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Spatial phase separation with emergence of limit shapes

arctic phenomena : arctic curves :
frozen next to temperate regions interfaces

Historically, first observed in the domino tiling of Aztec diamonds
Cohn, Elkies and Propp (1996) & Jockusch, Propp and Shor (1998)

Since then, many other instances: tilings of hexagons, 6V model,
alternating sign matrices, 2-periodic Aztec diamonds,
Young tableaux, Aztec rectangles, 20V model(s), ...




Aztec diamond of order n

2n

N corners

* finite domain in Z2
* area =2n(n + 1)
* # dominos =n(n+ 1)

Then: consider tilings of AD, by dominos (+ prob. measure, later)



Aztec diamond of order 6

* # coverings = 2%! =2097152, and 2*("*+1)/2 for general n

* they form a set on which the flip

—

Is transitive

(ElkKupLarPro '92)



Col rin the tilings




Typical behaviour at large size depends on prob. measure
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n=200

2-periodic
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central region contains randomness, and non-homogeneous

corners are frozen

interface(s) between distinct regions converge to non-random (arctic) curve(s)



How does one actually compute arctic curves ?7?

§ Basic/naive idea: compute probability of relevant observable.

In frozen regions, this probability saturates to O or 1, in the
scaling limit. (In AzD, consider proba of [l )
bl The hard way, but yields more information.

& Alternative proposal by Colomo & Sportiello (2016).
Use ...

... the TANGENT METHOD

* Based on formulation in terms of non-intersecting lattice paths &
* Heuristic approach but successfully checked in many cases @
* Usually much easier than naive idea above &

» Relies on a reasonable but strong assumption, not under control &




Non-intersecting lattice path bijection

- depends on model considered, but available in all known cases
- usually several ways to do that (really helps)

» paths are [ non-intersecting random directed walks, with specific
set S of elementary steps,

starting and ending points are fixed.

For AzD, draw elementary steps on 3 tiles : I N H BB

f




Non-intersecting lattice path bijection

- depends on model considered, but available in all known cases
- usually several ways to do that (really helps)

» paths are [ non-intersecting random directed walks, with specific
set S of elementary steps,

starting and ending points are fixed.

For AzD, draw elementary steps on 3 tiles : I N H BB

— l// \% n paths

order n




Non-intersecting lattice path bijection

The tilings of AD,, are in bijection with the set of n-uples of non-intersecting
(Schroder) paths, starting and ending at fixed positions.
The lattice paths are made of elementary steps (1,1), (1,-1) and (2,0).

For AzD, draw elementary steps on 3 tiles : I N H BB

order n

— l// \\l n paths

f




Arctic interface in terms of paths

proba 1 that uppermost path
connects to boundaries at midpoints
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Regions where tiling Regions maximally packed
is frozen or void of paths

In scaling limit, the uppermost paths accumulate to form a sharp and deterministic
interface between a void region and a region densely filled with paths.




Tangent method

Main idea: what if one conditions the uppermost path to exit boundary at P ??

(1) the shape of the interface is preserved;

Observations: (2) the new uppermost path starts as a straight line from forced initial
point, then approaches tangentially and merges in the compact
cluster of paths forming the interface.




Tangent method

It builds on the two previous observations, become working hypotheses in the scaling limit:

H1 Perturbing the upper path has little influence on the other paths so that the
arctic curve is not affected.
Ho The new upper path is a straight line until it touches the arctic curve, tangentially;
from then on, it follows the arctic curve itself. v/
Remarks:

* H1 is strong though reasonable; could turn out to be wrong if strong interactions between paths.
* H2 not as strong; looks surprising but somehow expected, for both linear part and tangency.

Proved to hold in fairly general context ——— Debin, Granet & PhR (2019)




Tangent method

It builds on the two previous observations, become working hypotheses in the scaling limit:

H1 Perturbing the upper path has little influence on the other paths so that the
arctic curve is not affected.
Ho The new upper path is a straight line until it touches the arctic curve, tangentially;
from then on, it follows the arctic curve itself. v/
Remarks:

* H1 is strong though reasonable; could turn out to be wrong if strong interactions between paths.
* H2 not as strong; looks surprising but somehow expected, for both linear part and tangency.

Proved to hold in fairly general context ——— Debin, Granet & PhR (2019)

BUT :

Together H1 and H2 allow for an efficient
way to compute arctic curves !




Tangent method at work

» Fix point P, at which upper path leaves left boundary

. Compute corresponding refined partition function

. Extract the slope of the straight part in the scaling limit
(rescale all distances by n, and take limit)



Tangent method at work

» Fix point P, at which upper path leaves left boundary

. Compute corresponding refined partition function

. Extract the slope of the straight part in the scaling limit
(rescale all distances by n, and take limit)

« Vary starting point P over left boundary to

obtain family of lines, all tangent to the arctic
curve

* Retrieve the arctic curve as the enveloppe
of the 1-parameter family of tangent lines

Problem 1: how to compute the refined partition function ?

Problem 2: how to extract a slope from the partition function ?




1 - Refined partition function

To be computed : partition function for those AzD tilings s.t.
the upper path leaves the left boundary
at prescribed position.

From tiling-paths correspondence, equivalent to condition on fixed
number of vertical dominos on WN boundary:
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1 - Refined partition function

To be computed : partition function for those AzD tilings s.t.

the upper path leaves the left boundary

at fixed position.

From tiling-paths correspondence, equivalent to condition on fixed

number of vertical dominos on WN boundary:

YR
N\
/ \<

<>

=
)

4

N

—
—

—

Let Z,, 1. be the refined partition function.

For standard AzD, not difficult: 7, , = on(n—1)/2

Let k be the number of vertical

dominos; then (n-k) horizontal.
(On figure, n=6, k=4)

Note: for tangent method, need &k >

D[S

" For 2-periodic AzD 777




2-periodic measure

Is a non-uniform measure on the AzD tilings.
Better described in terms of perfect matchings of dual Aztec graph.

dominos ™ dimers
® . 4 g ®
b b
[ 2 L 4 L4 4 & 2 d
a a a
I b b b b
a a a
L A 4 A 4 \ 4 g
b b
a
—— T always aon

this face

2-periodic weighting:
+ a dimer is weighted by the weight of the face it is adjacent to

+ weight of a perfect matching and corresponding tiling is product of dimer weights
(above matching has weight a'? b° )




1 - Standard partition function

Follow Kuo, 2004 ...

If Z,, denotes the partition function for standard AzD (their number), Kuo proved

T ez = Zgy_1 + 25,

It readily implies Z,, = 2"("T1)/2,

The quadratic recurrence follows from the following graphical equation




Beautiful argument ...
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Beautiful argument ...
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1 - Standard partition function

Beautiful argument ...
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Beautiful argument ...

1 - Standard partition function
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Beautiful argument ...

1 - Standard partition function
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1 - Two-periodic partition function

Other beautiful observation, by Speyer (2007):

Kuo’s recurrence extends to much more general weightings,
leads to so-called octahedron recurrence !

For 2-periodic AzD, it implies for 2-periodic partition function Z,,(a,b)

2
Zn(aa b) Zn—2(a7 b) - {b } ZEL 1(CL, b) + aQZEL—l(b7 CL) for 1 {eotie(?}

Yields a neat formula:

r

(n+1> n2 1 iftn+#1mod4
J@2 p o)Ll 4t 7
if n=1mod 4

Zn(a,b) = (2ab) :

,
o

(Di Francesco & Soto-Garrido, 2014)



1 - Refined partition function

The recurrence generalises upon inclusion of boundary face weights

If k vertical dimers along WN boundary,
the yellow faces bring additional factor
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Zn,k(a, b) — .
ToX1...ILn X,

The generalized partition function satisfies

b2

Zn(a,blxg...xn) Zp_2o(a,b) = xg { 2} Zn—1(a,blxy...x0) Zn_1(a,b)

a

a0 Zyabalro o wu) Zua(bia)  torn {0}
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1 - Refined partition function

The recurrence generalises upon inclusion of boundary face weights

k

If k vertical dimers along WN boundary,
the yellow faces bring additional factor
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1 - Refined partition function

Selecting the proper terms yields

b2
Zn,k(a, b) Zn_g(a, b) = {CLQ} Zn_ljk_l(a,, b) Zn—l (CL, b) -+ CLQZn_l’k(b, CL) Zn_l(b, CL)
which becomes a linear recurrence for S, 1(a,b) = ’k((c; b)) !
n—1\W,

Compute generating function, and use standard methods to extract asymptotic
value of S, x(a,b)for large k.

For k=rn, 0<r<1

1 L, rn(afa b)
lim —1 ’
nl—>ngo n 08 n_l(a,7 b)

2
dFl(T):—logv(r) and  r(v) Y {1+5 Lo = 4—1}}
vt t+ v

= log(ab) + Fi(r)

dr




Tangent method at work

» Fix point P, at which upper path leaves left boundary

. Compute corresponding refined partition function

. Extract the slope of the straight part in the scaling limit
(rescale all distances by n, and take limit)

« Vary starting point P over left boundary to

obtain family of lines, all tangent to the arctic
curve

P
* Retrieve the arctic curve as the enveloppe
of the 1-parameter family of tangent lines
Problem 1: how to compute the refined partition function ? J

Problem 2: how to extract a slope from the partition function ?




2 - Computation of the slope

A priori, not possible to extract the slope from the partition function alone !
Need for further input ...

Further input is provided by underlying assumptions of
tangent method itself.

It assumes that

the uppermost path does not affect the way the other (n-1) paths
behave in the scaling limit,

and suggests that

to dominant order, the refined partition function factorizes into a contribution
of the bulk (n-1) paths and the contribution of the uppermost/isolated path:

u : 1 Zn,rn(aa b) : 1 u
Zn,k(av b) ~ Zn—l(aa b) le(a’a b) — nh—{%o E log Zn—l(a7 b) — nh—{%o E log le

(Debin & PhR, 2021)



2 - Computation of the slope

Next step is to compute Z;"

It is the partition function for a single path, travelling .
from (fixed) P to Q, and confined in a deterministic domain
formed by the boundaries of the AzD and the arctic curve.

In scaling limit, partition function is exponentially dominated
by lattice paths which condense on a deterministic

trajectory f and is given asymptotically by P

Q
7] = exp{nSlf]},  SIf] = / do L(f'(z))

P

Moreover, [ is the shortest path between P and Q entirely contained in the domain.

In present case, f is the red curve (straight line + piece of arctic curve).
(Debin, Granet & PhR, 2019)



2 - Computation of the slope

Combining previous results,

slope t* = h'(z")

Q
log(ab) + Fi(r) = SIf) = [~ do L('(@)

P
x™ Q
:/ dz L(1*) +/ de (1 (2))
P, xT*
Q
= (¥ — P.)L(t") —I—/ dx L(h’(x)) (e — arcic

Differentiate with respect to r to get

F!(r) =log Vab — L(t*) — (1 — t*)L' (t*)

i.e. an explicit relation between the slope and 7.

——> if we can compute the function L(¢), WE ARE DONE &




3 - Computation of function L(¢)

Remember one of previous slides:

Non-intersecting lattice path bijection

The tilings of AD, are in bijection with the set of n-uples of non-intersecting
(Schroder) paths, starting and ending at fixed positions.
The lattice paths are made of elementary steps (1,1), (1,-1) and (2,0).

For AzD, draw elementary steps on 3 tiles : l B L

—

order n

Must extend to a measure preserving bijection !



3 - Computation of function L(¢)

* The steps associated with I \\ [ P shouldbe given weights a or b.

These weights depend on where the steps are taken:

X ® X X X X X @ X
b b b
X o X % o X X X o X
a a
X X X X % ® X X
b b b
X X X o X X > N 5% X
a a a
X X @ X X ® X X o X X @ X X

* Green dominos contribute to weight of tiling but have no associated step !
Observe however: as many a/b-type red domino as a/b-type green domino.
—> simply square the weights of red dominos

e A path is made of elementary steps with position dependent weights

l and \| get weight a or b Bl octs weight a®or b




3 - Computation of function L(¢)

e Partition function Z; ;(a,b) for a single path = sum of weights of all paths (0,0) — (z‘ 7)
Write recurrence relations and form generating function G(z,y) Z Z; j(a,b)z" 9y

and get

- 1 —b%2% 4 z(ay + b/y)
ClY) = T [~ 2%) — 2(ay + b/5) oy T o75)

Use standard methods to extract asymptotic value for large i = rn, j = sn

Zrm,sn(a,b) ~ exp{nrL(t)} t = ; v

* Allows to compute contribution of paths condensing on trajectory f

(T, sn)
e/ fom) On each subinterval, we have 7 T (fyen—Fi)m ~ exp{rv/nL(t;)}
: Then
N
ZI{f;}) = || exp{rvnL(t )}—>Z[f(:z;)]f:exp{n/dxl)(f’(x))}
j:

0 gwm  —n m = exp{ns|f]}



FINAL RESULTS

The arctic curve for the 2-periodic AzD has the following parametrization

{X(U)} T (24 1)4—:4%1)4 {éw —1(v* +1)7 ¢25{LB1 U[fv4+ (8 + l)v2 +1r}

It satisfies 8th degree algebraicfor U=X+Y and V=Y — X

B+1)° (U +V®) —4(B+1)" (8> —68+ 1)U V(U + V)

DF & 5S-G, '14 +2(8 + 1)2(38% — 2083 + 8282 — 208 + 3) UV — 4(8 + 1)4(B% — B+ 1) (US + V©)
Ch & Jo, '16 +4(8 + 1)*(B* + 178% — 488> + 178 + 1) U*VA(U? + V?)
Du & Ku, ‘21 +6(8*—1)(B2 - 1) (U + VY +4(8 —1)%(B* —228° — 4282 — 228 + 1) U?V?
4B-DYB+B+1)(U*+VH+(B-1)°=0.

X
|
—_

B =10 8 =100
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