Emptiness formation in polytropic quantum liquids

Dimitri M. Gangardt,

In collaboration with

Hsiu-Chung Yeh Alex Kamenev

Large deviations - emptiness formation probability

$$P_{\text{EFP}}(R) = \int_{|x_i| > R} d^N x |\Psi_{\text{GS}}(x_1, x_2, \dots, x_N)|^2$$

Path integral

$$P_{\text{EFP}}(R) = \lim_{\beta \to \infty} \frac{1}{Z} \text{Tr} \left(e^{-\beta H} |2R\rangle \langle 2R| e^{-\beta H} \right)$$

Hydrodynamic description

$$R \gg \xi, \rho_0^{-1}$$

$$P_{\text{EFP}}(R) = \frac{1}{Z} \int \mathcal{D}[\rho, j] e^{-S[\rho, j]}$$

$$S[\rho, j] = \frac{\rho_0 R^2}{\xi} \int dt dx \left[\frac{j^2}{2\rho} + V(\rho) \right]$$

Eq. of state: pressure-density relation at $\,T=0\,$

$$P(\rho) = \rho \partial_{\rho} V(\rho) - V(\rho)$$

Optimal fluctuation – instanton of hydrodynamical fields

Abanov 2003

$$P_{\rm EFP}(R) \sim e^{-S_{\rm opt}}$$

Boundary is an astroid

$$x^{2/3} + \tau^{2/3} = R^{2/3}$$

$$S_{
m opt} = rac{\pi
ho_0^3}{2} imes R imes R/v_0 \gg 1$$
 rare events

 \sim area in space-time, # of missing particles

Courtesy of chabad.org

Previous results

- Random Matrices
- Spin chains
- Weakly interacting Bose gas

In all cases

$$S_{\rm opt} \sim \frac{\rho_0 R^2}{\xi}$$
 for $R \gg \xi, \rho_0^{-1}$

for
$$R \gg \xi, \rho_0^{-1}$$

This talk Polytropic Quantum Liquid $V(\rho) \sim \rho^{\gamma}$

$$V(\rho) \sim \rho^{\gamma}$$

$$S_{\text{opt}} = f(\gamma) \frac{\rho_0 R^2}{\xi}$$

known values

$$f(3) = \frac{\pi}{2}$$

free fermions, RMT

$$f(2) = 1.70(1)$$

weakly interacting bosons

Yeh&Kamenev 2202

Main Result

$$f(\gamma) = \frac{\pi \ 2^{\frac{\gamma - 5}{\gamma - 1}} \left[\Gamma\left(\frac{\gamma + 1}{\gamma - 1}\right)\right]^2}{\Gamma\left(\frac{3\gamma - 1}{2\gamma - 2}\right) \left[\Gamma\left(\frac{\gamma + 1}{2\gamma - 2}\right)\right]^3}$$

Looking for optimal solution

Hydrodynamical equations of motion in imaginary time

continuity
$$\partial_{\tau}\rho + \partial_{x}(\rho v) = 0$$

Euler
$$\partial_{\tau}v + v\partial_{x}v = \rho^{\gamma-2}\partial_{x}\rho$$

+ boundary conditions imposed in distant past and future

Riemann invariant
$$\lambda(x,\tau) = v + \mathrm{i} \frac{2}{\gamma-1} \rho^{\frac{\gamma-1}{2}}$$

Complex velocity
$$w(x,\tau) = v + \mathrm{i} \rho^{\frac{\gamma-1}{2}}$$

$$\partial_{\tau} \lambda + w(\lambda, \bar{\lambda}) \partial_{x} \lambda = 0$$
$$\partial_{\tau} \bar{\lambda} + \bar{w}(\lambda, \bar{\lambda}) \partial_{x} \bar{\lambda} = 0$$

coupled nonlinear equations

$$\gamma = 3$$

$$w = \lambda$$

Free fermions
$$\gamma=3$$
 $w=\lambda$ > Complex Burgers $\partial_{\tau}\lambda+\lambda\partial_{x}\lambda=0$

Hodograph Transform

$$\lambda(x,\tau), \bar{\lambda}(x,\tau) \longrightarrow x(\lambda,\bar{\lambda}), \tau(\lambda,\bar{\lambda})$$

$$\begin{split} \partial_{\bar{\lambda}} x - w(\lambda, \bar{\lambda}) \partial_{\bar{\lambda}} \tau &= 0 \\ \partial_{\lambda} x - \bar{w}(\lambda, \bar{\lambda}) \partial_{\lambda} \tau &= 0. \end{split}$$
 coupled *linear*

Free fermions $w=\lambda$ characteristics $x-\lambda \tau=\partial_\lambda \mathcal V$ solve the equations with $\mathcal V(\lambda,\bar\lambda)=F_0(\lambda)+G_0(\bar\lambda)$ $F_0(\lambda)=\overline{G_0(\bar\lambda)}=\sqrt{\lambda^2+1}$

found from an electrostatic (RH) problem corresponding to the emptiness boundary condition at au=0

Ballistic Ansatz for general γ

$$x - w\tau = \partial_{\lambda} \mathcal{V}$$
$$x - \bar{w}\tau = \partial_{\bar{\lambda}} \mathcal{V}$$

Consistency condition (Euler-Poisson eq)

$$\partial_{\lambda}\partial_{\overline{\lambda}}\mathcal{V} = \frac{n}{\lambda - \overline{\lambda}} \left(\partial_{\lambda}\mathcal{V} - \partial_{\overline{\lambda}}\mathcal{V}\right) \qquad \gamma = \frac{2n+3}{2n+1}$$

For n=0 - Laplace equation (free fermions)

For $\eta = \text{integer} > 0$ a closed form solution can be found (*Kamchatnov's book*)

Strategy: solve for infinite sequence of $\ \gamma$ corresponding to integer n and continue analytically for any value of γ

Solution for $n = 0, 1, 2, \dots$

$$\mathcal{V} = \frac{F_0(\lambda) + G_0(\bar{\lambda})}{(\lambda - \bar{\lambda})^n} + \sum_{m=1}^{n-1} a_m \frac{F_m(\lambda) + (-1)^m G_m(\bar{\lambda})}{(\lambda - \bar{\lambda})^{n+m}}$$

$$F_{m-1} = \partial_{\lambda} F_m \qquad G_{m-1} = \partial_{\bar{\lambda}} G_m$$

$$a_m = -\frac{(n+m-1)(n-m)}{m} a_{m-1} \qquad a_0 = 1$$

$$n = 0$$
 $\mathcal{V} = F_0(\lambda) + G_0(\bar{\lambda})$

$$n=1$$
 $\mathcal{V}=\frac{F_0(\lambda)+G_0(\lambda)}{\lambda-\bar{\lambda}}$

Boundary conditions in $(\lambda, \bar{\lambda})$ plane

$$(\lambda,\lambda)$$
 Pic

$$x - w\tau = \partial_{\lambda} \mathcal{V}$$

1. Particles accumulate avoiding emptiness region

$$\left. \partial_{\lambda} \mathcal{V} \right|_{|\lambda| \to \infty} = \pm 1$$

2. Density decays as
$$ho o 1 + 1/x^2$$
 for $x o \infty$

$$\partial_{\lambda} \mathcal{V}|_{\lambda \to i(2n+1)} \sim \frac{1}{\sqrt{\lambda^2 + (2n+1)^2}}$$

Branch points at $\,x=\pm 1\,$ for complex functions

$$\lambda(x, \tau = 0), \bar{\lambda}(x, \tau = 0)$$

Dynamic density profile

$$F_{n-1} = \frac{\lambda}{n!} \left[\lambda^2 + (2n+1)^2 \right]^{\frac{2n-1}{2}} \qquad G_{n-1} = (-1)^n \overline{F}_{n-1}$$

$$n = 0 \qquad \mathcal{V} = F_0 + G_0 \qquad F_0 = \overline{G_0(\bar{\lambda})} = \sqrt{\lambda^2 + 1}$$

$$n = 1 \qquad \mathcal{V} = \frac{F_0 + G_0}{\lambda - \bar{\lambda}} \qquad F_0 = -\overline{G_0(\bar{\lambda})} = \lambda \sqrt{\lambda^2 + 9}$$

$$n = 2 \mathcal{V} = \frac{F_0 + G_0}{(\lambda - \bar{\lambda})^2} - 2\frac{F_1 + G_1}{(\lambda - \bar{\lambda})^3} F_1 = \overline{G_1(\bar{\lambda})} = \frac{\lambda}{2}(\lambda^2 + 25)^{3/2} F_0 = \overline{G_0(\bar{\lambda})} = \partial_{\lambda} F_1$$

Solving $x-w au=\partial_\lambda \mathcal{V}$ for $\lambda, \bar{\lambda}$ and extracting $\rho(x, au)$

Inside Emptiness

$$\rho = 0 \quad \Rightarrow \quad \lambda = \bar{\lambda} = w = \bar{w} = v(x, \tau)$$

Ballistic evolution $x-v au=X_n(v)$

$$X_0(v) = \frac{v}{\sqrt{v^2 + 1}}$$

$$X_1(v) = \frac{3v}{\sqrt{v^2 + 9}} - \frac{v^3}{2(v^2 + 9)^{3/2}}$$

$$X_2(v) = \frac{15v}{8\sqrt{v^2 + 25}} - \frac{5v^3}{4(v^2 + 25)^{3/2}} + \frac{3v^5}{8(v^2 + 25)^{5/2}}$$

$$X_n(v) \sim 1 + \frac{1}{v^{2n+2}}$$
 as $v \to \infty$

Boundary of emptiness region (tangent method)

$$x - v\tau = X(v)$$

x-v au=X(v) defines a surface v(x, au)

The surface has folds when $- au=\partial_v X(v)$

Emptiness boundary $x(\tau)$ is Legendre Transform of X(v)

Higher singularities – *cusps* – appear when two folds coalesce

"A transparent torus is rarely seen. Let us consider a different transparent body - a bottle (preferably milk). In Fig. 5 two cusp points are visible. By moving the bottle a little we may satisfy ourselves that the cusp singularity is stable. So we have convincing experimental confirmation of Whitney's theorem.

Vladimir Arnold, "Catastrophe Theory"

Fig. 5

Universal behaviour near cusps

We have two types of cusps

Soft
$$v \to 0$$

$$(x,\tau) \to (0,\pm \tau_c)$$

$$x = (\tau - \tau_c)v - b_n v^3 \Rightarrow \tau - \tau_c \propto |x|^{2/3}$$

Hard
$$v \to \infty$$

$$(x,\tau) \rightarrow (\pm 1,0)$$

$$\tau = \frac{1}{v}(x-1) + \frac{c_n}{v^{2n+3}} \Rightarrow 1 - x \propto |\tau|^{\frac{2n+2}{2n+3}}$$

For free fermions: symmetry between soft and hard cusps

$$\begin{array}{c} x \to \tau \\ v \to 1/v \end{array}$$

Universal density profiles near emptiness boundary

$$\tau \neq 0$$
 $\rho \propto (x - x(\tau))^{1/(\gamma - 1)}, \quad x > x(\tau),$

– same as exponent predicted by Thomas-Fermi at au=0

$$\tau = 0$$
 $\rho \propto (x - x(0))^{-2/(\gamma + 1)}, \quad x > 1$

NB: Don't trust the polytropic law down to zero density: square root density profile near the boundary

Calculation of Emptiness Probability – Instanton action

From density asymptotics and correlation length

$$\rho(x,0) = 1 + \frac{\alpha}{x^2} + \mathcal{O}\left(\frac{1}{x^4}\right)$$

$$\frac{1}{\xi} = \rho_0^{1/(2n+1)}$$

$$\partial_{\rho_0} S_{\text{opt}} = \frac{\pi R^2}{\xi} \alpha$$

$$\alpha = \frac{1}{2(2n+1)} \left[\frac{(2n+1)!!}{2^n n!} \right]^2$$

is extracted from the divergence

$$x \sim \frac{(2n-1)!!}{n!} \frac{\lambda^{n+1}}{(\lambda - \bar{\lambda})^n \sqrt{\lambda^2 + (2n+1)^2}}$$

as
$$\lambda \to \mathrm{i}(2n+1)$$

Result for Polytropic Emptiness

$$S_{\text{opt}} = \frac{\rho_0 R^2}{\xi} f(n)$$

$$f(n) = \frac{\pi \Gamma^2 (2n+2)}{2^{4n+1} \Gamma(n+2) \Gamma^3 (n+1)}$$

The result can be analytically continued to any real $\, \mathcal{N} \,$

	$n = 0 \ (\gamma = 3)$	$n = 1 \; (\gamma = 5/3)$	$n = 2 \ (\gamma = 7/5)$
$f(\underline{n})$	1.56 ± 0.02	1.76 ± 0.02	1.85 ± 0.02
Eq. (52)	$\pi/2 \approx 1.571$	$9\pi/16 \approx 1.767$	$75\pi/128 \approx 1.841$

numerical estimate

$$f(\gamma) = \frac{\pi \ 2^{\frac{\gamma - 5}{\gamma - 1}} \left[\Gamma\left(\frac{\gamma + 1}{\gamma - 1}\right)\right]^2}{\Gamma\left(\frac{3\gamma - 1}{2\gamma - 2}\right) \left[\Gamma\left(\frac{\gamma + 1}{2\gamma - 2}\right)\right]^3}$$

Conclusions

- First calculation of EFP in polytropic quantum liquid as a function of polytropic index.
- Example of interacting system, beyond free fermionic models
- Universal features, including shape of Emptiness Boundary singularities

Outlook

- Calculation of subleading terms (logarithmic for both fermions and weakly interacting bosons)
- Statistical models with polytropic coarse grained e.o.s?
- Real time dynamics from au o it? Loschmidt echo, return probability
- Other physical models: magnetic impurities in SC

Fig. 5