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Lozenge tilings via the dynamic loop equation.

Vadim Gorin

May 20, 2022



Part 1: A general interacting Markov chain
State space: λ1 ≥ λ2 ≥ · · · ≥ λN ∈ Z, x = {xi} = {λi− iθ}

Transition probabilities: for e ∈ {0, 1}N

P(x+e|x) ∼
∏

1≤i<j≤N

b(xi + θei)− b(xj + θej)

b(xi)− b(xj)

N∏
i=1

ϕ+(xi)
eiϕ−(xi)

1−ei

Example: non-intersecting independent random walks

time

x θ = 1,
b(x) = x,
ϕ+(x) = p,
ϕ−(x) = 1− p.
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The dynamical loop equation
Transition probabilities: for e ∈ {0, 1}N

P(x+e|x) ∼
∏

1≤i<j≤N

b(xi + θei)− b(xj + θej)

b(xi)− b(xj)

N∏
i=1

ϕ+(xi)
eiϕ−(xi)

1−ei

Theorem. (G.-Huang-22) Assume holomorphic b, ϕ±. Then so is

E

ϕ+(z)

N∏
j=1

b(z + θ)− b(xj + θej)

b(z)− b(xj)
+ ϕ−(z)

N∏
j=1

b(z)− b(xj + θej)

b(z)− b(xj)

 .

• Equation is a statement about the cancellation of the poles.

• A new relative of Dyson-Schwinger / Nekrasov / loop
equations for β–ensembles of random matrices and log-gases.

• A basic block for asymptotics (cf. Yang–Baxter relation).

• In fact, there are far ancestors in the Baxter’s book.
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The dynamical loop equation: examples
Transition probabilities: for e ∈ {0, 1}N

P(x+e|x) ∼
∏

1≤i<j≤N

b(xi + θei)− b(xj + θej)

b(xi)− b(xj)

N∏
i=1

ϕ+(xi)
eiϕ−(xi)

1−ei

Theorem. (G.-Huang-22) Assume holomorphic b, ϕ±. Then so is

E

ϕ+(z)

N∏
j=1

b(z + θ)− b(xj + θej)

b(z)− b(xj)
+ ϕ−(z)

N∏
j=1

b(z)− b(xj + θej)

b(z)− b(xj)

 .

1. Non-intersecting Bernoulli and Poisson random walks;

2. Dyson Brownian Motion (at general β);

3. Random lozenge and domino tilings;

4. Corners process of self-adjoint random matrices (at general β);

5. Macdonald / Koornwinder processes (principal specialization).



Part II: Application to (q, κ)–distributions on tilings

Lozenge tilings of planar domains (“trapezoids”)
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• Uniformly random tilings are well-understood by now.
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tilings of large domains, discussing several different points of view and leading on to 
open problems in the field. The book is based on upper-division courses taught to a 
variety of students but it also serves as a self-contained introduction to the subject. 
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Part II: Application to (q, κ)–distributions on tilings
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Motivations for studying inhomogeneous random tilings:

A priory: Probing universality
Does the homogeneous case phenomenology extend?

A posteriori: Discovering integrability
Koornwinder polynomials; conformal invariance; algebraic answers.



(q, κ)–distributions on lozenge tilings
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Width: T

Right/left boundaries:
N =
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i=1(bi − ai)



(q, κ)–distributions on lozenge tilings
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P(T ) =
1

Z
∏
∈T

w( ),

w( ) = κqx − κ−1q−x,

Degenerations:

• q = 1: Uniform measure

• κ → ∞: Measure qvolume

• κ → 0: Measure q−volume

• q, κ → 1: Linear w( )

Positivity:

• Real κ and q.

• Imaginary κ, real q.

• Complex κ and q with
|κ| = |q| = 1.



Random samples for 100× 100× 100 hexagon

• Sampler of [Borodin-Gorin-Rains-10] for any (q, κ).

• Law of Large Numbers + local bulk limit theorem for the
hexagon in [Borodin-Gorin-Rains-10].

• CLT for global fluctuation along a single slice of the hexagon
in [Dimitrov-Knizel-19]; several slices in [Duits-Liu-22+].

• More general polygons were not accessible before today.
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Arctic boundary: algebraic parameterization

50 100 150 200 

Task. Prove that tilings are asymptotically frozen outside a curve.
Find this Arctic curve.



Arctic boundary: algebraic parameterization
x

t

a1

b1

a2

b2

T

N

(T,N)

(0, 0)

w( ) = κqx−t/2 − κ−1q−x+t/2,

Small parameter ε → 0 and

εN → N , εT → T , ε ln(q) → ln(q),

εai → ai, εbi → bi, 1 ≤ i ≤ r.

Theorem. (G.-Huang-22) The Arctic curve (t(u),x(u)) is:

qt =
V ′(u)

U ′(u)
, qx =

w ±
√
w2 − 4κ2q−t

2κ2q−t
, w = V (u)− U(u)

qt
,

where q−u + κ2qu runs over the real line R and

f0(u) =
(qN − qu)(κ2q−T − q−u)

(κ2qN − q−u)(q−T − qu)

r∏
i=1

(qai − qu)(κ2qbi − q−u)

(κ2qai − q−u)(qbi − qu)
,

U(u) =
f0(u)q

−u − κ2qu

1− f0(u)
, V (u) =

q−u − f0(u)κ
2qu

1− f0(u)
.



Examples of Arctic curves
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Algebraic Limit Shape

<(f)

=(f)

0 1

f

Encoding via complex slope
motivated by [Kenyon–Okounkov-05]

Task. Identify the limit shape in terms of the asymptotic
proportions of lozenges.

Find (t,x) 7→ (p , p , p ) or (t,x) 7→ f .



Algebraic Limit Shape
x

t

a1

b1

a2

b2

T

N

(T,N)
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w( ) = κqx−t/2 − κ−1q−x+t/2,

Small parameter ε → 0 and

εN → N , εT → T , ε ln(q) → ln(q),

εai → ai, εbi → bi, 1 ≤ i ≤ r.

Theorem. (G.-Huang-22) Complex slope in the liquid region:

f(t,x) =
(q−u + κ2qu)− (q−x + κ2qx)

(q−u + κ2qu)− (q−x+t + κ2qx−t)
,

where u solves q−x + κ2qx−t = V (u)− U(u)
qt with

f0(u) =
(qN − qu)(κ2q−T − q−u)

(κ2qN − q−u)(q−T − qu)

r∏
i=1

(qai − qu)(κ2qbi − q−u)

(κ2qai − q−u)(qbi − qu)
,

U(u) =
f0(u)q

−u − κ2qu

1− f0(u)
, V (u) =

q−u − f0(u)κ
2qu

1− f0(u)
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t

a1
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a2

b2

T

N
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w( ) = κqx−t/2 − κ−1q−x+t/2,

Small parameter ε → 0 and

εN → N , εT → T , ε ln(q) → ln(q),

εai → ai, εbi → bi, 1 ≤ i ≤ r.

Corollary. (G.-Huang-22) For a polynomial Q, in the liquid region

<(f)

=(f)

0 1

f

Q

(
fqt−x − κ2qx

1− f
,
q−x − fκ2qx−t

1− f

)
= 0.

Conjecture. Same statement for tilings of arbitrary polygons.

[Kenyon-Okounkov-05] discovered this for κ = ∞ case (qvolume).



Algebraic Limit Shape
x

t

a1

b1

a2

b2

T

N

(T,N)

(0, 0)

w( ) = κqx−t/2 − κ−1q−x+t/2,

Small parameter ε → 0 and

εN → N , εT → T , ε ln(q) → ln(q),

εai → ai, εbi → bi, 1 ≤ i ≤ r.

Corollary. (G.-Huang-22) For a polynomial Q, in the liquid region

<(f)

=(f)

0 1

f

Q

(
fqt−x − κ2qx

1− f
,
q−x − fκ2qx−t

1− f

)
= 0.

Conjecture. Same statement for tilings of arbitrary polygons.

[Kenyon-Okounkov-05] discovered this for κ = ∞ case (qvolume).



Height fluctuations

Task. Compute asymptotic fluctuations of the centered heights.

Find the field lim
ε→0

[
h(ε−1t, ε−1x)− Eh(ε−1t, ε−1x)].



Gaussian Free Field fluctuations
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Small parameter ε → 0 and

εN → N , εT → T , ε ln(q) → ln(q),

εai → ai, εbi → bi, 1 ≤ i ≤ r.

Theorem. (G.-Huang-22) Inside the liquid region, we have

lim
ε→0

√
π
(
h(ε−1t, ε−1x)− E[h(ε−1t, ε−1x)]

)
= G(t,x);

G(t,x) is a (generalized) centered Gaussian field of covariance

EG(t,x)G(t′,x′) = − 1

2π
ln

∣∣∣∣Ω(t,x)− Ω(t′,x′)

Ω(t,x)− Ω(t′,x′)

∣∣∣∣ ;
Ω(t,x) = q−u + κ2qu, and u solves q−x + κ2qx−t = V (u)− U(u)

qt



Gaussian Free Field fluctuations
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lim
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√
π
(
h(ε−1t, ε−1x)− E[h(ε−1t, ε−1x)]

)
= G(t,x);

G(t,x) is the Gaussian Free Field in the complex structure of

either
fqt−x − κ2qx

1− f
or

q−x − fκ2qx−t

1− f
,

where f(t,x) is the complex slope at (t,x).

Conjecture. Same is true for arbitrary domains.
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G(t,x) is the Gaussian Free Field in the complex structure of

either
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or
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,

where f(t,x) is the complex slope at (t,x).

Conjecture. Same is true for arbitrary domains.



Literature for the uniform measure

P(T ) =
1

Z
∏
∈T

w( ), w( ) = κqx − κ−1q−x

For (q, κ)–distributions (even qvolume), all three types of results are new.

For the particular case of the uniform measure:

• Rational parameterization of the Arctic curve for trapezoids.
[Petrov-14]

• Limit shape via algebraic equations for trapezoids.
[Kenyon–Okounkov-07], [Petrov-14], [Duse-Metcalfe-15]

• Gaussian Free Field fluctuations for trapezoids.
[Petrov-15], [Bufetov-Gorin-18], [Huang-20]



A glimpse into the proofs
Step 1: Partition Function

• [Borodin–Gorin–Rains-10] by
advanced determinantal
evaluations;

• Or, by quasi-branching rules and
principal specialization formulas
of [Rains-05] for Koornwinder
symmetric polynomials.

Proposition. For any x1 < · · · < xN ,∑
T

∏
∈T

(
κqx( ) − κ−1q−x( )

)

0

2

1
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6
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−3
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−5
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−7

−8

−9

x

x1

x2

xN

x3

= ZN ·
∏
i<j

[
κqxi − κ−1q−xi − κqxj + κ−1q−xj

]



A glimpse into the proofs
Step 2: Particle-hole involution
and Markov chain structure

Proposition. {x(t)} for the
(q, κ)-distributions on lozenge
tilings is a Markov chain with
transition probabilities: t=3

t

x

t=4

t=0: (3,2,1,0,-1,-2,-5,-6)

t=3: (6,3,2,0,-1,-2,-4,-6)

t=4: (7,4,2,1,-1,-2,-4,-6)

t=12: (7,6,5,4,3,2,1,0)

∼
∏

1≤i<j≤N

bt(xi + θei)− bt(xj + θej)

bt(xi)− bt(xj)

N∏
i=1

ϕ+
t (xi)

eiϕ−
t (xi)

1−ei ,

where e ∈ {0, 1}N , θ = 1, bt(x) = q−x + κ2qx−t, and

ϕ
+
t (x) = q

T+N−1−t
(1−q

x−N+1
)(1−κ

2
q
x−T+1

), ϕ
−
t (x) = −(1−q

x+T−t
)(1−κ

2
q
x+N−t

).



A glimpse into the proofs

Step 3: Apply dynamical loop equations to

∏
i<j

bt(xi + θei)− bt(xj + θej)

bt(xi)− bt(xj)

N∏
i=1

ϕ+
t (xi)

eiϕ−
t (xi)

1−ei

Holomorphic
t=3

t

x

t=4

E

ϕ+(z)

N∏
j=1

b(z + θ)− b(xj + θej)

b(z)− b(xj)
+ ϕ−(z)

N∏
j=1

b(z)− b(xj + θej)

b(z)− b(xj)

 .

Leads to the decomposition of the time increment as

“deterministic drift” + “Gaussian stochastic part” + “small error”



A glimpse into the proofs
Step 4: Solve the stochastic evolution

“deterministic drift” + “Gaussian part”

Key roles played by: t=3

t

x

t=4

• Analytic continuation of the complex slope f(t,x) from real
x to complex z: “doubly complex slope”

• Characteristic flow of the first-order PDE in (R× C 7→ C)

∂t ln f(t, z) + ∂z ln
(
1− f(t, z)

)
= ln(q)

κ2qz−t + q−z

κ2qz−t − q−z
.



Summary
• The dynamical loop equation∏

i<j

bt(xi + θei)− bt(xj + θej)

bt(xi)− bt(xj)

N∏
i=1

ϕ+
t (xi)

eiϕ−
t (xi)

1−ei

E

ϕ+(z)

N∏
j=1

b(z + θ)− b(xj + θej)

b(z)− b(xj)
+ ϕ−(z)

N∏
j=1

b(z)− b(xj + θej)

b(z)− b(xj)

 .

• Application to (q, κ)–lozenge tilings: parameterized Arctic
curve, algebraic limit shape, GFF fluctuations.
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