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Crosscap states in 2D



2 Exact p-Function

In this section, we generalize the derivation of exact g-functions in integrable field theories to
overlaps between the crosscap state and arbitrary excited states. In subsection 2.1, we discuss
general properties of the crosscap state and the partition function on the Klein bottle. We
also give a definition of the crosscap entropy and explain its relation to the crosscap overlap.
In subsection 2.2, we compute the crosscap overlap in integrable field theories. Throughout
this section, we assume that the theory is parity-invariant and excitations are scalar.

(a) (b)

Figure 1: Definitions of the crosscap (a) and the Klein bottle (b).

2.1 Klein bottle and crosscap entropy

To define crosscaps, we cut out a disk from a two-dimensional surface and identify antipodal
points on the boundary of the disk (see figure 1-(a)). This manipulation makes the surface
non-orientable and the state created by this procedure is called the crosscap state. Two
commonly-studied closed non-orientable surfaces are RP2 and the Klein bottle. They can
be obtained by inserting one or two crosscap states on S2 respectively. The crosscap states
were studied extensively in 2d CFT, where part of the motivation came from the analysis of
string theory in orientifold spacetimes [39–42].

To compute the crosscap overlaps, we consider a cylinder of length R and circumference
L and contract the two ends with the crosscap states (see figure 1-(b)). This makes the
surface topologically equivalent to the Klein bottle. As mentioned above, the Klein bottle
can also be obtained by inserting two crosscaps on S2, but here it is important to start with
the cylinder, which is locally flat, since our interest is in massive QFT, not CFT.

The partition function of this Klein bottle ZK(R,L) can be expanded in two di↵erent
channels, depending on either we view R or L as the (imaginary) time direction. If we take
R as the time direction, we obtain an expansion

ZK(R,L) =
X

 L

e�E L
R |hC| Li|2

R!1
= e�E⌦L

R |hC|⌦Li|2 + · · · . (2.1)

Here  ` is the state defined on the spatial length `, |Ci is the crosscap state, and ⌦ is the
ground state. In the literature, this channel is often called the tree channel.

The expansion in the other channel (called the loop channel) is slightly more complicated
(see figure 2). Owing to the antipodal identification at the boundary of the cylinder, the
Hilbert space in the other channel is defined on a circle of length 2R not R. As can be seen
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z ∼ − 1/z̄
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• The state created by this procedure is the crosscap state

• Cut out a disk from a 2d surface + identify points at the boundary of the disk
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• Insert one crosscap state on :   S2 ℝℙ2



Crosscap states in 2D

• Insert one crosscap state on :   S2 ℝℙ2

• Insert two crosscap states on :    Klein bottleS2

Non-orientable 
manifolds



Boundaries & defects are great 

• Wilson/’t Hooft loops in gauge theories: order parameter for confinement 

• In 2D, boundaries and interfaces appear naturally as low energy description 
of lattice systems with impurities (e.g. Kondo effect) 

τ

|ℬ⟩ D-brane = boundary state on the 
worldsheet

• Strings and holography 
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Boundary states
In 1+1 D QFTs:

• Fixed points of RG and use 2D CFT techniques



Boundary states
In 1+1 D QFTs:

• Fixed points of RG and use 2D CFT techniques
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North-Holland, Amsterdam 

BOUNDARY CONDITIONS, FUSION RULES 
AND THE VERLINDE FORMULA 

John L. CARDY 

Department of Physics, University of California, Santa Barbara, CA 93106, USA 

Received 27 February 1989 

Boundary operators in conformal field theory are considered as arising from the juxtaposition 
of different types of boundary conditions. From this point of view, the operator content of the 
theory in an annulus may be related to the fusion rules. By considering the partition function in 
such a geometry, we give a simple derivation of the Verlinde formula. 

1. Introduction 

Recently there has been considerable progress made in understanding the prob- 
lem of classifying conformal theories, following the observation of E. Verlinde [1] 
that the fusion rules of the underlying algebra are related by formula 

j i J J J = ( 1 )  
i 

to the elements S/ of the matrix which represents the modular transformation 
r --* - 1 / r  acting on the Virasoro characters. 

A conformal field theory defined on a manifold without boundaries has as its 
underlying symmetry two algebras ~¢ and zJ  which act respectively on the 
holomorphic (z) and antiholomorphic (~) dependences of the physical fields of the 
theory. In a rational conformal field theory, the irreducible representations of these 
algebras are constructed by acting on a highest weight vector with all possible 
lowering operators, and then projecting out null states. The fusion rule coefficients 
Nj.~, of the algebra d give the number of distinct ways that the representation i 
occurs in the "fusion" of two fields transforming according to the representations 
j ,  k respectively. This process of fusion corresponds to considering only the holo- 
morphic, or only the antiholomorphic part of the operator product expansion of two 
physical operators. The decoupling of the null states after this fusion process then 
gives strong constraints on the Nj~,, first analysed for the case of the Virasoro 
algebra by Belavin et al. [2]. 

0550-3213/89/$03.50©Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 

Systematic construction of conformal boundary conditions: 



Boundary states

• Use integrable models (  conserved charges)∞

In 1+1 D QFTs:



Boundary states

• Use integrable models (  conserved charges)∞

For special boundaries, called integrable boundaries, one can follow their RG flow 
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In 1+1 D QFTs:
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Crosscap states
• Crosscap states on the worldsheet = 

orientifolds.  

• Common in string compactifications, 
e.g. de Sitter vacua construction
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Crosscap states

• Time-reversal anomalies on non-
orientable manifolds  [Witten’16]

• Crosscap states on the worldsheet = 
orientifolds.  

• Common in string compactifications, 
e.g. de Sitter vacua construction
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Crosscap states

• Time-reversal anomalies on non-
orientable manifolds  [Witten’16]

• Crosscap states on the worldsheet = 
orientifolds.  

• Common in string compactifications, 
e.g. de Sitter vacua construction

• Bootstrap with crosscap states: more 
restricted structure than boundary 
states [Giombi, Khanchandani, Zhou’20]
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Crosscap states

• Never studied in integrable models!

• Time-reversal anomalies on non-
orientable manifolds  [Witten’16]

• Crosscap states on the worldsheet = 
orientifolds.  

• Common in string compactifications, 
e.g. de Sitter vacua construction

• Bootstrap with crosscap states: more 
restricted structure than boundary 
states [Giombi, Khanchandani, Zhou’20]



Outline

• Exact crosscap overlaps & p-function in Integrable Field Theories 

• RG flow for the p-function 

• Crosscap States in Spin Chain 

• Outlook
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• Klein bottle partition function in two channels
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Crosscap overlaps

2 Exact p-Function

In this section, we generalize the derivation of exact g-functions in integrable field theories to
overlaps between the crosscap state and arbitrary excited states. In subsection 2.1, we discuss
general properties of the crosscap state and the partition function on the Klein bottle. We
also give a definition of the crosscap entropy and explain its relation to the crosscap overlap.
In subsection 2.2, we compute the crosscap overlap in integrable field theories. Throughout
this section, we assume that the theory is parity-invariant and excitations are scalar.

(a) (b)

Figure 1: Definitions of the crosscap (a) and the Klein bottle (b).

2.1 Klein bottle and crosscap entropy

To define crosscaps, we cut out a disk from a two-dimensional surface and identify antipodal
points on the boundary of the disk (see figure 1-(a)). This manipulation makes the surface
non-orientable and the state created by this procedure is called the crosscap state. Two
commonly-studied closed non-orientable surfaces are RP2 and the Klein bottle. They can
be obtained by inserting one or two crosscap states on S2 respectively. The crosscap states
were studied extensively in 2d CFT, where part of the motivation came from the analysis of
string theory in orientifold spacetimes [39–42].

To compute the crosscap overlaps, we consider a cylinder of length R and circumference
L and contract the two ends with the crosscap states (see figure 1-(b)). This makes the
surface topologically equivalent to the Klein bottle. As mentioned above, the Klein bottle
can also be obtained by inserting two crosscaps on S2, but here it is important to start with
the cylinder, which is locally flat, since our interest is in massive QFT, not CFT.

The partition function of this Klein bottle ZK(R,L) can be expanded in two di↵erent
channels, depending on either we view R or L as the (imaginary) time direction. If we take
R as the time direction, we obtain an expansion

ZK(R,L) =
X

 L

e�E L
R |hC| Li|2

R!1
= e�E⌦L

R |hC|⌦Li|2 + · · · . (2.1)

Here  ` is the state defined on the spatial length `, |Ci is the crosscap state, and ⌦ is the
ground state. In the literature, this channel is often called the tree channel.

The expansion in the other channel (called the loop channel) is slightly more complicated
(see figure 2). Owing to the antipodal identification at the boundary of the cylinder, the
Hilbert space in the other channel is defined on a circle of length 2R not R. As can be seen
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Tree channel (closed string)
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Tree channel (closed string)
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σ

Loop channel (open string)

Figure 2: Expansion of the Klein bottle partition function in the loop channel. Because of
the antipodal identification, the Hilbert space is defined on a union of two red lines, which
together form a circle of length 2R. After the time evolution of L/2, a state represented by
the dashed line gets identified with its parity image represented by the top red line.

in the figure, the states defined on this circle get identified with their parity images after the
time evolution for a period L/2. This leads to an expression

ZK(R,L) = Tr2R
⇥
⇧ e�HL/2

⇤
=

X

 2R

e�E 2R
L/2 h 2R|⇧| 2Ri . (2.2)

Here ⇧ is the parity operator while H is the Hamiltonian. Re-organizing the sum in terms
of eigenstates of the parity, we can rewrite it as

ZK(R,L) =
X

 2R

✏ 2Re
�E 2R

L/2 , (2.3)

where ✏ is the eigenvalue of the parity for the state  , which takes either +1 or �1. The
equality of the two expressions (2.1) and (2.3) in the large R limit gives

lim
R!1

ZK(R,L) = lim
R!1

"
X

 2R

✏ 2Re
�E 2R

L/2

#
' e�E⌦L

R |hC|⌦Li|2 . (2.4)

This shows that the overlap hC|⌦Li controls the density of states weighted by the parity ✏ .
To make this statement more precise, we consider the parity-weighted free energy

FK ⌘ � lim
R!1

logZK(R,L) . (2.5)

Without the parity weight ✏, this would give a definition of a thermal free energy in the
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This shows that the parity-weighted free energy contains an O(1) term in addition to the
usual extensive contribution proportional to the volume 2R. The structure is reminiscent of
the thermal free energy of a system with boundaries, for which the boundary entropy, also
known as the g-function, gives an O(1) contribution. The boundary entropy is defined in
terms of the overlap with the boundary state |Bi as sB = (1 � L@L) log |hB|⌦Li|. Based on
the similarity, we call the following quantity the crosscap entropy:
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F𝕂 ≡ − lim
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log Z𝕂(R, L) Parity-weighted free energy

= REΩL
− log [ |⟨𝒞 |ΩL⟩ |2 ] + O(1/R)

extensive piece

Loop channel (open string) = Tree channel (closed string)

 piece𝒪(1)

• Same structure as the thermal free energy of a system with boundaries 
• In that case,  piece defines the boundary entropy or g-function𝒪(1)



s𝒞 = log |p | p ≡ ⟨𝒞 |ΩL⟩

• Similarly, we define crosscap entropy or p-function:

p-function

• We will study this quantity in integrable models
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(in integrable models)
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contribute in the parity-weighted trace: 

⟨{pj} |Π |{pj}⟩ = ⟨{pj} |{−pj}⟩ = 0 if  {pj} ≠ {−pj}

{p1, …, pM, − pM, …, − p1} or {p1, …, pM,0, − pM, …, − p1}

• So only states with the set of momenta
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p-function in Integrable models

Tr2R [Π e−ĤL/2] = ∑
{pj}={−pj}

e− L
2 ∑j E(pj) ≃ e−EΩR ⟨𝒞 |ΩL⟩

2

Standard thermal sum 
with the constraint  {pj} = {−pj}

Apply standard TBA techniques to  compute the saddle point and its fluctuations
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in the figure, the states defined on this circle get identified with their parity images after the
time evolution for a period L/2. This leads to an expression
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Here ⇧ is the parity operator while H is the Hamiltonian. Re-organizing the sum in terms
of eigenstates of the parity, we can rewrite it as

ZK(R,L) =
X

 2R

✏ 2Re
�E 2R

L/2 , (2.3)

where ✏ is the eigenvalue of the parity for the state  , which takes either +1 or �1. The
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This shows that the overlap hC|⌦Li controls the density of states weighted by the parity ✏ .
To make this statement more precise, we consider the parity-weighted free energy

FK ⌘ � lim
R!1

logZK(R,L) . (2.5)

Without the parity weight ✏, this would give a definition of a thermal free energy in the
infinite volume limit (R ! 1). Now, using the relation (2.4), we find that FK behaves as

FK = RE⌦L � log
⇥
|hC|⌦Li|2

⇤
+O(1/R) . (2.6)

This shows that the parity-weighted free energy contains an O(1) term in addition to the
usual extensive contribution proportional to the volume 2R. The structure is reminiscent of
the thermal free energy of a system with boundaries, for which the boundary entropy, also
known as the g-function, gives an O(1) contribution. The boundary entropy is defined in
terms of the overlap with the boundary state |Bi as sB = (1 � L@L) log |hB|⌦Li|. Based on
the similarity, we call the following quantity the crosscap entropy:
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known as the g-function, gives an O(1) contribution. The boundary entropy is defined in
terms of the overlap with the boundary state |Bi as sB = (1 � L@L) log |hB|⌦Li|. Based on
the similarity, we call the following quantity the crosscap entropy:

sC = log |p| p ⌘ hC|⌦Li . (2.7)
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Figure 2: Expansion of the Klein bottle partition function in the loop channel. Because of
the antipodal identification, the Hilbert space is defined on a union of two red lines, which
together form a circle of length 2R. After the time evolution of L/2, a state represented by
the dashed line gets identified with its parity image represented by the top red line.
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• Can be generalized for any excited state  using analytic 
continuation of this formula, similar to Dorey-Tateo trick.
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Ĝ∙
± ⋅ f(u) = ∑

k

i𝒦±(u, uk)
∂u log Y(ũk)
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S-matrix invariant under:   weak-strong coupling dualityγ → π − γ ⇔

γ =
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± iθ0Al. Zamolodchikov said:

Real parameter

Al. Zamolodchikov said:
• Resulting S-matrix still physical 

(Real analytic, unitary, crossing symmetric) 

• Lagrangian description not so clear
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Figure 3: The dependence of the e↵ective central charge for the staircase model on the
volume L. The orange horizontal lines indicate the central charges of the minimal models
and the e↵ective central charge develops plateaux precisely at those values.

In [57], Al. Zamolodchikov proposed to move away from the self-dual point by the fol-
lowing analytic continuation

� =
⇡

2
± i✓0 (3.4)

with ✓0 being a real parameter. The resulting S-matrix remains real-analytic [58] (i.e. S(u) is
real for purely imaginary u) besides maintaining the remaining constraints from the original
theory, namely unitarity and crossing symmetry. It is therefore considered to be still a
physical S-matrix describing the scattering of asymptotic states in some putative massive
QFT whose underlying microscopic description remains somewhat obscure. We will take
this point of view, and use this model as a playground to study p-functions.

The salient feature of the staircase model occurs when ✓0 is sent to infinity. As ✓0
increases, the e↵ective central charge (or equivalently the ground-state energy) as a function
of the volume of the system L develops several plateaux, whose approximate locations are at
the values of L obeying logL ⇠ �(m � 3)✓0/2 for integers m � 2, see figure 3. At each of
these plateaux, the e↵ective central charge matches precisely the central charge of a diagonal
unitary minimal model, also known as the A-series minimal models, M(A)

m :

ce↵(L) ⇠ cm = 1� 6

m(m+ 1)
(logL ⇠ �(m� 3)✓0/2) . (3.5)

The staircase behavior is more pronounced as ✓0 grows and in the limiting behavior as
✓0 ! 1, it describes the sequence of transitions M(A)

m ! M(A)
m�1. These transitions are

well-known and amount to the RG flows induced by the least relevant operator �13 which is
part of the spectrum of all these minimal models. This behavior suggests an intepretation
for the staircase model: it describes a parametric family of integrable field theories whose
behavior along the RG comes close to that of the unitary minimal models before it flows to
a massive theory in the deep infrared.

This is then an example where we can follow the RG behavior using integrability and

14
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Take   to infinity and compute the effective central charge (i.e. ground state energy)θ0

γ =
π
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real for purely imaginary u) besides maintaining the remaining constraints from the original
theory, namely unitarity and crossing symmetry. It is therefore considered to be still a
physical S-matrix describing the scattering of asymptotic states in some putative massive
QFT whose underlying microscopic description remains somewhat obscure. We will take
this point of view, and use this model as a playground to study p-functions.

The salient feature of the staircase model occurs when ✓0 is sent to infinity. As ✓0
increases, the e↵ective central charge (or equivalently the ground-state energy) as a function
of the volume of the system L develops several plateaux, whose approximate locations are at
the values of L obeying logL ⇠ �(m � 3)✓0/2 for integers m � 2, see figure 3. At each of
these plateaux, the e↵ective central charge matches precisely the central charge of a diagonal
unitary minimal model, also known as the A-series minimal models, M(A)
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Figure 4: The p-function for the staircase model as a function the volume L. Similarly to
the e↵ective central charge, it develops plateaux (orange horizontal lines) at the values of
the p-function for the minimal models in the A-series.

enjoy an infinite sequence of benchmark points provided by the unitary minimal models for
which we can analytically compute a large amount of information purely from CFT.

Result. The result of the numerical evaluation of (2.36) is given in the plot of figure 4.
The crosscap entropy (log |p|) monotonically decreases with the RG flow and decays to zero
in the deep infrared. Along the way, it develops plateaux whose values correspond to the
p-functions of the minimal models in the A-series. These plateaux values can be calculated
analytically. Referring to the formula (2.36), the (ratio of) Fredholm determinants and the

value of Y (0) at the plateau corresponding to M(A)
m were computed in [11]. The results read

(see [11] for derivations)
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>>>><

>>>>:
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, (3.6)

Y (0) =

(�
cot ⇡
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�2
m : odd�

cot ⇡

m

�2
m : even

. (3.7)

Plugging these values into (2.36), we obtain a closed-form expression for the p-function of
the A-series minimal models:

M(A)
m

: |p| = |hC|⌦i| =
✓
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◆ 1
4
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cot
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enjoy an infinite sequence of benchmark points provided by the unitary minimal models for
which we can analytically compute a large amount of information purely from CFT.

Result. The result of the numerical evaluation of (2.36) is given in the plot of figure 4.
The crosscap entropy (log |p|) monotonically decreases with the RG flow and decays to zero
in the deep infrared. Along the way, it develops plateaux whose values correspond to the
p-functions of the minimal models in the A-series. These plateaux values can be calculated
analytically. Referring to the formula (2.36), the (ratio of) Fredholm determinants and the

value of Y (0) at the plateau corresponding to M(A)
m were computed in [11]. The results read

(see [11] for derivations)
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Figure 5: The p-function for the generalized staircase model as a function the volume L.
Similarly to the e↵ective central charge and the previous example of the p-function, this also
develops plateaux (orange horizontal lines) at the values of the p-function entropy for the
minimal models in the D-series.

Numerical computation. As can be seen in figure 5, the result of the numerical com-
putation exhibits two important di↵erences from that of the non-orbifolded theory. First,
although the p-function decreases monotonically for most part of the flow, it starts to increase
in the deep infrared, after the plateau corresponding to the Ising model.

Second, the infrared value of the crosscap entropy is 1
2 log 2 while that of the original

staircase model is 0. This di↵erence translates to the following behaviors of the Klein bottle
partition function in the infrared:

ZK(R,L)
R,L�1⇠

(
1 original staircase

2 orbifolded staircase
. (3.18)

To understand the physical meaning of this di↵erence, it is useful to analyze ZK in the loop
channel. In the original staircase model, there is a unique vacuum state in the S-sector
and its contribution dominates in the infrared (L � 1). This is because all the states
in the T-sector contain massive excitations. If we further take the infinite R limit, the
ground state energy asymptotes to zero and therefore we get ZK ⇠ e�LE⌦2R

/2 ⇠ 1. On the
other hand in the orbifolded theory, both of the two sectors S and U have a state without
excitations and their energies both asymptote to zero in the infinite R limit. This is why
we get ZK ⇠ 2. Now, the crucial point is that these two states are oppositely charged under
the emergent Z2-symmetry, which assigns +1 to the untwisted sector and �1 to the twisted
sector. Physically, this means that the emergent Z2-symmetry is spontaneously broken12 in
the orbifolded theory in the infrared.

Although we need to study more examples in order to draw any conclusion, it is tempting
to speculate that these two features—the sudden increase of the p-function in the infrared

12
As discussed in Appendix A of [66], one can argue more generally that, if the Z2-symmetry of the original

theory is unbroken, the emergent Z2-symmetry of the orbifolded theory must be broken and vice versa.
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Figure 4: The p-function for the staircase model as a function the volume L. Similarly to
the e↵ective central charge, it develops plateaux (orange horizontal lines) at the values of
the p-function for the minimal models in the A-series.

enjoy an infinite sequence of benchmark points provided by the unitary minimal models for
which we can analytically compute a large amount of information purely from CFT.

Result. The result of the numerical evaluation of (2.36) is given in the plot of figure 4.
The crosscap entropy (log |p|) monotonically decreases with the RG flow and decays to zero
in the deep infrared. Along the way, it develops plateaux whose values correspond to the
p-functions of the minimal models in the A-series. These plateaux values can be calculated
analytically. Referring to the formula (2.36), the (ratio of) Fredholm determinants and the

value of Y (0) at the plateau corresponding to M(A)
m were computed in [11]. The results read

(see [11] for derivations)
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Plugging these values into (2.36), we obtain a closed-form expression for the p-function of
the A-series minimal models:
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Numerical computation. As can be seen in figure 5, the result of the numerical com-
putation exhibits two important di↵erences from that of the non-orbifolded theory. First,
although the p-function decreases monotonically for most part of the flow, it starts to increase
in the deep infrared, after the plateau corresponding to the Ising model.

Second, the infrared value of the crosscap entropy is 1
2 log 2 while that of the original

staircase model is 0. This di↵erence translates to the following behaviors of the Klein bottle
partition function in the infrared:
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To understand the physical meaning of this di↵erence, it is useful to analyze ZK in the loop
channel. In the original staircase model, there is a unique vacuum state in the S-sector
and its contribution dominates in the infrared (L � 1). This is because all the states
in the T-sector contain massive excitations. If we further take the infinite R limit, the
ground state energy asymptotes to zero and therefore we get ZK ⇠ e�LE⌦2R

/2 ⇠ 1. On the
other hand in the orbifolded theory, both of the two sectors S and U have a state without
excitations and their energies both asymptote to zero in the infinite R limit. This is why
we get ZK ⇠ 2. Now, the crucial point is that these two states are oppositely charged under
the emergent Z2-symmetry, which assigns +1 to the untwisted sector and �1 to the twisted
sector. Physically, this means that the emergent Z2-symmetry is spontaneously broken12 in
the orbifolded theory in the infrared.

Although we need to study more examples in order to draw any conclusion, it is tempting
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which we can analytically compute a large amount of information purely from CFT.
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Numerical computation. As can be seen in figure 5, the result of the numerical com-
putation exhibits two important di↵erences from that of the non-orbifolded theory. First,
although the p-function decreases monotonically for most part of the flow, it starts to increase
in the deep infrared, after the plateau corresponding to the Ising model.
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partition function in the infrared:
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To understand the physical meaning of this di↵erence, it is useful to analyze ZK in the loop
channel. In the original staircase model, there is a unique vacuum state in the S-sector
and its contribution dominates in the infrared (L � 1). This is because all the states
in the T-sector contain massive excitations. If we further take the infinite R limit, the
ground state energy asymptotes to zero and therefore we get ZK ⇠ e�LE⌦2R

/2 ⇠ 1. On the
other hand in the orbifolded theory, both of the two sectors S and U have a state without
excitations and their energies both asymptote to zero in the infinite R limit. This is why
we get ZK ⇠ 2. Now, the crucial point is that these two states are oppositely charged under
the emergent Z2-symmetry, which assigns +1 to the untwisted sector and �1 to the twisted
sector. Physically, this means that the emergent Z2-symmetry is spontaneously broken12 in
the orbifolded theory in the infrared.

Although we need to study more examples in order to draw any conclusion, it is tempting
to speculate that these two features—the sudden increase of the p-function in the infrared

12
As discussed in Appendix A of [66], one can argue more generally that, if the Z2-symmetry of the original

theory is unbroken, the emergent Z2-symmetry of the orbifolded theory must be broken and vice versa.
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Figure 4: The p-function for the staircase model as a function the volume L. Similarly to
the e↵ective central charge, it develops plateaux (orange horizontal lines) at the values of
the p-function for the minimal models in the A-series.

enjoy an infinite sequence of benchmark points provided by the unitary minimal models for
which we can analytically compute a large amount of information purely from CFT.

Result. The result of the numerical evaluation of (2.36) is given in the plot of figure 4.
The crosscap entropy (log |p|) monotonically decreases with the RG flow and decays to zero
in the deep infrared. Along the way, it develops plateaux whose values correspond to the
p-functions of the minimal models in the A-series. These plateaux values can be calculated
analytically. Referring to the formula (2.36), the (ratio of) Fredholm determinants and the

value of Y (0) at the plateau corresponding to M(A)
m were computed in [11]. The results read

(see [11] for derivations)
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Plugging these values into (2.36), we obtain a closed-form expression for the p-function of
the A-series minimal models:
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Figure 5: The p-function for the generalized staircase model as a function the volume L.
Similarly to the e↵ective central charge and the previous example of the p-function, this also
develops plateaux (orange horizontal lines) at the values of the p-function entropy for the
minimal models in the D-series.
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Crosscap states in spin chains

HSU(2) ∝ ∑
j

⃗S j
⃗S j+1

• Mimic the definition in field theory: identify states on antipodal sites of the chain:

|c⟩⟩j ≡ |↑ ⟩j ⊗ |↑ ⟩j+ L
2

+ |↓ ⟩j ⊗ |↓ ⟩j+ L
2

site j

• XXX SU(2) spin chain

2 Exact p-Function

In this section, we generalize the derivation of exact g-functions in integrable field theories to
overlaps between the crosscap state and arbitrary excited states. In subsection 2.1, we discuss
general properties of the crosscap state and the partition function on the Klein bottle. We
also give a definition of the crosscap entropy and explain its relation to the crosscap overlap.
In subsection 2.2, we compute the crosscap overlap in integrable field theories. Throughout
this section, we assume that the theory is parity-invariant and excitations are scalar.

(a) (b)

Figure 1: Definitions of the crosscap (a) and the Klein bottle (b).

2.1 Klein bottle and crosscap entropy

To define crosscaps, we cut out a disk from a two-dimensional surface and identify antipodal
points on the boundary of the disk (see figure 1-(a)). This manipulation makes the surface
non-orientable and the state created by this procedure is called the crosscap state. Two
commonly-studied closed non-orientable surfaces are RP2 and the Klein bottle. They can
be obtained by inserting one or two crosscap states on S2 respectively. The crosscap states
were studied extensively in 2d CFT, where part of the motivation came from the analysis of
string theory in orientifold spacetimes [39–42].

To compute the crosscap overlaps, we consider a cylinder of length R and circumference
L and contract the two ends with the crosscap states (see figure 1-(b)). This makes the
surface topologically equivalent to the Klein bottle. As mentioned above, the Klein bottle
can also be obtained by inserting two crosscaps on S2, but here it is important to start with
the cylinder, which is locally flat, since our interest is in massive QFT, not CFT.

The partition function of this Klein bottle ZK(R,L) can be expanded in two di↵erent
channels, depending on either we view R or L as the (imaginary) time direction. If we take
R as the time direction, we obtain an expansion

ZK(R,L) =
X

 L

e�E L
R |hC| Li|2

R!1
= e�E⌦L

R |hC|⌦Li|2 + · · · . (2.1)

Here  ` is the state defined on the spatial length `, |Ci is the crosscap state, and ⌦ is the
ground state. In the literature, this channel is often called the tree channel.

The expansion in the other channel (called the loop channel) is slightly more complicated
(see figure 2). Owing to the antipodal identification at the boundary of the cylinder, the
Hilbert space in the other channel is defined on a circle of length 2R not R. As can be seen
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Figure 6: (a) The subregion entanglement entropy for a crosscap state (red curve), a generic
chaotic eigenstate (dashed curve), and a boundary state (black curve). (b) The phase transi-
tion of the Ryu-Takayanagi (RT) surface. The outer circle is the spatial slice of the boundary
CFT while the black dot in the middle is a black hole. The area of the RT surface (denoted
by a solid red curve) grows linearly until the subregion of the boundary CFT (denoted by a
dashed red curve) exceeds half the system size. After that, the RT surface discontinuously
jumps from the one on the right to the one on the left and starts decreasing linearly.

The Bethe equation for the SL(2, R) chain is given by

1 = eipjL
Y

k 6=j

SSL(uj, uk) , (4.13)

with SSL(u, v) = hSL(u, v)/hSL(v, u). Note that, unlike the XXX spin chain, several excita-
tions can be at the same site. For instance, when n1 = n2 in the sum in (4.9), we will have
|0 · · · 2

n1=n2

· · · i as a ket.

The crosscap state in this model is defined by

|Ci ⌘
L
2Y

j=1

(|c̃iij)⌦ , (4.14)

where |c̃iij is the antipodally identified two-site state

|c̃iij ⌘
1X

n=0

|nij ⌦ |ni
j+L

2
. (4.15)

Entanglement structures. The boundary states in the XXX spin chain can also be
expressed in terms of entangled two-site states [56]. However, while the crosscap states
in the XXX chain are given by two-site states at antipodal sites, the boundary states are
given by two-site states at neighboring sites. This di↵erence is reflected in the di↵erent
entanglement structures: the boundary state is short-range entangled, and their subregion
entanglement entropy never exceeds log 2 (see figure 6-(a)). This is simply because the
boundary states are tensor products of local two-site states.

In contrast, the subregion entanglement entropy of the crosscap state exhibits the volume
law: it increases linearly until the size of the region reaches half of the system size and the
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general properties of the crosscap state and the partition function on the Klein bottle. We
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In subsection 2.2, we compute the crosscap overlap in integrable field theories. Throughout
this section, we assume that the theory is parity-invariant and excitations are scalar.
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Here  ` is the state defined on the spatial length `, |Ci is the crosscap state, and ⌦ is the
ground state. In the literature, this channel is often called the tree channel.

The expansion in the other channel (called the loop channel) is slightly more complicated
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Hilbert space in the other channel is defined on a circle of length 2R not R. As can be seen
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Boundary overlap:



Conclusions
• Studied crosscap states in integrable models: integrability is preserved

• Exactly computed crosscap overlaps

• Observed monotonically decrease of p-function under RG for A-series. 

• Generalized staircase to the D-series (also discussed in the paper: 
generalization to fermionic integrable models) 

• In the D-series it also decreases, except in the deep IR in a symmetry 
breaking phase, where the theory becomes massive.



• Study further the behaviour of the p-function under RG: is there a p-
theorem under certain assumptions?

Outlook

• Generalize overlap formula to more general theories, such as theories 
with bound states and theories with non-diagonal scatterings

• Setup in AdS/CFT realizing crosscap states

• Crosscap state as a initial state for a quantum quench?



THANK YOU


