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Overview

— Algebras of currents and shuffle algebras

The trigonometric Feigin—Odesskii shuffle algebra

— Commuting family of differential operators and their eigensystem

R-matrices from shuffle algebras

Transfer matrices and the elliptic Feigin—-Odesskii shuffie algebra
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Let ¢(z) be a meromorphic function. Consider an algebra £~ = (e,,n € Z)

ez) = 7 "en, e(z)e(w)C(w/z) = e(w)e(2)C(z/w)

nez

Consider a map e, — x/:

en = O(x)), en = 7§ %x'{e(xl)

1
Write the product e, e,, using the above integral

dx1 de nom

enen = O(X])OGT) = xixye(x1)e(x2)

= 5 § LR ) + o)) ST

The integrand becomes a special kind of product of kernels x| and x'

el = X Cn /x) 4 Xx7C(xa /x1)
We call * the shuffle product. We have a map epe,, — x| * x|

1 % dx;dx (’C” *XIM)M

nm:O 1 " = J
e,e (] * 1) 3 o ) 1 G /)




o Generalize this to products of k operators ey, - - - €y, — X|! * -+ % x|¥
erln = O wee ity = & fdx A () el
Cny ol = ULY )= n R Rl
! X1 X [T, C(xi/x;)
where X' #x)? %o kX[ = Sym x]'x? - Xk | | C(xi/xp)

1<i<j<k



o Generalize this to products of k operators ey, - - - €y, — X|! * -+ % x|¥

: dxp - -dx we(xt) - e(x)
e en, = O % xx) = ?{7){”*.. Q) k)
ny . 1 1 kl X1 Xk 1 l 1—[1<] C(xr/ )
where X' #x)? %o kX[ = Sym x]'x? - Xk H C(xi/x)
1<i<j<k

e The next step is to take linear combinations:

. n s
F(xi,...,x) = g Cry oo X' % ek X

ny...ng

This produces a graded vector space of functions with properties determined
by (. Recover the corresponding element of £~ by applying O

dxi...dx e(x1)...e(xx)
R ()
k' X1 ... Xk ( ' k)l_[|§,-<_,-§k C(xi/xj)

and by construction we have O(F * G) = O(F)O(G).

£ 3 0(F) =



o Generalize this to products of k operators ey, - - - €y, — X|! * -+ % x|¥

1 dx;---dxg e(x1) - e(xx)

e en, = O x - x X :—%7x'l‘*---*x"k7

ny . ( 1 1 ) k! X1 Xk 1 1 H,‘<j<(xi/xj)
where X' #x)? %o kX[ = Sym x]'x? - Xk H C(xi/x7)

1<i<j<k

e The next step is to take linear combinations:

. n s
F(xi,...,x) = g Cry oo X' % ek X

ny...ng

This produces a graded vector space of functions with properties determined
by (. Recover the corresponding element of £~ by applying O

1 [dxi...dx e(x1)...e(xx)
== ¢ —Fx1,...,. ) =————F——
0l T w T )

and by construction we have O(F * G) = O(F)O(G).

£ 5 0(F):

Application of the idea: assume we found F(xi, ..., x) and G(xi, ..., x) s.t.:

[F(xi, ... %), G,y x)]ls =0 = [O(F),0(G)] =0



The trigonometric Feigin-Odesskii algebra' A~

e Fix the base field F = Q(q, ¢). Take the algebra

e(z)e(w)C(w/z) = e(w)e(z)C(z/w), ((x) =

! Feigin and Odesskii *97; FHHSY °09; Feigin and Tsymbaliuk *11; Schiffmann and Vasserot *13; Negut *12
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1
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The trigonometric Feigin-Odesskii algebra' A~

e Fix the base field F = Q(q, ¢). Take the algebra

(e (W)C(/2) = e(w)e(Z)C(</w), R e T

e The above construction gives rise to a graded algebra A~ which is generated by the

elements x| and has the product:

For F € A and G € A; the product F x G € A,

1 Xi

apSymE @ - 2 G ek, - Xier) I <«
ie{1,... .k}

JELkEL,. . k1)

(F * G)(xl, 50 xk+1)

e Examples:
Ay =F, A7 =F[x]

mon (X1 —x2) (g1 — tx2) N ( —x2) (tx1 — gx2) _
* e — g (0 —x) €A

! Feigin and Odesskii *97; FHHSY °09; Feigin and Tsymbaliuk *11; Schiffmann and Vasserot *13; Negut *12



Properties of the elements of A~

The elements of A, are rational functions of the from

FOers oo yxn) [Ty (i — ) "
F(xi,...,x,) = - fxi, .. x) € Clx 1,...xils”
o) = T gy O €€l ]

yvn

The elements of A~ satisfy the wheel condition

f(xlv- .. 7x'l) =0 if (x,‘,Xj,Xk) = (x, %x7 (]X) and (xi,x.hxk) = ()C, %x, ;X)

Recursive proof: assume F € A, and G € A, satisfy the wheel condition, write

U [y (xi — %) 8
ki H[;ﬁ (i — qx;) (xi — t7'x;)

XSymf(x1, ..., xk)8(Xkt1y - -y Xktt) H (i — qx) (6 — 17 ) (% — g7 )

. Xi — X
ie{l,...,k} ’
Je{k41,... k+1}

The second line is a symmetric Laurent polynomial satisfying the wheel condition
because so do f, g and the product.



The commutative subalgebra A°

o Consider a subalgebra A° C A~ of the elements F € A° for which
lm F(EX1, ...y EXry Xty o ooy Xn) = Hm F(Ex1y ..o, Xy Xrg1y e ooy Xn), Vr
£—0 £—o00

This condition says that the rational function F has degree 0.
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The commutative subalgebra A°

Consider a subalgebra A° C A~ of the elements F € A° for which
lm F(EX1, ...y EXry Xty o ooy Xn) = Hm F(Ex1y ..o, Xy Xrg1y e ooy Xn), Vr
£—0 £—o00

This condition says that the rational function F has degree 0.

Proposition [FHHSY]. The algebra (AO7 *) is commutative and the dimension of the
graded subspace A is equal to the number of partitions of 7.

Simple elements in A°:

(xi = px;) (xi — %)) -1 -1
E"(p): _ I forP:%f s q ¢
1@139 (xi — qx;) (xi — t7'x;)

Due to commutativity the products €;(p) * €;(p) can be ordered, therefore

EA([J):E)\l(p)*EAZ(]))*“‘*EA“)\)(D), AeP

give three bases.



Elements of A° as shuffle p-commutators

o Define the following element recursively:

1

Ki(p) =1, K,(p) = T (Ka—1(p) * x1 — px1 % Ku—1(p))

One can show that the denominator x; + - - - + x, cancels for any p, so K,(p) € A°.

2AG and P. Zinn-Justin’21
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1

Ki(p) =1, K,(p) = T (Ka—1(p) * x1 — px1 % Ku—1(p))

One can show that the denominator x; + - - - + x, cancels for any p, so K,(p) € A°.
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n>0
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Elements of A° as shuffle p-commutators

o Define the following element recursively:

1

Ki(p) =1, K,(p) = T (Ka—1(p) * x1 — px1 % Ku—1(p))

One can show that the denominator x; + - - - + x, cancels for any p, so K,(p) € A°.

o The solution can be written using a shuffle e.g.f. K(v;p) = > - V'K.(p)

1 (=Di=p P
=) ) [
lpeXp*<Z n lfq”v 1—p’

n>0

K(v;p) =

where P, = const K,,(1).

e Special cases of K,(p):

(xi — px;) (xi — x;) —1 -
K. (p) H i — o) (5 — 1) for p=gq,t” ,q 't
1<in T A !

for p=q ',t,qt”", pi#p#p

1
K, x det s
() oc dek, (xi = p1x;) (x; — paxi)

The Izergin determinants suggest a connection with lattice partition functions®.

2AG and P. Zinn-Justin’21



Heisenberg algebra and Fock space

Define the Heisenberg algebra H = {au, a—u }n>0

1 — gl
[am7 an] = 5m,7n mw
Note [an, am] = [a—n,a—m] = 0, myn > 0, so we have bases
ax =ay, - .. a)\go\) .

This algebra acts on the vector space F with the lowest vector | &)
an|@) =0, a—, |@) = higher states, n>0

The Fock space is spanned by |ax) = a_x |@) and the action of H is:

a—vlay) = lauu), ay lau) = zu |:ZE'I:§:| |au/y>

Analogously one defines the dual Fock space F* spanned by (ax |, then

(axlay) = 0x,p2x



Realization of £~ on the Fock space

e Recall the ring of symmetric functions Ar (use alphabet (y) = (y1,¥2,...)). It
is isomorphic to the Fock space. The Heisenberg algebra acts on Ar

1—-4¢ 0
a0, f0) € As

a—f(y) = prOf (), af(y)=r

where p.(y) = y] + 5 + ... is the power sum and f(y) = Z# cupu(y).

3Shiraishi 06
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Realization of £~ on the Fock space

e Recall the ring of symmetric functions Ar (use alphabet (y) = (y1,¥2,...)). It
is isomorphic to the Fock space. The Heisenberg algebra acts on Ar

1—-4¢ 0
a0, f0) € As

a—f(y) = prOf (), af(y)=r

where p.(y) = y] + 5 + ... is the power sum and f(y) = Z# cupu(y).

e The elements of £ act on Ar by vertex operators’

e(z) — n(z), n(z) := exp (— Z 1 ;tr t_ra,-z') exp (_ Z 1 ; lrayz_')

r r
o Define the normal ordering : a_xa, :=: a,a_y := a_xa,, then

i W) n(z>n(w)
in(n(w) = )

Proposition [FHHSY]. The following operators form a commutative set

7l dxl...dxk
_k! X1 ...Xk

O(F) F(xt,..ooxe) :m(xr) -« m(x) : Fe A}

3Shiraishi 06



Diagonalization of O(F)

e The identification of O(F) with Macdonald operators is based on*
~ 1 l_"(”’H)/Z ?{ “dx (xi — %)
E, = — ! () ()
n! ( —Lyn 1;[1 Xi 191;{97 (i — 7 1x))

This is the n-th Macdonald operator which is diagonalized by Macdonald
functions

E,PA(y) = en(x) i~ PA(Y)

4FHHSY’O‘)
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Diagonalization of O(F)

e The identification of O(F) with Macdonald operators is based on*

N —n(n+1)/2 " Xi Xi — Xj

: Xi -
i=1 1<i#j<n

This is the n-th Macdonald operator which is diagonalized by Macdonald
functions

E,PA(y) = en(x) i~ PA(Y)

e The identification reads
O(en(q)) = const E,

Proposition. Given F € A%, there exists an S € A, such that for any partition A

O(F)PA(Y) = S()|y=gris—iP2(¥)

Using this relation we are able to match known symmetrlc functions with shuffle
algebra elements.

4FHHSY’()‘)



Dual algebra £

o Let ((z) be the same function as before. Consider the algebra £ = (f,,n € Z)

@)= "h FRFW)C(z/w) = f(W)f (2)¢(w/z)

n€”Z

Perviously we had e(z)e(w)((w/z) = e(w)e(z)¢(z/w).
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Dual algebra £

o Let ((z) be the same function as before. Consider the algebra £ = (f,,n € Z)
f@) =" F@FW)C(z/w) = f(w)f (2)C(w/2)
n€Z

Perviously we had e(z)e(w)((w/z) = e(w)e(z)¢(z/w).
o Repeat the same logic as before with £ and find the algebra AT ~ A~.

o The operators of £1 act on A by vertex operators: f(z) — £(z)

£(2) := exp (Z 1 :tr (1q)~" 20—%’) exp (Z 1 ;t’. (t/q)” 2arz_’)

r=1 r=1

e The resulting commutative algebra O(F) gives dual Macdonald operators

= %%MF(X],...,X/{):f(xl)...g(xk):

X1 ... Xk

O(F)

The eigenvalues are the same as before but with ¢, — ¢~ ', 17",



Element R € £E-RET

e We can do something interesting with both £¥. Define Ry € £~ ®E™

Rew L 7{ A0 D) o) @) o f )

7](' X1 ... Xk
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Element R € £E-RET

e We can do something interesting with both £¥. Define Ry € £~ ®E™

Rew L 7{ A0 D) o) @) o f )

o k' X1 ... Xk
e The generating function of Ry can be written as a path ordered exponential

R() = 3" 4Ry = Pexp (u*‘ 7{ %e(x) ® f(x))

k>0
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Element R € £E-RET

e We can do something interesting with both £¥. Define Ry € £~ ®E™

Rew L 7{ A0 D) o) @) o f )

- k' X1 ... Xk
e The generating function of Ry can be written as a path ordered exponential
R(u) :== ZuikRk = Pexp (ufl j{ ge(x) ®f(x))
X
k>0
e Recall the action on Ag: (e(x),f(x)) — (n(x),£(x)). Let ¢ = (g/1)"/?, and

11—-¢, _
K :=exp - ! (cT"=Na,@a—, A e
rl—gq"
r>0 q
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Element R € £E-RET

e We can do something interesting with both £¥. Define Ry € £~ ®E™

Ry : l%me(m) coee(x) @ f(xr) .. f(x)

- k' X1 ... Xk
e The generating function of Ry can be written as a path ordered exponential
R(u) := ZuikRk = Pexp (ufl 7{ ge(x) ®f(x))
X
k>0
e Recall the action on Ag: (e(x),f(x)) — (n(x),£(x)). Let ¢ = (g/1)"/?, and

11—, _,
K :=exp - ! (cT"=Na,@a—, A e
rl—gq"
r>0 q

>The following operator satisfies the Yang—Baxter equation

R(u) = u "Rk = Pexp (u*l % %n(x) ® £(x)) ‘K

k>0

The functional dependence on u is completely determined by the eigenvalues of the
Macdonald operators -, -, u~"O(ex(q/1)).

5AG and A. Negut’21



The integrable model of R(u)

e The matrix R(x) is the R-matrix of the quantum toroidal algebra U, (gl ) with
the representation on the Fock space.
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The integrable model of R(u)

e The matrix R(x) is the R-matrix of the quantum toroidal algebra U, (gl ) with
the representation on the Fock space.

e The R-matrix R(u) defines a vertex model whose edge states are labelled by the
Young diagrams.

e The matrix R(u) contains the six vertex model R-matrix as a sub-matrix in the
limit ¢, # — 0 and ¢/1 fixed. The relevant edge labels are (), ). The
integrable model in this limit is related to the Heisenberg spin chain.

e The integrable model of R(u) generalizes the gKdV model studies by
Bazhanov, Lukyanov and Zamolodchikov and the Intermediate Long Wave
(ILW) equation of Litvinov.



Commuting operators from R(u)

e It is easy to compute the twisted trace of R(u). Define the transfer matrix
T(u) = Trz( 1®d) S T
n>0
The coefficients form a commuting set of operators
[T, Tn) =0

6FKSW’O7, FIM’17
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Commuting operators from R(u)

e It is easy to compute the twisted trace of R(u). Define the transfer matrix

T(u) = Trz( ‘®d) S T

n>0
The coefficients form a commuting set of operators
[Tm Tm] =0

e Set p = p(g/t)"/* and use explicit form of R(u)
T, = Tr (R,, Kﬁ1®d) ¢

The operators T}, are given explicitly by®

- Const?{ dx; - -dx, O3 (x;/xi)Op(q/1x; /xi) En)--- &

X o, Op(@ /%) (1 /x)

where ©,,(x) = (p;p)oc (¥ P) o (P/%; P) o

g(z) = - exp (Zi (GG )arzr>

6FKSW’07, FIM’17



Elliptic shuffle algebra

e The integral formulas for T, are of the same type as O(F) but with an elliptic
kernel. More precisely, start with the algebra:

0, (x)O,(g/tx)

e(@)e(w)C(w/2) = e(w)e(@)C(2/w), () = g e



Elliptic shuffle algebra

e The integral formulas for T, are of the same type as O(F) but with an elliptic
kernel. More precisely, start with the algebra:

e()e(w)C(w/2) = e(w)e()C(e/w), () = W

e Repeat the procedure as in the trigonometric case. This produces a
commutative subalgebra A°(p). Distinguished set of elements of .A°(p):

for s = (fl,t7 qfl

- 11 s O (xi/x1)Op (53 /xi)
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Elliptic shuffle algebra

The integral formulas for 7, are of the same type as O(F) but with an elliptic
kernel. More precisely, start with the algebra:

e()e(w)C(w/2) = e(w)e()C(e/w), () = W

Repeat the procedure as in the trigonometric case. This produces a
commutative subalgebra A°(p). Distinguished set of elements of .A°(p):

for s = (fl,t7 qfl

- 11 s O (xi/x1)Op (53 /xi)

_ )
AL & 8,0/
The commuting transfer matrices 7, correspond to the elements

dxp - dxk6 (pia/1) e(x1)---e(xx)

Olentpiaf) = g § e, L., CCals)

where e(x) acts by the dressed vertex operator £ ().



Summary

— Unlike the abstract elements of £, the shuffle algebra elements are explicit
rational functions which can be studied using specialization techniques.

— In the shuffle algebras setup it is easier to describe commutative subalgebras.
Mapping these subalgebras to £~ immediately produce integral formulas for
commuting sets of differential operators.

— Shuffle algebras can also be used to diagonalize the commuting operators.



Future directions

— Computation of non-local integrals of motion (Q-operators) using
representations of e(x) on plane partitions.

— Systematic study of the elliptic shuffle algebras.
— Higher rank analogues of shuffle algebras and their commutative subalgebras.

— BC-type shuffle algebras and their connection to coideal subalgebras for
quantum toroidal gl,.

— Bethe ansatz via shuffle algebras



