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Interlacing partitions and the Aztec diamond
Interacting k-tilings of the Aztec diamond

Outline

1 Review interlacing partitions (see Sylvie’s talk)

2 Use them to construct domino tilings of the Aztec diamond

3 Describe a vertex model formulation of the model, use it to
compute the partition fucntion

4 Introduce a interacting k-tilings of the Aztec diamond

5 Relate them to a coupling of k 5-vertex models related to the
coinversion LLT polynomials

6 State/prove some combinatorial results

This is joint work with Sylvie Corteel and Andrew Gitlin
(arXiv:2202.06020 [math.CO]).
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Part 1: Interlacing partitions and the Aztec
diamond
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Partitions

Integer partition: λ = (λ1, λ2, . . . , λm), with λ1 ≥ λ2 ≥ . . . ≥ λm
Size of the partition: |λ| =

∑
λi

2

2

3

λ = (3, 2, 2), |λ| = 7

Conjugate partition: ‘swap columns and rows.’

1

3

3

λ′ = (3, 1, 1), |λ′| = 7
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Interlacing conditions

We say that two partitions interlace and write µ � λ if
λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . ..

(2, 2) � (3, 2, 2)

We say they co-interlace and write µ �′ λ if µ′ � λ′.

(2, 2) �′ (3, 3, 1)
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Maya diagrams

Maya diagram of a partition:

λ = ∅ λ = (4, 3, 2, 2, 1)

◦

•

◦

•
•

◦

•

◦• ◦ ◦

•
•

◦•◦•
•◦•◦•◦ ◦

•
•

. . . • • • • • • • | ◦ ◦ ◦ ◦ ◦ ◦ . . . . . . • • ◦ • ◦ • • | ◦ • ◦ • ◦ ◦ . . .

In red, we have indicated the center of the diagram.
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Domino tilings of the Aztec diamond

Domino tilings of the Aztec diamond were first introduced by
Elkies, Kuperberg, Larsen, and Propp in 1992.

The Aztec diamond of rank m = 3 and one possible domino tiling.
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Domino tilings of the Aztec Diamond
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Domino tilings and sequences of partitions

Assign ‘particles’ and ‘holes’ to our dominos according to the rules

, , ,

9 / 60



Interlacing partitions and the Aztec diamond
Interacting k-tilings of the Aztec diamond

Domino tilings and sequences of partitions

Assign ‘particles’ and ‘holes’ to our dominos according to the rules

, , ,

We think of each diagonal slice as having a string of particles
corresponding to the Maya diagram of a partition.
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Domino tilings and sequences of partitions

Specifying a domino tiling is equivalent to specifying a sequence

∅ = µ0 �′ λ1 � µ1 �′ . . . �′ λm � µm = ∅
of 2m + 1 interlacing partitions. For example:

µ0
λ1

µ1
λ2

µ2
λ3

µ3

We have the sequence

∅ �′ ∅ � ∅ �′ ∅ � ∅ �′ ∅ � ∅
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Domino tilings and sequences of partitions

Specifying a domino tiling is equivalent to specifying a sequence

∅ = µ0 �′ λ1 � µ1 �′ . . . �′ λm � µm = ∅
of 2m + 1 interlacing partitions. For example:

µ0
λ1

µ1
λ2

µ2
λ3

µ3

We have the sequence

∅ �′ (1, 1) � (1, 1) �′ (2, 1) � (1) �′ (2) � ∅
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Domino tilings of the Aztec diamond

Let’s add weights to the dominos according to the rules

A domino of the form whose top square is on slice 2i − 1

gets a weight of xi .
A domino of the form whose bottom square is on slice

2i − 1 gets a weight of yi .
All other dominos get a weight of 1.
We want to compute the partition function ZAD(Xm,Ym).

0

1

2

3

4

5

6

x2

y3 weight: x2
1x2x3y

2
2 y

2
3
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Domino tilings and sequences of partitions

In terms of partitions, the degree of xi in the weight is given by
|λi/µi−1|, and for yi it is given by |λi/µi |.

µ0
λ1

µ1
λ2

µ2
λ3

µ3

The sequence

∅ �′ (1, 1) � (1, 1) �′ (2, 1) � (1) �′ (2) � ∅

has weight

x
|(1,1)/(0,0)|
1 y

|(1,1)/(1,1)|
1 x

|(2,1)/(1,1)|
2 y

|(2,1)/(1)|
2 x

|(2)/(1)|
3 y

|(2)/(0)|
3 = x2

1x2x3y
2
2 y

2
3
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Domino tilings and Schur polynomials

Recall the Schur polynomials of shape λ/µ is given by

sλ/µ(x1, . . . , xn) =
∑

T∈SSYT(λ/µ)

xT .

When we only have a single variable this simplifies to

sλ/µ(x1) =

{
x
|λ/µ|
1 , if µ � λ

0, o.w.

So given

∅ = µ0 �′ λ1 � µ1 �′ . . . �′ λm � µm = ∅

we can write it’s weight as

s(λ1/µ0)′(x1)sλ1/µ1(y1) . . . s(λm−1/µm)′(xm)sλm/µm(ym)

Tilings of the Aztec diamond are an example of a Schur process.
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A vertex model formulation

We’ll give one more formulation in terms of lattice paths.

1 An example of the kind of path configurations we will

consider:

x1

y1

x2

y2

x3

y3

2 We will identify the configurations of the paths along a
horizontal slice with the Maya diagram of a partition.

3 The different color faces represent different choices of weights,
which will impose different interlacing requirements on these
partitions.

4 Yang-Baxter integrability will allow us to compute the
partition function.
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A vertex model formulation

We need two different five vertex models. First consider the
5-vertex model:

1 1 x 1 x

µ = (2, 0, 0)

λ = (3, 1, 1)
x

x

x |λ/µ|, µ �′ λ
Note:
The boundary conditions are indexed by co-interlacing partitions,
and they uniquely determine the paths.
The weight agrees with the weight we assigned to co-interlacing
partitions previously.
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Now consider a different 5-vertex model:

y 1 1 y y

µ = (1, 1, 0)

λ = (3, 1, 1)

x

x

y (# of paths−1)y |λ/µ|, λ � µ

Note:
The boundary conditions are indexed by interlacing partitions, and
they uniquely determine the paths.
The weight agrees with the weight we assigned to interlacing
partitions previously (up to an overall factor).
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A vertex model formulation

We have a bijection between

paths on

x1

y1

...

...

xm

ym

←− m −→

and tilings of

given by looking at the sequence of interlacing partitions.
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A vertex model formulation

∅ �′ (1, 1) � (1, 1) �′ (2, 1) � (1) �′ (2) � ∅

Tiling:

µ0
λ1

µ1
λ2

µ2
λ3

µ3

with weight x2
1x2x3y

2
2 y3

On the other hand, the partitions at each row

x1

y1

x2

y2

x3

y3

x

x

x

x

x

x

x

determine the paths

x1

y1

x2

y2

x3

y3

and weight: (y2
1 y2)x2

1x2x3y
2
2 y3. The weights agree (up to an

overall factor).
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A vertex model formulation: the Yang-Baxter Equation

These vertex models satisfy the Yang-Baxter equation (YBE). We
have

∑
interior paths

w


y

xJ1

I1

K1

I3

J3

K3

 =
∑

interior paths

w


x

yJ1

I1

K1

J3

I3

K3


for any choice of boundary condition I1, J1,K1, I3, J3,K3. Here

1
1+xy

xy
1+xy

1
1+xy

xy
1+xy 1
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A vertex model formulation: the Yang-Baxter Equation

For example:

w

 y

x

+ w

 y

x

 = w

 y

x


(

xy

1 + xy

)
y +

(
1

1 + xy

)
y = y
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A vertex model formulation: the Yang-Baxter Equation

We can use this to swap rows! By repeatedly using the YBE we
have

w


µ

λ

y

x


= w


µ

λ

y

x


Then removing the yellow faces (but keeping the weight) gives

w


µ

λ

y

x


= w


µ

λ

y

x


(

1
1+xy

)

It turns out this makes the partition function of the vertex model
simple to compute.
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A vertex model formulation: the partition function

Using the YBE we have

ȳ1

...

ȳm

x1

...

xm

←− m −→

=

ȳ1

...

...

xm

←− m −→

ȳm

x1

=

y1

...

ym

x1

...

xm

←− m −→

=

y1

...

ym

x1

...

xm

←− m −→

×(1 + x1ym)−1

Now repeated applications of the YBE gives

x1

y1

...

...

xm

ym

←− m −→

=

y1

...

ym

x1

...

xm

←− m −→

×
∏
i≤j

(1 + xiyj)
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A vertex model formulation: the partition function

x1

y1

...

...

xm

ym

←− m −→

=

y1

...

ym

x1

...

xm

←− m −→

×
∏

i≤j(1 + xiyj) = (ym−1
1 ym−2

2 . . . y0
m)︸ ︷︷ ︸

overall factor

∏
i≤j(1 + xiyj)

It follows that the partition function for the Aztec diamond
ZAD(Xm,Ym) is given by

ZAD(Xm,Ym) =
∏
i≤j

(1 + xiyj).

With uniform weights we recover: # of tilings = 2(m+1
2 ).
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Summary so far:

1 We showed there is a bijection between tilings of the Aztec
diamond and sequences of interlacing partitions.

2 We further showed there was a bijection between the
sequences of partitions and a certain vertex model.

3 In the vertex model formalism we could use the YBE to
compute the partition function.

µ0
λ1

µ1
λ2

µ2
λ3

µ3

↔ ∅�′ (1, 1) � (1, 1) �′ (2, 1) � (1) �′ (2) � ∅ ↔

x1

y1

x2

y2

x3

y3
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Part 2: Interacting k-tilings of the Aztec diamond
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k-tilings

tiling→ k-tiling

sequence of interlacing partitions→ sequence of k-tuples of interlacing partitions

5-vertex model→ k superimposed copies of the 5-vertex model

µ0 = (∅, ∅, ∅)
λ1 = ((1, 1), (1, 1, 1), (1))

µ1 = ((1, 1), (1, 1), ∅)
λ2 = ((2, 1), (1, 1), (1))

µ2 = ((1), (1), ∅)
λ3 = ((2), (1), ∅)
µ3 = (∅, ∅, ∅)

T1 T2 T3

We’ll refer to the tilings a being different colors. We order the
colors.
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Weights of the k-tiling

Assign weights to the dominos according to the rules

A domino of the form whose top square is on slice 2i − 1

gets a weight of xi .

A domino of the form whose bottom square is on slice

2i − 1 gets a weight of yi .

All other dominos get a weight of 1.

for each color.
For every pair of colors a < b, each ‘interaction’ gives a power of t
where we define ‘interaction’ according to the rule

, , , or .

where here blue < red.
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k-tilings

For example,

 , , , or .


λ0 = (∅, ∅, ∅)
λ1 = ((1, 1), (1, 1, 1), (1))

λ2 = ((1, 1), (1, 1), ∅)
λ3 = ((2, 1), (1, 1), (1))

λ4 = ((1), (1), ∅)
λ5 = ((2), (1), ∅)
λ6 = (∅, ∅, ∅)

T1 T2 T3

which has weight x2
1x2y

2
2 x3y

2
3 x

3
1y1y2y3x1y1x2y2 t4︸︷︷︸

b−r

t3︸︷︷︸
b−g

t4︸︷︷︸
r−g

.
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Aside: LLT polynomials

Recall that for a single tiling the weight was given by

s(λ1/µ0)′(x1)sλ1/µ1(y1) . . . s(λm−1/µm)′(xm)sλm/µm(ym).

For the k-tiling the weight can be written as

t#L(λ1/µ0)′(x1; t−1)Lλ1/µ1(y1; t) . . .L(λm−1/µm)′(xm; t−1)Lλm/µm (ym; t)

where Lλ(x1; t) is the coinversion LLT polynomial.
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Simulations

Simulation of a 2-tiling of the rank-64 Aztec diamond at t = 1.
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Simulations

Simulation of a 2-tiling of the rank-256 Aztec diamond at t = 1.
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Simulations

Simulation of a 2-tiling of the rank-256 Aztec diamond at t = 0.2.
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Simulations

Simulation of a 2-tiling of the rank-256 Aztec diamond at t = 5.
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Simulations

Close-up of southern corner of blue in a 2-tiling of the rank-512
Aztec diamond at t = 5.
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Simulations

Close-up of southern corner of blue in a 3-tiling of the rank-512
Aztec diamond at t = 5.
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Simulations

Simulation of a 2-tiling of the rank-256 Aztec diamond at t ≈ 0.
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Vertex model formulation

Now we’d like to take k copies of our vertex model, superimpose
them, and add an interaction weight that agrees with our domino
weights.
Constraint: Still need the YBE to hold.
Our vertex weights are a degeneration of those of Aggarwal,
Borodin, and Wheeler where the weights come from an R-matrix
of Uq(ŝl(2|k)). We inherit the YBE from them.
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The purple weights

We need to generalize our purple weights. Recall the weights for
one color are

j l

k

i

: 0 0

1

1

1 0

1

0

1 1

1

1

0 0

0

0

0 1

0

1

L
(1)
x (i , j , k, l): 1 1 x 1 x

and the weights for k colors are

J L

K

I

, L
(k)
x (I , J ,K ,L) =

k∏
i=1

L
(1)

xtδ
′
a
(Ii , Ji ,Ki , Li )

where δ′a = # colors greater than a that are vertical.
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The purple weights

0 0

1

1

1 0

1

0

1 1

1

1

0 0

0

0

0 1

0

1
1 1 xtδ

′
a 1 xtδ

′
a

δ′a = # colors greater than a that are vertical,

λ = ((3, 1, 1), (2, 2, 0))

µ = ((2, 0, 0), (2, 1, 0))

x

x

x3xt2

Here blue is a smaller color than red. In general,

x |λ/µ|t
∑

a δ
′
a , µ �′ λ

where λ =
∑

a |λ| and µ �′ λ means µ(a) �′ λ(a) for each
a = 1, . . . , k .
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The gray weights

We need to generalize the gray faces. The weight at a face is the
product of the weight for each color and the weight for color a is

Type 1 Type 2 Type 3 Type 4 Type 5

0 0

0

0

0 1

0

1

1 1

0

0

0 0

1

1

1 0

1

0
ytαa+βa tβa tβa ytαa+βa ytαa+βa

where

αa = # colors greater than a of Type 1,

βa = # colors greater than a of Type 4 or 5.
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The gray weights

λ = ((1, 1), (1, 1))

µ = ((3, 1, 1), (2, 1, 0))

x

x

(y4t2)y3yt

Here blue is a smaller color than red. In general,

yk(# of paths−1)t(k2)(# of paths−1)y |µ/λ|t
∑

a αa , µ � λ,

where λ =
∑

a |λ| and µ � λ means µ(a) � λ(a) for each
a = 1, . . . , k .
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With these choices of vertex weight, the YBE still holds.

∑
interior paths

w


y

xJ1

I1

K1

I3

J3

K3

 =
∑

interior paths

w


x

yJ1

I1

K1

J3

I3

K3


for any choice of boundary condition I1, J1,K1, I3, J3,K3. Here the
contribution from color a is given by

1
1+xytδa

xytδa

1+xytδa
1

1+xytδa
xytδa

1+xytδa
1

where δa = # colors larger than a that are present. (The total
weight at the face is product over all the colors.)
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Theorem (Corteel, Gitlin, and K. (2022))

The partition function of the lattice

x1

y1

...

...

xm

ym

←− m −→

with k colors is equal to (ym−1
1 ym−2

2 . . . ym−mm )kt(m2)(k2) times the
partition function of the k-tiling of the Aztec diamond of rank m.
In particular, we have

Z
(k)
AD (Xm;Ym; t) =

k−1∏
`=0

∏
i≤j

(
1 + xiyj t

`
)
.
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Proof of the theorem

The proof works just as in the one color case.

1 There is a bijection between k-tilings and k-color path
configurations going through interlacing sequences of tuples of
partitions.

2 From the vertex model formulation, the partition function is
easy to compute by using the YBE to rearrange the rows of

y1

...

ym

x1

...

xm

←− m −→
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Some special values of t

Z
(k)
AD (Xm;Ym; t) =

k−1∏
`=0

∏
i≤j

(
1 + xiyj t

`
)
.

Clearly, when t = 1 we have

Z
(k)
AD (Xm;Ym; 1) = (ZAD(Xm,Ym))k

that is, we have k independent tilings.
At t = 0 we have

Z
(k)
AD (Xm;Ym; 0) =

k−1∏
`=0

∏
i≤j

(
1 + xiyj t

`
)
|t=0

=
∏
i≤j

(1 + xiyj) = ZAD(Xm,Ym)

We’ll give a bijective proof of this. It turns out this is easiest to see
in terms of Schröder paths.
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Schröder paths

For each color, we can assign paths to the dominos according to
the following rules:

, , ,

For rank-2 we have

Note for each tiling the paths will be nonintersecting.
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Schröder paths

Translating our weights over to the Schröder path picture we have
that the power of t is the number of interactions of the form

, , ,

where blue is a smaller color than red.
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Schröder paths

For example:

1

2

3

1

2

3

1

2

3

1

2

3

→
1

2

3

1

2

3
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t = 0 and Schröder paths

Taking t = 0 imposes strict restriction on the Schröder paths.
Consider the starting point of the top most paths of each color:

1 If
1

then we get a power of t.

2 If
1

then eventually , , and we get a power

of t.

So when t = 0 we are forced to have 1 .

1

2

3

4

1

2

3

4

repeat for other paths

1

2

3

4

1

2

3

4
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t = 0 and Schröder paths

Similar arguments show blue path i will be weakly below red path
i , and strictly above red path i + 1.

Proposition

There is a bijection between 2-tilings of the Aztec diamond at
t = 0 and 1-tilings of the Aztec diamond by removing the forced
paths and sliding.

For example,

1

2

3

4

1

2

3

4

→

1

2

3

4

1

2

3

4

→

1

2

3

4

1

2

3

4
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The Arctic circle

It is well-known that tilings of the Aztec diamond exhibit the limit
shape phenomenon. As we take the rank to infinity, there are
‘frozen’ regions in each corner separated from a ‘disordered’ region
in the center by a deterministic curve known as the Arctic curve.

Theorem (Jockusch, Propp,
Schor, ’98)

The Arctic curve of the Aztec
diamond is given by

x2 + y2 =
1

2
.
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The Arctic circle

Reversing the bijection, we can map a single tiling of the Aztec
diamond to a k-tiling at t = 0.

Theorem (Corteel,Gitlin,K.)

The arctic curve for 2-tilings of the Aztec diamond when t = 0 is
given by

x2 + y2 = 1
2 , x ∈ [−1/2, 1/2], y > 1/2

(x + y)2 + (2y)2 = 1
2 , x ∈ [−1/4, 3/4], y < −1/4(

3x+y−1
2

)2
+
(

3y+x−1
2

)2
= 1

2 , y ∈ [−1/4, 1/2], x > −1
3y + 2

3(
3x+y−1

4

)2
+
(

5y−x−1
4

)2
= 1

2 , y ∈ [−1/4, 1/2], x < −1
3y −

1
3

for both colors.
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The Arctic circle

Simulation of a 2-tiling of the rank-128 Aztec diamond at t = 0
with the computed Arctic curve overlaid.
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t →∞

Lemma

Let T be a k-tiling of the Aztec diamond of rank m with j
interactions. Let φ(T ) be the involution that flips the tilings
across the line y = x. Then φ(T ) is a k-tiling with

(k
2

)(m+1
2

)
− j

interactions.

Proposition

There is a bijection between tilings of the Aztec diamond at t = 0
and tilings of the Aztec diamond in the limit t →∞ given by
reflecting across the line y = x. In particular, the Arctic curve in
the limit t →∞ is the same as that for t = 0 up to the reflection.
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Other values of t?

Simulation of a 2-tiling of the rank-256 Aztec diamond at t = 5.
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Summary

1 We can use the machinery from the LLT vertex model to
construct a model of k coupled tilings of the Aztec diamond
and compute its partition function.

2 In certain limits of the interaction strength (t = 0, 1,∞) we
have bijections relating the k-tilings to the usual 1-tilings.

3 We know that the model has a symmetry with respect to
mapping t 7→ 1

t .

4 One can generalize the domino shuffle algorithm to the
interacting tilings.

5 It would very interesting to understand the asymptotic
behavior for values t outside of the special cases.
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End!
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