Let $\Lambda \subset \mathbb{Z}^2$ be finite, and assign each vertex in Λ one of the following six edge configurations:

- **Domain-wall boundary conditions** arise when $\Lambda = [1, N] \times [1, N]$, and arrows enter from the left boundary and exit through the top.

- **Ice model**: Assignment is chosen uniformly at random.

Six-vertex ensembles are collections of non-crossing directed (up-right) paths.
Arctic Boundary of Six-Vertex Ensembles

- Six-vertex ensemble \mathcal{E} on Λ
- A vertex $v \in \Lambda$ is in the **frozen region** of \mathcal{E} if one of the following holds
 - Every vertex northwest of v is packed in \mathcal{E}
 - Every vertex northeast of v is vertical in \mathcal{E}
 - Every vertex southwest of v is horizontal in \mathcal{E}
 - Every vertex southeast of v is empty in \mathcal{E}
- The boundary of the frozen region is called the **arctic boundary**

The **bottommost path** of a domain-wall six-vertex ensemble traces the southeast boundary of the frozen region
Define the portion of an ellipse

\[\mathcal{A}_{SE} = \{ (x, y) \in \mathbb{R}^2 : (2x - 1)^2 + (2y - 1)^2 - 4(1 - x)y = 1 \} \cap \left(\left[\frac{1}{2}, 1 \right] \times \left[0, \frac{1}{2} \right] \right), \]

and its reflections

\[\mathcal{A}_{SW} = \{ (x, y) \in \mathbb{R}^2 : (1 - x, y) \in \mathcal{A}_{SE} \}; \quad \mathcal{A}_{NE} = \{ (x, y) \in \mathbb{R}^2 : (x, 1 - y) \in \mathcal{A}_{SE} \}; \quad \mathcal{A}_{NW} = \{ (x, y) \in \mathbb{R}^2 : (1 - x, 1 - y) \in \mathcal{A}_{SE} \}. \]

Let \(\mathcal{A} = \mathcal{A}_{SE} \cup \mathcal{A}_{SW} \cup \mathcal{A}_{NE} \cup \mathcal{A}_{NW} \).

Then \(\mathcal{A} \) is not smooth at its four tangency points with \([0, 1] \times [0, 1]\).

- Different from what one observes in dimers...
Let $N \in \mathbb{Z}_{>0}$ be a large integer.

Let E denote a sample of the ice model on $\Lambda = [1, N] \times [1, N]$.

Let $(i, j) \in [1, N] \times [1, N]$ be an integer pair, and set $z = \left(\frac{i}{N}, \frac{j}{N} \right) \in [0, 1] \times [0, 1]$.

Fix a real number $\varepsilon > 0$, and assume that $\operatorname{dist}(z, \mathcal{A}) > \varepsilon$.

Theorem (A., 2018)

There exists $\delta = \delta(\varepsilon) > 0$ such that, with probability at least $1 - e^{-\delta N}$, (i, j) is in the frozen region of \mathcal{M} if and only if z is outside of \mathcal{A}.

Colomo–Pronko (2010): Predicted above explicit form of arctic boundary

Colomo–Sportiello (2016): Reproduced prediction through tangent method

Let \mathcal{E} denote a sample of the ice model on $\Lambda = [1, N] \times [1, N]$.

Denote the non-crossing paths in \mathcal{E}, from bottom to top, by p_1, p_2, \ldots, p_N.

Define $I_1 = [0, \frac{1}{2}] \times \{0\}$ and $I_2 = \{1\} \times [\frac{1}{2}, 1]$, and let $\mathcal{P} = I_1 \cup \mathcal{A}_{SE} \cup I_2$.

By symmetry, we must show the following theorem.

Theorem

*For any $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$ such that $\text{dist} \left(N^{-1}p_1, \mathcal{P} \right) < \varepsilon$ holds with probability at least $1 - e^{-\delta N}$.***

- Proof based on a justification of the *(geometric) tangent method*, a general heuristic introduced by Colomo–Sportiello (2016) for deriving arctic boundaries of statistical mechanical models
- Proof is not very model-dependent and also should apply to other families of statistical mechanical systems
Refined Partition Function

- Domain-wall six-vertex ensemble \mathcal{E} with paths p_1, p_2, \ldots, p_N
- Let $\Theta = \Theta(\mathcal{E}) \in [1, N]$ be such that p_1 exits the bottom row at $(\Theta, 1)$

The partition function Z_N counts domain-wall six-vertex ensembles \mathcal{E}.

The refined partition function $Z_N(K)$ counts those with $\Theta(\mathcal{E}) = K$.

Define the K-refined correlation function $H_N(K)$ by

$$H_N(K) = \mathbb{P}[\Theta(\mathcal{E}) = K] = \frac{Z_N(K)}{Z_N}.$$
Required integrable input: Asymptotics for refined partition function

- **Zeilberger (1996):** \(H_N(K) = \binom{N+K-2}{N-1} \binom{2N-K-1}{N-1} \binom{3N-2}{N-1}^{-1} \)

- Thus, for fixed \(\kappa > 0 \), we have for large \(N \) that

\[
H_N(\kappa N) = \exp \left(- (\mathcal{h}(\kappa) + o(1))N \right),
\]

for an explicit \(\mathcal{h}(\kappa) \) given by

\[
\mathcal{h}(\kappa) = (1 + \kappa) \log(1 + \kappa) + (2 - \kappa) \log(2 - \kappa) - \kappa \log \kappa
- (1 - \kappa) \log(1 - \kappa) - 3 \log 3 + 2 \log 2
\]

- **Tangency point:** \(\mathcal{h}(\kappa) \) minimized at \(\kappa = \frac{1}{2} \), so we likely have \(\Theta \approx \frac{N}{2} \)
 - If the arctic boundary exists, it should meet the bottom boundary of \([0, 1] \times [0, 1] \) at \(\left(\frac{N}{2}, 0 \right) \)

- **Colomo–Sportiello (2016):** Use the function \(\mathcal{h} \) to predict a parameterization for the limiting trajectory of \(\mathbf{p}_1 \) (entire arctic boundary)
For $\Psi \in \mathbb{Z}_{\geq 0}$, a Ψ-augmented ensemble is a domain-wall six-vertex ensemble on $[1, N] \times [1, N]$, with an additional path entering at $(0, -\Psi)$ and exiting at $(N + 1, N)$.

- Denote the paths in this ensemble, from bottom to top, by $p_{1}^{\text{aug}}, p_{2}^{\text{aug}}, \ldots, p_{N+1}^{\text{aug}}$.
- Let Θ denote be such that p_{1}^{aug} exits the x-axis at $(\Theta, 0)$.
Tangency Assumption

- Fix $\psi > 0$, and let $\Psi \approx \psi N$
- Select a Ψ-augmented ensemble \mathcal{E}_Ψ uniformly at random
- With high probability, we will have $\Theta = \Theta(\mathcal{E}_\Psi) \approx \theta N$, for some $\theta = \theta(\psi) > 0$

Belief: As N tends to ∞, p_{1}^{aug} first approximates a line ℓ_ψ **tangent to the arctic boundary** of the domain-wall ice model and then merges with it.
Determining the Arctic Boundary

- If we could determine $\theta = \theta(\psi)$ for each $\psi > 0$, then we would determine \mathcal{E}_ψ.
- Convex envelope obtained by varying over ψ gives \mathcal{A}_{SE}.

The number of augmented ensembles \mathcal{E}_Ψ with $\Theta(\mathcal{E}_\Psi) = \Phi \approx \varphi N$ is proportional to

$$
\left(\frac{\Phi + \Psi - 1}{\Psi}\right) H_{N+1}(\Phi) = \exp \left((g_\psi(\varphi) + o(1)) N \right),
$$

where $g_\psi(\varphi) = (\varphi + \psi) \log(\varphi + \psi) - \varphi \log \varphi - \psi \log \psi - h(\varphi)$.

- The maximizer $\varphi = \theta$ of $g_\psi(\varphi)$ determines $\theta = \theta(\psi) > 0$.

Tangent Method Heuristic

The tangent method (Colomo–Sportiello, 2016)

- Using exact asymptotics for $H_N(K)$, find explicit $\eta : \mathbb{R}_{>0} \rightarrow \mathbb{R}$ such that
 $$H_N(\kappa N) = \exp \left(- (\eta(\kappa) + o(1))N \right)$$

- Define $g_\psi(\varphi) = (\varphi + \psi) \log(\varphi + \psi) - \varphi \log \varphi - \psi \log \psi - \eta(\varphi)$
- Let $\theta = \theta(\psi)$ denote the maximizer of g_ψ
- For each ψ, let ℓ_ψ denote the line through $(0, -\psi)$ and $(0, \theta)$
- Then the arctic boundary is the convex envelope formed by the ℓ_ψ after varying over ψ, which is \mathcal{A}_{SE}

Issues

- Must justify the tangency assumption
- It is not transparent that arctic boundary exists (namely, that p_1 in the original model or p_{2}^{aug} in the augmented model have limiting trajectories)
- The introduction of the new path p_{1}^{aug} in the augmented model might change the trajectory of p_1 in the original model
Notation

- Let \mathcal{E} and \mathcal{E}_Ψ be a domain-wall six-vertex ensemble and a Ψ-augmented ensemble, respectively, both chosen uniformly at random.
- Let $\mathcal{L} = \mathcal{L}_\Psi$ be the tangent line to p_{2}^{aug} through $(0, -\Psi)$.
- Let $(\Omega, 0) = \mathcal{L}_\Psi \cap \{y = 0\}$, and let p_{1}^{aug} exit the x-axis at $(\Theta, 0)$.

\[(0, -\Psi) \]
Proof Outline

1. **Tangency:** $\mathbb{P}[|\Omega - \Theta| < \varepsilon N] > 1 - C \exp(-c\varepsilon^2 N)$

2. **Concentration Estimate:** $\mathbb{P}[|\Theta - \theta N| < \varepsilon N] > 1 - C \exp(-c\varepsilon^2 N)$

3. **Comparing p_1 and p_2^{aug}:** Stochastically bound p_1 approximately above and approximately below by p_2^{aug}

 1. Couple \mathcal{E} and \mathcal{E}_Ψ in two ways, such that p_1 is (weakly) below p_2^{aug} under the first and p_2 is (weakly) above p_2^{aug} under the second

2. $\mathbb{P} \left[\text{dist}(p_1, p_2) < \varepsilon N \right] > 1 - C \exp(-c\varepsilon^2 N)$

Concentration estimate follows from exact enumeration: $\mathbb{P}[\Theta = \Phi] = Z^{-1}_\Psi \left(\Phi + \Psi^{-1} \right) H_{N+1}(\Phi)$
Boundary Data

If X and Y are vertices / noncrossing paths, with X northwest of Y, we say $X \leq Y$.

- Rectangle Λ
- “Barrier paths” f and g with $f \leq g$
- “Entrance vertices” $u = (u_1, u_2, \ldots, u_m)$ with $u_1 \geq u_2 \geq \cdots \geq u_m$
- “Exit vertices” $v = (v_1, v_2, \ldots, v_m)$, with $v_1 \geq v_2 \geq \cdots \geq v_m$
- Let $\mathcal{E}_{f,g}^{u,v}$ denote set of six-vertex ensembles on Λ whose paths $p_1 \geq p_2 \geq \cdots p_m$ satisfy $f \leq p_i \leq g$, such that p_i enters Λ through u_i and exits Λ through v_i
Monotone Couplings

- Assume boundary data \((f, g; u, v)\) and \((f', g'; u', v')\) satisfy \(f \geq f',\ g \geq g',\ u \geq u',\ v \geq v'\)
- Uniformly random ensembles \(\mathcal{E}\) and \(\mathcal{E}'\) in \(\mathcal{E} = \mathcal{E}_{f;g}^{u;w}\) and \(\mathcal{E}' = \mathcal{E}_{f';g'}^{u';w'}\), respectively
- Paths of \(\mathcal{E}\) and \(\mathcal{E}'\) are \(p_1 \geq p_2 \geq \cdots p_m\) and \(p'_1 \geq p'_2 \geq \cdots p'_m\), respectively

\[
\begin{array}{c}
\text{Lemma}
\end{array}
\]

The laws of \(\mathcal{E}\) and \(\mathcal{E}'\) can be coupled so that each \(p_i \geq p'_i\), almost surely.

- Allows \(f, f' = -\infty\) and / or \(g, g' = \infty\)
- Proof uses monotonicity of Glauber dynamics (used by Corwin–Hammond, 2014)
- Essentially only place where ice weights are used (outside of integrable input)
 - Sometimes known as Fortuin–Kasteleyn–Ginibre (FKG) type condition
 - Holds for a broad class of statistical mechanical models (such as six-vertex at \(\Delta \leq \frac{1}{2}\))
Proof Outline for Monotonicity

There exist $\mathcal{E}(0) \in \mathcal{E}$ and $\mathcal{E}'(0) \in \mathcal{E}'$ with paths $p_i(0)$ and $p'_i(0)$, respectively, so that $p_i(0) \geq p'_i(0)$.

- Run the Glauber dynamics on $(\mathcal{E}(0), \mathcal{E}'(0))$
 - Select a face F of Λ uniformly at random
 - With probability $\frac{1}{2}$, perform “up-flip” (if possible) in $\mathcal{E}(0)$ and $\mathcal{E}'(0)$ at F
 - Otherwise perform “down-flip” in $\mathcal{E}(0)$ and $\mathcal{E}'(0)$ at F
 - This produces new (random, coupled) six-vertex ensembles $\mathcal{E}(1) \in \mathcal{E}$ and $\mathcal{E}'(1) \in \mathcal{E}'$
 - Repeating this, we obtain random, coupled $\mathcal{E}(1), \mathcal{E}(2), \ldots \in \mathcal{E}$ and $\mathcal{E}'(1), \mathcal{E}'(2), \ldots \in \mathcal{E}'$

- **Monotone preserving property**: If each $p_i(t) \geq p'_i(t)$, then each $p_i(t + 1) \geq p'_i(t + 1)$
 - Then $\mathcal{E}(\infty) = \lim_{t \to \infty} \mathcal{E}(t)$ and $\mathcal{E}'(\infty) = \lim_{t \to \infty} \mathcal{E}'(t)$ are uniform on \mathcal{E} and \mathcal{E}', respectively, since the Glauber dynamics are stationary with respect to these uniform measures, and each $p_i(\infty) \geq p'_i(\infty)$ almost surely
Let $u, v \in \mathbb{Z}^2$, with v northeast of u, and set $\text{dist}(u, v) = M$.

Let $\ell = \ell(u, v)$ denote the line through u and v.

Standard estimates for linearity of (possibly conditioned) random walks

1. For a uniformly random path p from u to v,
 \[\mathbb{P}\left[\text{dist}(p, \ell) < \varepsilon M \right] > 1 - C \exp(-c\varepsilon^2 M). \]

2. For a uniformly random path p from u to v conditioned to lie weakly below (or above) ℓ,
 \[\mathbb{P}\left[\text{dist}(p, \ell) < \varepsilon M \right] > 1 - C \exp(-c\varepsilon^2 M). \]

Second statement can formally be deduced from first and monotonicity.
Proof of $\Theta \approx \Omega$

Set $u = (0, -\Psi)$, and let w be the first vertex in p_{1}^{aug} above the x-axis such that w is (weakly) below \mathcal{L}_Ψ but the next vertex in p_{1}^{aug} is not.

We condition on the following.

- The paths $p_{2}^{\text{aug}}, p_{3}^{\text{aug}}, \ldots, p_{N+1}^{\text{aug}}$
- The event that p_{1}^{aug} passes through w, and the part of p_{1}^{aug} northeast of w

Gibbs property: The law of p_{1}^{aug} southwest of w is given by a uniformly random path from u to w, conditioned to remain weakly below p_{2}^{aug}.
Proof of $\Theta \approx \Omega$

Gibbs property: The law of $p_{1}\text{aug}$ is given by a uniformly random path in $\mathcal{E}_{-\infty,\infty}^{u:w, p_{2}\text{aug}}$.

- Let q be a uniformly random path in $\mathcal{E}_{-\infty,\infty}^{u:w}$ (from u to w without barriers).
- By the linearity estimate, q is εN-linear with probability $1 - C \exp(-c\varepsilon^2 N)$.
- So, if q exits the x-axis at $(\Gamma, 0)$, then $\mathbb{P}[|\Gamma - \Omega| < \varepsilon N] \geq 1 - C \exp(-c\varepsilon^2 N)$.
- By monotonicity, we may couple $p_{1}\text{aug}$ and q so that $p_{1}\text{aug} \geq q$ almost surely.
- Thus, $\mathbb{P}[\Theta \geq \Omega - \varepsilon N] \geq \mathbb{P}[\Gamma \geq \Omega - \varepsilon N] \geq 1 - C \exp(-c\varepsilon^2 N)$.
Proof of $\Theta \approx \Omega$

Gibbs property: The law of p_{1}^{aug} is given by a uniformly random path in $\mathcal{C}_{p_{2}^{\text{aug}};\infty}^{u,w}$.

Let r be a uniformly random path from u to v, conditioned to lie weakly below \mathcal{L}_{Ψ} (so it is uniform on $\mathcal{C}_{f,\infty}^{u,w}$, for some $f \geq p_{2}^{\text{aug}}$).

By the linearity estimate, r is εN-linear with probability $1 - C \exp(-c\varepsilon^2 N)$.

So, if r exits the x-axis at $(\Upsilon, 0)$, then $\mathbb{P}[|\Upsilon - \Omega| < \varepsilon N] \geq 1 - C \exp(-c\varepsilon^2 N)$.

By monotonicity, we may couple p_{1}^{aug} and r so that $p_{1}^{\text{aug}} \leq r$ almost surely.

Thus, $\mathbb{P}[\Theta \leq \Omega + \varepsilon N] \geq \mathbb{P}[\Upsilon \leq \Omega + \varepsilon N] \geq 1 - C \exp(-c\varepsilon^2 N)$.

- Let r be a uniformly random path from u to v, conditioned to lie weakly below \mathcal{L}_{Ψ} (so it is uniform on $\mathcal{C}_{f,\infty}^{u,w}$, for some $f \geq p_{2}^{\text{aug}}$).
- By the linearity estimate, r is εN-linear with probability $1 - C \exp(-c\varepsilon^2 N)$.
- So, if r exits the x-axis at $(\Upsilon, 0)$, then $\mathbb{P}[|\Upsilon - \Omega| < \varepsilon N] \geq 1 - C \exp(-c\varepsilon^2 N)$.
- By monotonicity, we may couple p_{1}^{aug} and r so that $p_{1}^{\text{aug}} \leq r$ almost surely.
- Thus, $\mathbb{P}[\Theta \leq \Omega + \varepsilon N] \geq \mathbb{P}[\Upsilon \leq \Omega + \varepsilon N] \geq 1 - C \exp(-c\varepsilon^2 N)$.
Comparing p_1 and p_2^{aug}

Seek to stochastically bound p_1 approximately above / below by p_2^{aug}

1. Couple E and E_Ψ in two ways, such that p_1 is (weakly) below p_2^{aug} under the first and p_2 is (weakly) above p_2^{aug} under the second

2. $\mathbb{P}[\text{dist}(p_1, p_2) < \varepsilon N] > 1 - C \exp(-c\varepsilon^2 N)$

First part follows from monotonicity

- View top path in E_Ψ as barrier: Remaining paths below corresponding E paths
 - Monotonicity implies coupling so that $p_2 \leq p_2^{\text{aug}}$
- View bottom path in E_Ψ as barrier: Remaining paths above E paths
 - Monotonicity implies coupling so that $p_2 \geq p_2^{\text{aug}}$
Proximity of p_1 and p_2

Seek to show $\mathbb{P}\left[\text{dist}(p_1, p_2) < \varepsilon N \right] > 1 - C \exp(-c\varepsilon^2 N)$

1. Show p_1 and p_2 are likely “approximately convex”
2. Show approximate convexity of p_2 likely implies $\text{dist}(p_1, p_2) < \varepsilon N$

Let $h = h(p)$ denote the convex envelope of any path p

Let $\Xi = \Xi(p) = \max_{v \in p} \text{dist}(v, h(p))$

Define event $\mathcal{E} = \mathcal{E}(\varepsilon) = \{\Xi(p_1) < \varepsilon N\} \cap \{\Xi(p_2) < \varepsilon N\}$

On \mathcal{E}, the paths p_1 and p_2 are “approximately convex”

1. Show $\mathbb{P}[\mathcal{E}] > 1 - C \exp(-c\varepsilon^2 N)$
2. Show $\mathbb{P}\left[1_{\mathcal{E}} \text{dist}(p_1, p_2) < 5\varepsilon N \right] > 1 - \exp(C\varepsilon^2 N)$
Convexity Implies Proximity

Set $h_1 = h(p_1)$ and $h_2 = h(p_2)$

- On convexity event \mathcal{E}, we have $\text{dist}(p_1, p_2) \leq \text{dist}(h_1, h_2) + 2\epsilon N$

Suffices to show $\mathbb{P}[\mathbf{1}_\mathcal{E} \text{dist}(h_1, h_2) < 3\epsilon N] > 1 - C \exp(c\epsilon^2 N)$

- Fix $v_1 \in h_1$, and let $v_2 \in h_2$ be such that $\text{dist}(v_1, v_2) = \text{dist}(v_1, h_2)$

Must show $\mathbb{P}[\mathbf{1}_\mathcal{E} \text{dist}(v_1, v_2) < \epsilon N] > 1 - C \exp(-c\epsilon^2 N)$

- Let ℓ be line through v_2 orthogonal to line through (v_1, v_2)

- Convexity of h_2 implies $h_2 \subset NW(\ell)$ (is northwest of ℓ)
 - Assume for simplicity that $p_2 \subset NW(\ell)$
 - Holds after shifting ℓ down by ϵN, since $\mathbf{1}_\mathcal{E} \text{dist}(p_2, h_2) < \epsilon N$ and $h_2 \subset NW(\ell)$

- Let ℓ meet h_1 at (u, w), and assume for simplicity that $u, w \in p_1$
Convexity Implies Proximity

Must show that $\mathbb{P}[\mathbf{1}_\varepsilon \text{ dist}(v_1, v_2) < \varepsilon N] > 1 - C \exp(-c \varepsilon^2 N)$

- Condition on p_2 and on p_1 outside of interval (u, w)
 - Gibbs property: Then p_1 is a uniformly random path starting at u and ending at w, and conditioned to lie above p_2
 - Montonicity: Replacing p_2 with ℓ only “pushes v down”
 - Linearity: With probability $1 - C \exp(-c \varepsilon^2 N)$, a uniformly random path from u to w conditioned to stay below ℓ does not go below ℓ by more than εN
 - Shows $\mathbb{P}[\mathbf{1}_\varepsilon \text{ dist}(v_1, v_2) < \varepsilon N] > 1 - C \exp(-c \varepsilon^2 N)$
Established arctic boundaries for domain-wall ice model

Proceeds by **justification of tangent method** of Colomo–Sportiello
- Involves inserting an augmented path in the domain
- Path should be tangent to arctic boundary
- Refined partition function asymptotics identify trajectory of the path
 - Integrability only involved through understanding these asymptotics
 - Full solvability / determinantality of the model not required

Proof involves analysis of non-intersecting path ensembles (reminiscent of ideas used by Corwin–Hammond in very different context)
- Prove approximate tangency of additional path to arctic boundary of augmented ensemble
 - Gibbs property
 - Monotonicity
- Prove additional path does not substantially affect arctic boundary
 - Convexity (and Gibbs property / monotonicity)