinates

x̃% ¼ bx%=ν%c: ð39Þ

Here, the symbol b·c denotes the floor function, such that
bxc ∈ Z and x − 1 < bxc ≤ x for any x ∈ R.
Note that the ray along which Eq. (38) exhibits the

slowest asymptotic decay in time is generically different
from the light ray (i.e., the unit speed ray) [35]; a
representative example is reported in Fig. 1.
We stress that, generically, the gates fulfilling either of

(i)–(iv) generate highly complex dynamics; e.g., they
efficiently scramble quantum information. For example,
we numerically computed a standard dynamical complexity
indicator for locally interacting systems—the so-called
local-operator entanglement [13,14,31,36–41]—observing
a linear growth. The key property leading to the simple form
(38) is that the dynamics generated by the gates (i)–(iv) are
not time-reversal symmetric. In particular, it is true that
evolving forward (backward) in time the support of local
operators can grow, forming larger and larger strings of local
operator products. Yet these large strings cannot shrink back
and do not contribute to the overlap with ultralocal oper-
ators. The fact that very large strings do not contribute much

to the correlations of local operators is expected to hold quite
generally. For example, a similar idea has recently been
invoked in Ref. [5] to devise a numerical method able to
access the late-time regime. The key point is that this
property becomes exact in cases (i)–(iv).

2. Low-density limit

Two simple conditions on the spectrum of horizontal and
vertical transfer matrices constructed with the reduced dual-
unitary gate (36) (see Sec. IV C 1) allow us to prove that the
expression (38) is the dominant contribution to the corre-
lation function at low density δ and for any ε.More precisely,
if the horizontal (vertical) transfer matrix fulfills the afore-
mentioned conditions, Eq. (38) is dominant in the limit

xþð−Þ; ν̄þð−Þ → ∞; x̃þð−Þ ¼ fixed; ð40Þ

where ν̄þð−Þ is the minimal separation among the defects in
the horizontal (vertical) direction and the relative error
decays exponentially in ν̄þð−Þ. In Sec. IV C 1, we prove
that these conditions hold if the parameters of the gate w0

[cf. Eq. (36)] fulfill

jaj > a2 þ jbfj
1 − α

or jcj > c2 þ jdej
1 − β

; ð41Þ

where α and β, respectively, denote the largest singular
values of the submatrices

!
c e

d g

"
and

!
a f

b g

"
: ð42Þ

As explained in Sec. IV [see, in particular, the discussion
around Eq. (79)], these conditions ensure that correlations
propagate on paths of width 1.

3. Small strength at density one

Based on the rigorous results described in Sec. III A 2,
we argue that skeleton diagrams give the dominant con-
tribution also for δ ¼ 1 and ε ≪ 1 if both conditions (41)

FIG. 1. Correlations between integer sites given by Eq. (38).
The correlations are nonzero within the whole light cone, and the
slowest decay is along jζ&j < 1. We use defects at all sites (δ ¼ 1)
and parameters ε ¼ 0.4, p ¼ q ¼ 1, a ¼ 0.0945626, and c ¼
0.195892 (as in gate 3 in Table I).
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x̃± := bx±/ν±c, x± := t± x, n̄1,2 ' min(x̃+, x̃−)

1. Exactly solvable cases

Apart from the dual-unitary point ε ¼ 0, the gate (35) has
four additional nontrivial exactly solvable points:

ðiÞ p ¼ 0; ðiiÞ q ¼ 0;

ðiiiÞ b ¼ d ¼ 0; ðivÞ e ¼ f ¼ 0;

where the parameters that are not set to zero can
take arbitrary values. As shown in Sec. IV B, in
all these cases the correlation functions are exactly given
by the sum of skeleton diagrams. In particular, consid-
ering a regular sublattice of defects as in Eq. (32),
we find

h●xj●0ðtÞi ¼

8
>>>>><

>>>>>:

axþδx−−1 þ
X̄n1

n¼1

ðpqε2Þnðx̃þn Þð
x̃−−2
n−1 Þa

xþ−ncx−−n−1 x ∈ Z;

qε
X̄n2

n¼0

ðpqε2Þnðx̃þ−1n Þðx̃−−1n Þaxþ−n−1cx−−n−1 x ∈ Zþ 1=2;

ð38Þ

where we introduce the integers n̄1 ¼ minðx̃þ; x̃− − 1Þ and
n̄2 ¼ minðx̃− − 1; x̃þ − 1Þ [34] and the rescaled light-cone
coordinates

x̃% ¼ bx%=ν%c: ð39Þ

Here, the symbol b·c denotes the floor function, such that
bxc ∈ Z and x − 1 < bxc ≤ x for any x ∈ R.
Note that the ray along which Eq. (38) exhibits the

slowest asymptotic decay in time is generically different
from the light ray (i.e., the unit speed ray) [35]; a
representative example is reported in Fig. 1.
We stress that, generically, the gates fulfilling either of

(i)–(iv) generate highly complex dynamics; e.g., they
efficiently scramble quantum information. For example,
we numerically computed a standard dynamical complexity
indicator for locally interacting systems—the so-called
local-operator entanglement [13,14,31,36–41]—observing
a linear growth. The key property leading to the simple form
(38) is that the dynamics generated by the gates (i)–(iv) are
not time-reversal symmetric. In particular, it is true that
evolving forward (backward) in time the support of local
operators can grow, forming larger and larger strings of local
operator products. Yet these large strings cannot shrink back
and do not contribute to the overlap with ultralocal oper-
ators. The fact that very large strings do not contribute much

to the correlations of local operators is expected to hold quite
generally. For example, a similar idea has recently been
invoked in Ref. [5] to devise a numerical method able to
access the late-time regime. The key point is that this
property becomes exact in cases (i)–(iv).

2. Low-density limit

Two simple conditions on the spectrum of horizontal and
vertical transfer matrices constructed with the reduced dual-
unitary gate (36) (see Sec. IV C 1) allow us to prove that the
expression (38) is the dominant contribution to the corre-
lation function at low density δ and for any ε.More precisely,
if the horizontal (vertical) transfer matrix fulfills the afore-
mentioned conditions, Eq. (38) is dominant in the limit

xþð−Þ; ν̄þð−Þ → ∞; x̃þð−Þ ¼ fixed; ð40Þ

where ν̄þð−Þ is the minimal separation among the defects in
the horizontal (vertical) direction and the relative error
decays exponentially in ν̄þð−Þ. In Sec. IV C 1, we prove
that these conditions hold if the parameters of the gate w0

[cf. Eq. (36)] fulfill

jaj > a2 þ jbfj
1 − α

or jcj > c2 þ jdej
1 − β

; ð41Þ

where α and β, respectively, denote the largest singular
values of the submatrices
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"
and

!
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: ð42Þ

As explained in Sec. IV [see, in particular, the discussion
around Eq. (79)], these conditions ensure that correlations
propagate on paths of width 1.

3. Small strength at density one

Based on the rigorous results described in Sec. III A 2,
we argue that skeleton diagrams give the dominant con-
tribution also for δ ¼ 1 and ε ≪ 1 if both conditions (41)

FIG. 1. Correlations between integer sites given by Eq. (38).
The correlations are nonzero within the whole light cone, and the
slowest decay is along jζ&j < 1. We use defects at all sites (δ ¼ 1)
and parameters ε ¼ 0.4, p ¼ q ¼ 1, a ¼ 0.0945626, and c ¼
0.195892 (as in gate 3 in Table I).
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diagrams in Eq. (84) can be thought of as skeleton diagrams
with a dressed horizontal one-particle propagator. Then, we
observe that, as we are working at a fixed order in
perturbation theory, these dressed propagators are com-
posed of dual-unitary tiles only. We can then make use of
Property 1 to bound their contribution by

const
!
a2 þ jfdj

1 − α

"
x
; ð85Þ

where x ≫ 1 is the length of the corresponding segment of
the dressed propagator. We see that for large enough x this
contribution is exponentially suppressed with respect to the
“bare” line (∝ ax). If both conditions (70) and (78) hold,
this reasoning can be repeated at any fixed order in
perturbation theory to show that the skeleton diagrams
are leading when xþ and x− are both large.
To check the above reasoning, we perform a direct

numerical evaluation of the correlation function (13) and
compare it with the prediction (38), obtained by summing
all skeleton diagrams. The comparison is extremely encour-
aging: The deviations are typically undetectable on the
scale of the plot; see Fig. 3 for a representative example.
The technical details of numerical simulations are dis-
cussed in Appendix F.
Turning to a more quantitative analysis of the agreement,

we consider the relative error (76) where h●xj●0ðtÞi is
calculated numerically with no approximations while
h●xj●0ðtÞijsk is calculated using Eq. (38). The results
are reported in Figs. 4–6. Specifically, Fig. 4 concerns the
case of large xþ ¼ x−. We see that, when the “unperturbed
gate” wdu fulfills the conditions (70) and (78), the relative
error is always very small and appears to vanish with ε.
Interestingly, even if the predictions (38) for x ∈ Z and
x ∈ Zþ 1=2 are of different orders in ε, we observe almost
the same relative errors in the two cases. Lastly, an

important point highlighted by Fig. 4 is that the relative
error is of the order of one for any ε when the conditions
(70) and (78) are violated.
Our argument above relies on the fact that x− and xþ are

both large. When one of the two, say, x−, is fixed, we
expect the relative error to be Oðε0Þ in the case x; y ∈ Z
[OðεÞ for the case of integer and half-integer end points]
and bounded by Eq. (85) with y ¼ x−. For small x−, this
result can be directly verified by computing the exact
correlations through Eq. (18). For example, in the case of
x− ¼ 2 and x ∈ Z, we find

h●xj●0ðtÞi ¼ pqε2
!
xþ
1

"
axþ−1

!
1 −

bf
a2 þ bf − a

"

−
pqε2bf½axþ − ða2 þ bfÞxþ&

ða2 þ bf − aÞ2
: ð86Þ

FIG. 3. Exact correlations computed numerically (solid lines)
and the prediction of Eq. (38) (squares) for x ∈ Z for a quantum
circuit with elementary gate given by gate 2 of Table I and
maximal density of defects δ ¼ 1.

FIG. 4. Relative error Rðxþ; x−Þ [cf. Eq. (76)] for xþ ¼ x− as a
function of ε, with maximal density of defects δ ¼ 1. Full and
dashed lines, respectively, correspond to integer and half-odd-
integer end points (x ∈ Z;Zþ 1

2), while different colors corre-
spond to different gates (specified in Table I). Note that the gate
corresponding to the black line does not fulfill the condition (70).
For each gate, we stop at the value of ε, at which the gate ceases to
be bistochastic.

FIG. 5. Relative error Rðxþ; x−Þ [cf. Eq. (76)] for x− ≪ xþ as a
function of ε. The gate is fixed to gate 2 from Table I for x ∈ Z
and density of defects δ ¼ 1.
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Another dual-unitary paradigm: IRF circuits

[TP, Chaos 2021]
 

i j k

i j k

j

i k

j

U IRF =
∑

i,j,k,j′
(uik)j

′
j |i〉 ⊗ |j′〉 ⊗ |k〉〈i| ⊗ 〈j| ⊗ 〈k|, uik ∈ U(d)

An example of IRF circuits: reversible 3-site Margolus cellular automata,
cf. Rule 54 - reviewed in [JSTAT (2021) 074001].
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Unitarity and dual-unitarity of IRF gates:
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Consequently, only non-vanishing correlators along 2-leg ladders:
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Conclusions

First exact results on spectral statistics of extended quantum lattice
systems, when thermodynamic limit taken first

The main challenges for future work:
Exact results in finite systems, finite size corrections?
Statements about eigenstates:
dual unitary circuits as models where ETH1 can be proven?

1Eigenstate thermalization hypothesis
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