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Introduction: Brownian motion, resetting, first passage etc.

Topics in this talk include:

> stochastic processes — specifically Brownian motion

> first-passage problems — [see eg A Guide to First-Passage Processes, Redner 2001]
> resetting of a stochastic process:

© restart at regular fixed times [textbook, see eg Ex. 22 in Grimmett & Stirzaker]
o restart at random times indep. of the process:

eg stochastic resetting with exp. dist. times admits optimal rate

[see Evans & Majumdar 2011, and review by Evans, Majumdar, Schehr 2020]
o restart at random times dep. on the process:

elementary/instantaneous return process [Feller 1953, Sherman 1957],
Brownian motion with rebirth [Grigorescu & Kang 2007]
first-passage resetting [de Bruyne, R-F, Redner 2020]

> path transformations — i.e. bijections between sets of sample paths



First-passage resetting



First-passage resetting in Brownian motion: semi-infinite geometry

A

L

0 AR
time

> Brownian particle starting at the origin, with diffusion constant D
> when it reaches L — instantaneously reset to the origin

> and so on — successive “first’-passage/reset times ti, ta, . ..

Pdf for n'" reset time? Pdf for position at t? Number of resets?
(recall that average time between two resets is infinite)



First-passage resetting in Brownian motion: pdf of the n'" reset

> Define: Fn(L,t) = pdf for the n*" reset to occur at time t.

> One has the renewal equation:

t
F"(L,t):/ dt' Fo_1(L,t') Fi(L,t—t'), n>1.
0

Convolution structure — Laplace transform:

Fll,) = [AL,s)]" = [eVo/P] = etV

_ nL —n? 12 /4Dt
PllbD= s

% pdf for n'" reset at t = pdf for 1% passage at nlL at t



First-passage resetting in Brownian motion: pdf for the position at t

P(x, t)dx = Prob (particle in [x, x 4+ dx] at time t)



First-passage resetting in Brownian motion: pdf for the position at t

> Introduce the propagator with absorption at L,
G(x,L,t) = [efxz/4Dt - e*(X72L)2/4Dt]/ 47Dk

> Then one has the forward renewal equation:

t
P(x,t) = G(x, L, t) + Z/ dt' Fo(L,t') G(x, L, t—t'),
0

n>1

> or equivalently the backward renewal equation:

t
P(x,t) = G(x, L, 1) +/ dt’ Fi(L, t")P(x,t —t').
0



First-passage resetting in Brownian motion: pdf for the position at t

Again, convolution structure — Laplace transform:

~ =yl —ly=2y|
= € — €
P(y,s) G(Yv.yL:s) _ 1 |: }

= — = 9

1—F(y,s) 4Ds l—en

with reduced variables y = xy/s/D and y; = Ly/s/D.

0<y<y ie0<x<L
y <0 ie.x<0

2 distinct cases —



First-passage resetting in Brownian motion: pdf for the position at t

Computing P(x,t) —when 0 < x<Lie. 0<y<y

ﬁ(y7s) = \/:ﬁ [efy _ e*(znyy)] Z G BR = \/:ﬁ Z {e—(ernyL) o ef[(n+2)yL7y]:| ’

n>0 n>0
from which
1 —(x+nL)2 /4Dt —[x—(n+2)L]? /4Dt
P(x,t) = [e(+)/ — e ]
G ) V4r Dt ;
In the long-time limit, t > 1
1 L—x
P(x,t) ~
() Dt L

% balance between diffusive flux exiting at x = L and re-injected at x = 0.



First-passage resetting in Brownian motion: pdf for the position at t

Computing P(x,t) —when x < 0 i.e. y <0

= 1 ey—ey’QyL} 1 -
P(y,s) = — [eere(y n)] ,
(v ) 4Ds { 1—e V4Ds
from which
1 2 2
P(x, t) = [e—x /4Dt | o=(x=1) /4Dt]
() Var Dt

% i.e. superposition of paths from 0 and paths from L... Interpretation?



First-passage resetting in Brownian motion: pdf for the position at t

Computing P(x,t) —when x < 0 i.e. y <0

= 1 ey—ey’zﬂ} 1 _
P(y,s) = _ [ey+e(y yL)]7
(v ) 4Ds { 1—e V4Ds
from which
1 2 2
P(x, t) = [e—x /4Dt | o=(x=1) /4Dt]
G, ) Va4r Dt

% i.e. superposition of paths from 0 and paths from L — easy with path transformation



First-passage resetting in Brownian

motion: pdf for the position at ¢




First-passage resetting in Brownian motion: number of resets

> Define: Qn(L,t) = Prob(exactly n resets occur up to time t).

> Backward renewal equation for the average number of resets N(t):
t
N(t) = / dt’ Fu(L, £ )1+ N(t—t)).
0

> Laplace transforming:

o Fi(L,s) _ et
M) = s[L—F(Ls)] s(l—en)

[ 4Dt




Optimization in first-passage resetting



First-passage resetting in Brownian motion: optimization

Consider now:

> x(t) models the operating point of a system;

> x(t) > 0 and if x(t) = L the system breaks down, incurring a cost C;

> control mechanism modelled by a drift v.

And seek to maximize:

F= Jim % [1/0 (x(t)) dt — CN(T)|.



First-passage resetting in Brownian motion: optimization

Convection diffusion equation for the pdf P(x, t):
OtP 4+ vOxP = DOwP + 6(x)(—DOxP + vP)|x=L ,
subject to the initial and boundary conditions

(DOP — vP)|x=0 = 4(t),
P(L,t) = P(x,0)=0.

It admits a steady-state solution,
1 1 — e—ZPe(L—x)/L

~ = x ,
L~ 1 — Pe~!e—Pe sinh (Pe)

P(x)

where Pe = vL/2D is the Péclet number.



First-passage resetting in Brownian motion: optimization

From the steady-state solution, one obtains the normalized first moment:

L L

L 2Pe? — 2Pe +1) 2™ -1
(x) 1/><P(x)dx:( c et l) e
o 2Pe[(2Pe — 1) e2Pe 4 1]

Again with a backward equation, one also obtains the average number of breakdowns:

- 4Pe? T
T 2Pe—1+4e 2P [2/D°

N(T)

Hence:

2Pe* —2Pe +1) &*° — 1 4Pe? C
2Pe[(2Pe —1)e2Pe + 1]  2Pe —1+4e-2Pe [2/D’

}':(

with Pe = vL/2D the Péclet number.



First-passage resetting in Brownian motion: optimization

C’"=0.01

0.3 | s
K,
0.2 | s
¢’ =0.05
C'=0.1
01 | | |

-10 -5 0 5 10

Pe

Objective function F in terms of Péclet number Pe = v L /2D
for different values of normalized cost C’' = C /(L?/D).



First-passage resetting in Brownian motion: variations

Variations include:

v

delay for “repairs” after breakdown [de Bruyne, R-F, Redner 2020, 2021a]

v

boundary recession [de Bruyne, R-F, Redner 2021a, 2022]

v

higher-dimensional cases [Sherman 1957, de Bruyne, R-F, Redner 2021a]
> reset at random point [Feller 1953, Sherman 1957, Grigorescu, Kang 2007]

> multi-particle resetting [de Bruyne, R-F, Redner 2021b]



Multi-particle first-passage resetting




Multi-particle first-passage resetting

> multi-particle resetting: eg two “altruistic” particles




Multi-particle first-passage resetting

> Compare “altruistic” vs “individualistic” systems — eg for N = 2 agents

Use order statistics + X,(t) = M follows a BM with diff. cst Dy = D/2

1.016 O altruists (data) | [ altruist ~ eeeer 1°* individualist
Py altruists (theory) total altruists ===-- 274 individualist
:w 15t individualis.t 2 total individualists

I — ond ipdividualis =
0.5 2™¢ individualist 5
E |\ tSesagem 11
x|\ TSCocoscessaem
0.0 i - - 3 01, EEPPPPTITIPPPPPIPY - : .
0.0 2.5 5.0 7.5 10.0 0 1 3 4
t t

(a) Survival probability (b) Median “wealth” of agents




Multi-particle first-passage resetting

> Compare “altruistic” vs “individualistic” systems — eg for N = 16 agents
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(a) Survival probability

Use order statistics + X5(t) = M follows a BM with diff. cst Dy = D/N
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(b) Median “wealth” of agents




A first-passage problem
for the Brownian supremum




A (toy) foraging problem (by P. Krapivsky)

Position

Mho)
L t

Time

> “forager” on a line — Brownian walker with position B(t)
> one unit of “food” per unit length, no food replenishment
> “metabolism”: walker stockpiles, needs one unit of food per unit time

> survival probability?



One-sided version

Position

Ay

Py

Time

> “forager” on a line — Brownian walker with position B(t)
> one unit of “food” per unit length, no food replenishment

> “metabolism”: walker needs one unit of food per unit time

> food on > 0 side only



One-sided version: a hitting-time problem for the supremum

Position

m

Time
Letting
M(s) = sup B(7)

0<7<s

Survival probability is:
P(t) = Prob (M(s) > s, Vs < t)



A hitting-time problem for the supremum

Survival probability P(t) = Prob (M(s) > s, Vs < t)
1

(1) = — 3 P(1)

Probability density function (pdf) of extinction time
[

Pdf of first hitting time for M(s) on the diagonal, iQE{M(S) —s=0}



Idea: look at paths with M(t) =t

Path going extinct at t = M(t) =t, but...



Idea: look at paths with M(t) =t

Path going extinct at t = M(t) =t, but...

M(t) = t + path going extinct at t



Idea: look at paths with M(t) =t

Path going extinct at t = M(t) =t, but...
M(t) = t + path going extinct at t

because path could have gone extinct before.

SR “

Time

Position




Idea: look at paths with M(t) =t

Path going extinct at t = M(t) =t, but...
M(t) = t + path going extinct at t

because path could have gone extinct before.

paths with M(t)=t

f(t) = pdf(M(t)=t) - g(t)

paths with M(t)=t
and

M(s)=s for some s<t



Idea: look at paths with M(t) =t

Path going extinct at t = M(t) =t, but...
M(t) = t + path going extinct at t

because path could have gone extinct before.

paths with M(t)=t

(1) = ﬁexp(-;) - ()

paths with M(t)=t

and

M(s)=s for some s<t



A path transformation (1)

Given a path with M(t) =t

and M(s) = s for some s < t, define:
> hitting time of M(s) = s:

7o = inf{r > 0, B(r) = M(s) i.e. B(r) = s}
> first time level s is hit after 7p:

0 =inf{r > 710, B(r) > M(s) i.e. B(r) > s}

v

LA WA

I3



A path transformation (1)

Given a path with M(t) =t

and M(s) = s for some s < t, define:
> hitting time of M(s) = s:

7o = inf{r > 0, B(r) = M(s) i.e. B(r) = s}
> first time level s is hit after 7p:

0 =inf{r > 710, B(r) > M(s) i.e. B(r) > s}

Then

v

LA WA

> Note: path between 7o and § is a (downward) excursion

I3



A path transformation (1)

Given a path with M(t) =t

and M(s) = s for some s < t, define: :

7o = inf{r > 0, B(r) = M(s) i.e. B(r) = s} . fy MA m MJ

> hitting time of M(s) = s:

" '\\W W 6
> first time level s is hit after 7p:

0 =inf{r > 710, B(r) > M(s) i.e. B(r) > s}

I3

Then

> Note: path between 7o and § is a (downward) excursion

> Idea : extract this excursion & use it to hit a new global maximum > t



A path transformation (1)

A

W W W"rosﬁn

> Define hitting time of the global maximum,

T. = inf {r > 0, B(r) = M(t) i.e. B(r) =t}

P



A path transformation (1)

Q63

> extract excursion & bring “forward” (to 7o) the [d, 7.] part
> insert then the excursion transformed into an (upward) first passage bridge
> insert the final, post-7. part shifted upward as needed



A path transformation (1)

B

> extract excursion & bring “forward” (to 7o) the [d, 7] part
> insert then the excursion transformed into an (upward) first passage bridge
> insert the final, post-7. part shifted upward as needed

% obtain a path with global maximum > t



A path transformation (2)

M(t)
[M(t)+t]/2
t

W Ty Tp Tx

Start with a Brownian path having M(t) > t, and set:
71 =inf{s >0,B(s) =t}, 7. =inf{s>0,B(s)=M(t)},
and 72 =inf {s > 0, B(s) = [M(t) + t] /2}.



A path transformation (2)

M(t)
[M(t)+t]/2
t

WA P

o

T v
W w W Tp To Tx

Note that B(0) —0=0and B(r1) — 71 =t — 71 > 72 — 71, SO

J710 €0, 71 s.t. 7o =inf{s >0,B(s) —s=12 —71}.



A path transformation (2)

M(t)
[M(t)+t]/2
t
To+T2-T1

Note that B(0) —0=0and B(11) =1 =t— 71 > T2 — 71, SO

J710 €0, 71 s.t. 7o =inf{s >0,B(s) —s=12 —71}.



A path transformation (2)

M(t)

[M(t)+t]/2
t
To+To-T1

T

o

Tk .
T
V w W T01 Ty Tx

P

Decompose the Brownian path as follows:

> take the 7 to 7. part out,

> form an excursion of duration 7. — 71 with subpath [, 7.]
> insert excursion (downward) at time 7o

> append then the [7o, 71] part and the post-7. part



A path transformation (2)

t
To+T2-T1

% obtain a path with M(t) = ¢, “dying” (for sure) at time s = 70 + 72 — 1.



PDF of extinction time in the one-sided case

Recall:

paths with M(t)=t

(1) = ﬁexp(;) - ()

paths with M(t)=t

and

M(s)=s for some s<t



PDF of extinction time in the one-sided case

Now:

paths with M(t)=t

(1) = \/Zexp(;) - &

paths with M(t)>t




PDF of extinction time in the one-sided case

That is,



PDF of extinction time in the one-sided case

Finally:

f(t) = \/Zexp(;> _ erfo <\/§>



PDF of extinction time in the one-sided case

Finally:

Two other approaches:

> look at the reciprocal process of M(s) — s

— this is a spectrally positive Lévy process

> show that the first passage time of M(t) —t
is distributed like the sojourn time above 0 of the process B(t) —t

Lo fifrer

R.A. Doney Hitting pr for sp lly positive Lévy pr Journal of the LMS, 2(3):566-576 (1991)

J-P Imhof On the time spent above a level by Brownian motion with negative drift Adv. in Appl. Prob., 18(4):1017-1018 (1986)



A first-passage problem
for the Brownian range




Two-sided version: Brownian range

> “forager” on a line — Brownian walker with position B(t)
> one unit of “food” per unit length, no food replenishment
> “metabolism”: walker needs one unit of food per unit time

> food on both sides

Letting
R(s) = sup B(7)— |nf B(7)

0<r<s <7<s

Survival probability is now:

P(t) = Prob(R(s) > s, Vs < t)



Two-sided version: a hitting-time problem for the range

Position

Time

Letting
R(s) = sup B(7)— |nf B(7)

0<7r<s <7<s

Survival probability is now:

P(t) = Prob (R(s) > s, Vs < t)



Two-sided version: a hitting-time problem for the range

Position

Time

Letting
R(s) = sup B(7)— |nf B(7)

0<7r<s <7<s

Survival probability is now:

P(t) = Prob (R(s) > s, Vs < t)



Idea: look at paths with R(t) =t

Path going extinct at t = R(t) =t, but...

R(t) = t # path going extinct at t

because path could have gone extinct before.

paths with R(t)=t

f(t) = pdf(R(t)=1t) - g(1)

paths with R(t)=t
and

R(s)=s for some s<t



Idea: look at paths with R(t) =t

Path going extinct at t = R(t) =t, but...
R(t) = t # path going extinct at t

because path could have gone extinct before.

paths with R(t)=t

W. Feller, Ann. Math. Statist. 22, 427 (1951)

o0

N 1) )

f(t) =

N
;
~

Siil
paths with R(t)=t
and

R(s)=s for some s<t

— ongoing work with P. Salminen, P. Vallois & P. Krapivsky



Many thanks for the invitation and for your attention!
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