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* Cut out a disk from a 2d surface + identify points at the boundary of the disk

* The state created by this procedure is the crosscap state
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Crosscap statesin 2D

» Insert one crosscap state on S RI . ®

Non-orientable
manifolds

» Insert two crosscap states on S*:  Klein bottle ® (X)



Boundaries & defects are great

* Wilson/’t Hooft loops in gauge theories: order parameter for confinement

* In 2D, boundaries and interfaces appear naturally as low energy description
of lattice systems with impurities (e.g. Kondo effect)

T

% D-brane = boundary state on the
worldsheet

T

 E—

 Strings and holography .
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Boundary states

In1+1 D QFTs:

* Fixed points of RG and use 2D CF'T techniques

Systematic construction of conformal boundary conditions:

THE BOUNDARY AND CROSSCAP STATES IN
CONFORMAL FIELD THEORIES

NOBUYUKI ISHIBASHI
Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Received 20 June 1988

A method to obtain the boundary states and the crosscap states explicitly in various
conformal field theories, is presented. This makes it possible to construct and analyse open
string theories in several closed string backgrounds. We discuss the construction of such
theories in the case of the backgrounds corresponding to the conformal field theories with
SU (2) current algebra symmetry.

BOUNDARY CONDITIONS, FUSION RULES
AND THE VERLINDE FORMULA

John L. CARDY
Department of Physics, University of California, Santa Barbara, CA 93106, USA

Received 27 February 1989

Boundary operators in conformal field theory are considered as arising from the juxtaposition
of different types of boundary conditions. From this point of view, the operator content of the
theory in an annulus may be related to the fusion rules. By considering the partition function in
such a geometry, we give a simple derivation of the Verlinde formula.
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Boundary states

In1+1 D QFTs:

* Use integrable models (co conserved charges)

For special boundaries, called integrable boundaries, one can follow their RG flow

BOUNDARY S MATRIX AND BOUNDARY STATE
IN TWO-DIMENSIONAL INTEGRABLE
QUANTUM FIELD THEORY

SUBIR GHOSHAL* and ALEXANDER ZAMOLODCHIKOV !

Department of Physics and Astronomy, Rutgers University,
PO Box 849, Piscataway, NJ 038855-0849, USA

Received 29 November 1993

We study integrals of motion and factorizable S matrices in two-dimensional integrable
field theory with boundary. We propose the “boundary cross-unitarity equation,” which
is the boundary analog of the crossing-symmetry condition of the “bulk” S matrix. We
derive the boundary § matrices for the Ising field theory with boundary magnetic field
and for the boundary sine-Gordon model.
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A method to obtain the boundary states and the crosscap states explicitly in various
conformal field theories, is presented. This makes it possible to construct and analyse open
string theories in several closed string backgrounds. We discuss the construction of such
theories in the case of the backgrounds corresponding to the conformal field theories with
SU (2) current algebra symmetry.
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THE BOUNDARY ANDCROSSCAP STATESJIN
CONFORMAL FIELD THEORIES

NOBUYUKI ISHIBASHI
Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Received 20 June 1988

A method to obtain the boundary states and the crosscap states explicitly in various
conformal field theories, is presented. This makes it possible to construct and analyse open
string theories 1n several closed string backgrounds. We discuss the construction of such
theories in the case of the backgrounds corresponding to the conformal field theories with
SU (2) current algebra symmetry.

» Crosscap states on the worldsheet =
orientifolds.

* Common in string compactifications,
e.g. de Sitter vacua construction

* Time-reversal anomalies on non-
orientable manifolds [Witten16]



Crosscap states

» Crosscap states on the worldsheet =

THE BOUNDARY AND [CROSSCAP STATES)IN : '
CONFORMAL FIELD THEORIES orientifolds.

Department of Physics, lljn(z)vlzzz\t/}fj QI;I TIoSkI;JIL,B;ZI:yo—ku, Tokyo 113, Japan * CommOn ln Strlng CompaCtlﬁcathnS’
e.g. de Sitter vacua construction

Received 20 June 1988

A method to obtain the boundary states and the crosscap states explicitly in various ¢ Tlme‘reversal anomalles On non'
conformal field theories, is presented. This makes it possible to construct and analyse open
string theories 1n several closed string backgrounds. We discuss the construction of such Ol’i ent ab] e m anif Ol dS [Wl tte n; 1 6]

theories in the case of the backgrounds corresponding to the conformal field theories with
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restricted structure than boundary
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» Crosscap states on the worldsheet =

THE BOUNDARY AND [CROSSCAP STATES)IN : '
CONFORMAL FIELD THEORIES orientifolds.

NOBUYUKI ISHIBASHI PY < < : .
Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan C OmmOn ln Strlng CompaCtlﬁcathnS’
Received 20 June 1988 e.g. de Sitter vacua construction
A method to obtain the boundary states and the crosscap states explicitly in various o Time'reversal anomalies On ﬂOﬂ-
conformal field theories, is presented. This makes it possible to construct and analyse open
string theories in several closed string backgrounds. We discuss the construction of such Ol’i ent ab] e m anif Ol dS [Wl tte n; 1 6]

theories 1n the case of the backgrounds corresponding to the conformal field theories with
SU (2) current algebra symmetry.

* Bootstrap with crosscap states: more
restricted structure than boundary
Sstates [Giombi, Khanchandani, Zhou'20]

* Never studied in integrable models!



Outline

Exact crosscap overlaps & p-function in Integrable Field Theories
RG flow for the p-function
Crosscap States in Spin Chain

Outlook



Crosscap overlaps <cg ‘ T)



Crosscap overlaps <cg ‘ T)

» Klein bottle partition function in two channels



Crosscap overlaps <cg ‘ T)

» Klein bottle partition function in two channels

Tree channel (closed string)

(Q__




Crosscap overlaps <Cg ‘ T)

» Klein bottle partition function in two channels

Tree channel (closed string)

(L




Crosscap overlaps <c¢‘g ‘ ‘P>

» Klein bottle partition function in two channels

Tree channel (closed string)

QT




Crosscap overlaps <cg ‘ ‘P>

» Klein bottle partition function in two channels

Tree channel (closed string)
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Crosscap overlaps <Cg ‘ T)

» Klein bottle partition function in two channels

Tree channel (closed string)

)

S )
ZK(R,L)z ZB_EWLR <%‘WL>| R: e Eq, R <%‘QL>| + ...

7 \

Ground state
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Loop channel (open string)

—>0

Zy(R,L) = Tryp [[Te 2] = 3 e ™5™ (yp | TT |y

ﬂ YHR

Parity operator _ ~E, L2

Parity eigenstates o
Parity eigenvalues 1
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Loop channel (open string) = Tree channel (closed string)

. . “E, 12| _ —EyR :
1%1—{20 Zi (R, L) = I%l_)n; Z €y, € " ~ e T | (G Q) |
V2R

<C€ | 9) L> controls the density of states weighted by the parity €,
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F=—lim logZ«(R,L)  Parity-weighted free energy
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= RE,, — log [\(%\Qﬁ \2] + O(1/R)
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Loop channel (open string) = Tree channel (closed string)

F=—lim logZ«(R,L)  Parity-weighted free energy

R— o0

= RE, — log \(%\QLH + O(1/R)

extensive piece O(1) piece

* Same structure as the thermal free energy of a system with boundaries
* In that case, O(1) piece defines the boundary entropy or g-function



p-function

 Similarly, we define crosscap entropy or p-function:

* We will study this quantity in integrable models



p-function in Integrable models

Iim Tr,p lH e‘ﬁuzl (G€2)

R— 00

Large volume partition function

<> (in integrable models)

Thermodynamic Bethe Ansatz + O(1) fluctuation
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p-function in Integrable models

Iim Tr,p lH e‘HL/Z] (G€2)

R— 00

 Single type of particle (massive) (e.g sinh-Gordon model)

+ Energy eigenstates for R — co <> M excitations labelled by | {p;})

1 — eZiijH S(p], pk)
k#j
» 1] {Pj}> X |{_Pj}>

» For Bethe states with standard normalization: IT|{p;}) = 1|{—p;})
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Iim Tr,p lH e‘HL/Z] (G€2)

R— 00

» States whose momenta are not invariant under the sign flip do not
contribute in the parity-weighted trace:

{p} I {p}) = {p} 1 {-p})=0 it {p} # {-p;}



p-function in Integrable models

Iim Tr,p lH e‘HL/Z] (G€2)

R— 00

» States whose momenta are not invariant under the sign flip do not
contribute in the parity-weighted trace:

{p} I {p}) = {p} 1 {-p})=0 it {p} # {-p;}

* So only states with the set of momenta

Wis - sPaps — P> -5 — P1} Oor WPris s PapsOs — Pags -+ — D1}
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p-function in Integrable models

: L .
Tr,, [H e—HL/Z] Z T L ED)| L —ER ‘ (€] QL>‘

{Pj}:{—Pj}

Standard thermal sum
with the constraint {p;} = {—p;}

Apply standard TBA techniques to compute the saddle point and its fluctuations
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. . Zero momentum particle
Formally similar to a system with

2 identical boundaries:
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S: 1=ekS(p, — p) | | Sy S0y — 1) -
k%j
T: 1=, - ppS(p0) | | Sy S — P -

< i

. . Zero momentum particle
Formally similar to a system with

2 identical boundaries:

/I ] = Pt (R(Pj))ZH S(Pja pk)S(Pja — D)

- k%]

R(Pj)
f

R(Pj)




Particles on a circle of size 2R | @)
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WPis Py — P ---» — P1 ) Or WPis Py — Pags - — Pt}
S: 1=ekS(p, — p) | | Sy S0y — 1) -
k%j
T: 1=, - ppS(p0) | | Sy S — P -

< i

. . Zero momentum particle
Formally similar to a system with

2 identical boundaries:

| 2
L= e2® (R(p) ) TS p0S = P
| %
R(p.
(p)) B R(p;) P 2 S(pja — pj) 1S
pf ( (pj )> < S(pj9 _Pj)S(PjaO) T
]
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p-function in Integrable models

Result: “Simplest” g-function

pl| = |<%‘QL>| = [l‘l‘\

S-sector T-sector



pl=[(B1Q)| =




~

\_

Y(0)

det _

pl=|(€19)] =\[1+\/

1 + Y(0)

|

det —




-

_

det _

Y(0)
pi=|@19) =\[1+\/1+Y<o>

|

det —

Y-function

O0=LE(u)+logY(u)—log(l+7Y)* % (u)

Dispersion relation

|
K (u,v) =—09, [log S(u,v) £log S(u, — v)]
l



4 —

det |1 =G Y-function 0 = LE(u)+logY(u) —log(l +7Y) x & (u)
Y(0) _
pl= (Bl = |[1+ ——
\ L+ YO0) ) get |1 -6,

k _ _ j Dispersion relation

1
H+(u,v) = =0, [log S(u, v) £ log S(u, — v)|
l



s — )

det |1 =G Y-function 0 = LE(u)+logY(u) —log(l +7Y) x & (u)
Y(0) _
pl= (Bl = |[1+ —
\ L+ YO0) ) get |1 -6,

\_ _ _ ) Dispersion relation

1
H+(u,v) = =0, [log S(u, v) £ log S(u, — v)|
l

. J’ “dv K (u,v) )

Fredholm determinants: G :-f(u)=| ———
- o 271+ 1/Y(v)






 Can be generalized for any excited state | (6 |V, ) | using analytic
continuation of this formula, similar to Dorey-Tateo trick.

det _I—CA?'_

Y(0) -

[(CY) | = 1+ 3 —
U V0 a1

iF o (u, 1) Cdv K. (u,v)

o102 Y@y "W T vy

G- fu)y =)

k




 Can be generalized for any excited state | (6 |V, ) | using analytic
continuation of this formula, similar to Dorey-Tateo trick.

det _I—CA?'_

Y(0) -

[(CY) | = 1+ 3 —
U V0 a1

- B K (u,u) " dv F (u,v)
G J) = ; 0, log Y(ak)f(”k)+ Jy 271+ 1/Y(v)f(v)
* Asymptotic limit
det G
L— o0 LU,
H%‘\PLH — .
\ detG_

M

(G,) g = | LOp@) + Y H () | 85— Holuu)
k=1
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RG flow of p-function

* Goal: use previous result to study how p-function evolves under RG

e Use staircase model of Al. Zamolodchikov

 Start with sinh-Gordon model (integrable)
2

4 . (0D)? e h(b®)
= — — ——COS

* Exact S-matrix
sinh(u — v) — i sin
S —v) = T TN
sinh(u# — v) +isiny 22
= 87 + b?




RG flow of p-function
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sinh(x —v) +isiny 22
= 87 + b?




RG flow of p-function

S(u — ) = sinh(u —v) —isiny \/\‘

sinh(u — v) +isiny 2
T S+ b2




RG flow of p-function

S(u — ) = sinh(u —v) —isiny \/\‘

sinh(u — v) +isiny 2
T S+ b2

S-matrix invariant under: y — 7 — y & weak-strong coupling duality



RG flow of p-function

S(u — v) = sinh(u —v) —isiny \/\‘

sinh(u — v) +isiny 2
T S+ b2

S-matrix invariant under: y — 7 — y & weak-strong coupling duality

v/

Al. Zamolodchikov said: y = — + 16

Real parameter



RG flow of p-function

S(u — v) = sinh(u —v) —isiny \/\‘

sinh(u — v) +isiny 2
T S+ b2

S-matrix invariant under: y — 7 — y & weak-strong coupling duality

v/

Al. Zamolodchikov said: y = — + 16

Real parameter

. Resulting S-matrix still physical
Al. Zamolodchikov said: (Real analytic, unitary, crossing symmetric)

. Lagrangian description not so clear
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Staircase model

U
== +if
Y > 0
Take 6, to infinity and compute the effective central charge (i.e. ground state energy)

Cose(L)

_ — o T B » log—




Staircase model

T,
}/=Eill90

Take 6, to infinity and compute the effective central charge (i.e. ground state energy)

Cose(L)
e o000 . 0.8 6
e | c.(L) ~c, =1 mom—— (logL ~ — (m = 3)6,/2)
02, Central charge of A-series
L minimal models .ZV
| | | —2‘50 | | | | —2‘00 | | | | —1‘50 | | | | —1‘00 | | | | —éO | | | | Flog 5

M ,(7‘,?) — M ’(;2 , induced by the least relevant operator ¢ ;
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p-function for staircase model

log|p|

0.8

0.6

‘ ‘ ‘ -25 ‘ ‘ ‘ ‘ 200 -15 ‘ ‘ ‘ ‘ “100 -5 ‘ ‘ ‘ ‘ ’ log_
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, identity representation
representation of the ,
, degeneracy of states in the
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chiral and anti-chiral part



p-function for staircase model

. i Orange lines determined from the CF'T

2

| - - ..°- 1og§ i \

modular S-matrix a and

irreducible . . .
identity representation

representation of the ,
, degeneracy of states in the
Virasoro algebra

representation a for the
chiral and anti-chiral part

1

U U

o) T
Specifiying for Y = |(E|Q)| = ——— COt — COt ———
pecifiying for .4 Pl = (%) (m(m+1)) \/ ol
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Staircase for D-series minimal models

» A-series contain Z, global symmetry
» D-series = gauging Z,  (Z, orbifold of A-series)
» Non diagonal, also contains an emergent Z,

* This amounts to:
1. Add twisted sector, e.g. @(c + 27) = — (o)
2. Restrict Hilbert space to Z, invariant states
 Bethe Ansatz counterpart

1. Allow particles to be also anti-periodic (twisted sector) -1 =¢**]]sw;r
2. States with even number of particles
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 Bethe Ansatz counterpart

1. Allow particles to be also anti-periodic (twisted sector)

2. States with even number of particles

Redoing TBA, with this Bethe Ansatz as a starting point:

Z ,-orbifold

p| =

(€1€2;)

Staircase for D-series minimal models

{

1

_|_
v/ 1+ Y(0)

)

det ll — CA?_]

VN

det [1 _ G+]



 Bethe Ansatz counterpart
1. Allow particles to be also anti-periodic (twisted sector)

2. States with even number of particles

Staircase for D-series minimal models

Redoing TBA, with this Bethe Ansatz as a starting point:

Z ,-orbifold

p| =

(€1€2;)

i det|1-G_
_I_ A
VI+Y0) ] et [1 _ G+]

A-series

p| =

\1+
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Z , symmetry spontaneously broken



RG flow of p-function (D-series)

A-series
log|p| log|p]

R.L>>1 { 1 original staircase = Deep IR: unique vacuum

orbifolded staircase ~————p Deep IR: 2 vacua,
Z , symmetry spontaneously broken

* Along the D-series, p-function is monotonically decreasing.
*It increases in the deep IR in a symmetry breaking phase.
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Crosscap states in spin chains

» XXX SU(2) spin chain Hgy(p) D S8
j

* Mimic the definition in field theory: identify states on antipodal sites of the chain:

‘C»j = |1 >j ® |1 >j_|_% + | >j ® [ >j_|_%

~

(Llog?2)/2 -

no| =~

® Long-range entangled
‘ %) — ‘ C » - (As opposed to the short-range entangled
J .. )
in spin chain boundary state)
J=1
|b>>jN #|1 >j® 1 >j+1 +#][] >j® 1 >j+1 +#[1 >j® i >j+1
log2 =



Crosscap states in spin chains

» XXX SU(2) spin chain Hgy(p) D S8
j

* Mimic the definition in field theory: identify states on antipodal sites of the chain:

‘C»j = |1 >j ® |1 >j_|_% + | >j ® [ >j_|_%

/

site J

® Long-range entangled
‘ C » - (As opposed to the short-range entangled
J in spin chain boundary state)

| 6) =

.
|l no| =~
(—

* One can show: (T(u) _ T(—u)) 1 EY=0<0, ,,|6)=0
(00 many conserved charges)
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Crosscap states in spin chains

( | C»f ) ’ Bethe state
1 s

(€luy  [detGy

Vaaw | detG.

—

|'6) =

J

|
K (u,v) =—09, [log S(u,v) £ log S(u, — v)]
l
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(€lu)y  [detGy
A /<u|u> det G_
(A |u) det G,

Boundary overlap:

— (non-universal factor) x
( ) \ det G._




Conclusions

Studied crosscap states in integrable models: integrability is preserved

Exactly computed crosscap overlaps

Observed monotonically decrease of p-function under RG for A-series.

Generalized staircase to the D-series (also discussed in the paper:
generalization to fermionic integrable models)

In the D-series it also decreases, except in the deep IR in a symmetry
breaking phase, where the theory becomes massive.



Outlook

 Study further the behaviour of the p-function under RG: is there a p-
theorem under certain assumptions?

» Crosscap state as a initial state for a quantum quench?

* Generalize overlap formula to more general theories, such as theories
with bound states and theories with non-diagonal scatterings

* Setup in AdS/CFT realizing crosscap states



THANK YOU



