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The second quantum revolution 1‘

Noisy intermediate-scale quantum era

From Wikipedia, the free encyclopedia

In the noisy intermediate-scale quantum (NISQ) eral'l the leading quantum processors contain about 50
to a few hundred qubits, but are not advanced enough to reach fault-tolerance nor large enough to profit
sustainably from quantum supremacy.[z]m The term was coined by John Preskill in 2018.1411 |t is used to
describe the current state of the art in the fabrication of quantum processors."!
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Google Quantum™
Supremacy Talk

However, this talk is not
about quantum
technologies

Monday 4 November | 6:30PM - 7:30PM " .

Room 111, Sapp Center for Science Teaching and
Learning, 376 Lomita Dr, Stanford, CA 94305

erfm the Qua thdwareTematG ogle, Santa Barbara will pre onquatum
Ilwgh talk, will be an opportunity for Q&A. Spac myblm ng r for

Register and see more details at

stanfordquantum.com/events/quantum-supremacy




It depends to whom you ask and when

@ It is a spooky action at distance (1930-70)
@ It is a resource for quantum tech (1980-90)

@ It is a tool to study and characterise (new) phases of matter (2000)

@) It is the key to understand fundamental laws of nature (2010)



From few to many body entanglement

Entanglement between two (few) particles
is studied theoretically and experimentally
from decades

Many-body entanglement became a mature
subject only in the last 20 (theory) or 10
(experiment) years
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ER = EPR

From Wikipedia, the free encyclopedia

ER = EPR is a conjecture in physics stating that two entangled particles (a so-

called Einstein—Podolsky—Rosen or EPR pair) are connected by a wormhole
(or Einstein—Rosen bridge)!'?l and may be a basis for unifying general
relativity and quantum mechanics into a theory of everything.[”

Cool horizons for entangled black holes

J. Maldacena ¥, L. Susskind

First published: 01 August 2013 | https://doi.org/10.1002/prop.201300




I’'ll show (too?) many apparently unrelated results in disparate fields of

physics that have as common denominator many-body entanglement.
(I worked only on few of them, so be patient with things | do not master)

The goal is to convene the message that many-body entanglement brought
new and fresh ideas for a deeper understanding of nature
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How to quantify entanglement: the entanglement entropy

Consider a system in a pure quantum state |y), p = |y)(y]

H=H,QHp |vFIys)® |yp)

The reduced density matrix of A is p, = Try | y) (Y]

The entanglement entropy

Sp=—1Ir (PA log PA)

measures the bipartite entanglement between A & B

Note: In the remainder of the talk A & B refer to a spatial bipartition



@® Possibility I:with a quantum computer (analog or digital)

)’rrjl I I I: Sz::: A8182\5N|51,82,... >
NLL '

I I 2N coefficients: too many for a classical PC
e -

@® Possibility 2: developing appropriate theoretical or numerical frameworks

e —— — — — e —— e — —_—  —— B — ——— — P — — __ I _ _



_—— —— —____ O _ —————— ————  ————— E— _ E— —_ I [—— — — —— —  —— — —
]

Replica approach to the entanglement entropy \
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8 PC, J Cardy 2004

— —Trpy | — — lim —Trp”
SA rpalog pa nm o= rpa

For n integer, the ground state Tr p4 is obtained by sewing cyclically n cut
planes resulting in a partition function on a n-sheeted Riemann surface

N

_—
Trp = /
/

In (1+1)D, Tr p is equivalent to the 2-point function of some twist fields

Trply = (Tn(u) Tn(v))
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Entanglement in the ground state of physical systems

If [y) is the ground state of a local gapped Hamiltonian:

B Area Law
. S4 Area separating A and B iﬁi?fyd;o?j

Ina |+ D CFT Holzhey, Larsen, Wilczek 94

B A B
+
-

l

SA:%IHZ

This is the most effective way to determine the central charge



Areadaw states

Only a tiny fraction of states satisfy the area law (or
small violations)

> If we can limit the search for the ground state to
this small subset, the complexity of the problem would
be exponentially reduced

Full Hilbert space

> One meaning of Sx:

exp(Sx) gives the minimal amount of

classical information required to specify |\V)
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A powerful set of numerical methods based on entanglement content of
quantum states
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ARTICLE - o oo

do0i:10.1038/naturel5750

Measuring entanglement entropy in a
quantum many-body system

Rajibul Islam', Ruichao Ma', Philipp M. Preiss!, M. Eric Tai', Alexander Lukin', Matthew Rispoli' & Markus Greiner!

Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between

quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse

fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge.

This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of

spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using

quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms

in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly Product state Entangled state
measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for (.:.»j.\; @) C‘@Z;D

using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems. -- --
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Figure 1 | Bipartite entanglement and partial measurements.

A generic pure quantum many-body state has quantum correlations

(shown as arrows) between different parts. If the system is divided into

two subsystems A and B, the subsystems will be bipartite entangled

with each other when there are quantum correlations between them
1 (right column). Only when there is no bipartite entanglement present,

the partitioned system |1)4p) can be described as a product of subsystem

I I‘ p n states |1a) and |1p) (left column). A path for measuring the bipartite

Renyi lem |

e nYI e n ta n g e e n t e n t ro P I e S S n — entanglement emerges from the concept of partial measurements:

1 — n ignoring all information about subsystem B (indicated as “Trace’) will put
subsystem A into a statistical mixture, to a degree given by the amount of
bipartite entanglement present. Finding ways of measuring the many-body
quantum state purity of the system and comparing that of its subsystems
would then enable measurements of entanglement. For an entangled state,

the subsystems will have less purity than the full system.
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Figure 2 | Measurement of quantum purity with many-body bosonic
interference of quantum twins. a, When two N-particle bosonic systems
that are in identical pure quantum states are interfered on a 50%-50%
beam splitter, they always produce output states with an even number
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Holographic entanglement entropy 1

lm e — —— — p— — — —— —_————— — - S

In the framework of the AdS/CFT correspondence, Ryu and Takayanagi (2006) proposed
the nowadays extremely famous formula

. Area of v4 where va is the d-dimensional static
A Minimal Surface SA = (d+2) minimal surface in AdS4+2 whose
,.' / 4G boundary is given by 0A
| General Relativity and Gravitation (2011)
/ AdS d+2 g Mark Van Raamsdonk
BOW/'gWy Building up spacetime with quantum
entanglement

ADSLIACL 111 UllS €558dy, WC dIguc Lldl UIC CINCIZCICC Ol CldSS1Cdlly COl'lneCted
spacetimes is intimately related to the quantum entanglement of degrees of free-
dom in a non-perturbative description of quantum gravity. Disentangling the de-
grees of freedom associated with two regions of spacetime results in these regions
pulling apart and pinching off from each other in a way that can be quantified by
standard measures of entanglement.

Keywords AdS/CFT, Emergent spacetime, Quantum entanglement
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, Black hole information paradox and Page curv 1

e —

As a block hole evaporates, it emits radiation which is entangled with the back hole interior.
A semiclassical calculation by Hawking predicts to a liner increase of the entropy, leading to
the information paradox when the black hole fully evaporated

S

Hawking result _~"
e _..?-.___.___,.--f-"'".'-.‘ A

Entangled particles are
emitted as radiation by the

black hole, causing the
entanglement reduction

Page curve~_
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Black hole information paradox and replica wormholes |
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Replica wormholes and the entropy of Hawking Replica wormholes and the black hole interior
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Shenker, Douglas Stanford and Zhenbin Yang

Ahmed Almbheiri,® Thomas Hartman,? Juan Maldacena,

and Amirhossein Tajdini® ywn how to obtain the Page curve of an evaporating

utations of entanglement entropy. We show how these
ng the replica trick, from geometries with a spacetime
eplicas. In a simple model, we study the Page transition
netries with different topologies. We compute related
complicated models, including JT gravity coupled to
)del. Separately, we give a direct gravitational argument
ction using an explicit formula known as the Petz map;
i an important role. We discuss an interpretation of the
me ensemble average implicit in the gravity description.

ABSTRACT: The information paradox can be realized in ant;
a Minkowski region. In this setting, we show that the large
Neumann entropy as calculated by Hawking and the require
including new saddles in the gravitational path integral. The
method as complexified wormholes connecting different cop
replica number n — 1, the presence of these wormholes le
computation of the fine-grained gravitational entropy. We di
explicitly in two-dimensional Jackiw-Teitelboim gravity couj
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, Topological entanglement entropy ‘
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A (non-local) order parameter for topological phases
Kitaev & Preskill 2006; Levin & Wen, 2006

Topological entropy in physics

From Wikipedia, the free encyclopedia

For the mathematical concept in ergodic theory, see topological entropy.

The topological entanglement entropy!'!2llS] or topological entropy, usually denoted by -, is a number characterizing
order.

A non-zero topological entanglement entropy reflects the presence of long range quantum entanglements in a many-boc
entanglement entropy links topological order with pattern of long range quantum entanglements.

Given a topologically ordered state, the topological entropy can be extracted from the asymptotic behavior of the Von Ne
entanglement between a spatial block and the rest of the system. The entanglement entropy of a simply connected regic
dimensional topologically ordered state, has the following form for large L:

S, — aL—~v+O(L™"), v >0

where —-y is the topological entanglement entropy.

The topological entanglement entropy is equal to the logarithm of the total quantum dimension of the quasiparticle excitations of the state.

For example, the simplest fractional quantum Hall states, the Laughlin states at filling fraction 1/m, have y = Y2log(m). The Z, fractionalized states, such as topologically
ordered states of Z, spin-liquid, quantum dimer models on non-bipartite lattices, and Kitaev's toric code state, are characterized y = log(2).



PRL 101, 010504 (2008) PHYSICAL REVIEW LETTERS
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Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification

of Topological Order in Non-Abelian Fractional Quantum Hall Effect States

Hui L1 and F. D. M. Haldane

Physics Department, Princeton University, Princeton, New Jersey 08544, USA
(Received 2 May 2008; published 3 July 2008)

We study the “entanglement spectrum’ (a presentation of the Schmidt decomposition analogous to a
set of “energy levels”) of a many-body state, and compare the Moore-Read model wave function for the
v = 5/2 fractional quantum Hall state with a generic 5/2 state obtained by finite-size diagonalization of
the second-Landau-level-projected Coulomb interactions. Their spectra share a common ‘“gapless™
structure, related to conformal field theory. In the model state, these are the only levels, while in the
‘“generic’’ case, they are separated from tt
appears to remain finite in the thermod
spectrum can be used as a “fingerprint” tc

value spectrum. The density matrix m
the form p = exp(—H , so that the entan
is equivalent to the thermodynamic enti,, p
described by a hermitian “Hamiltonian’
ature” T' = 1; in the case of a weak er
“excited states” eigenvalues of H are sej
ground state eigenvalue by a large “ener

comes infinite in the limit of a simple pr (a)Laughlin
vanishing entanglement entropy. In this ks 1.0 ;5 20 A 35 :.;0
out that the spectrum of the “Hamiltc LZ A

we call the “entanglement spectrum?”, reveais mucn more
complete information than the entanglement entropy, a

single number.
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- Entanglement & thermodynamics in non-equilibrium systems |

@ prepare a many-body quantum system in a pure state
'Wo) that is not an eigenstate of the Hamiltonian

¥(t)) = e[t
@® Reduced density matrix: pa(t)=Trs p(¢)
® Sa(t)=-Tr[pa(t) In pa(t)]

@ Stationary state: if exists the limit
lim pa(t) = pa()

[—00

Thermalization:

Consider the Gibbs ensemble for the entire system p1t= €#1/Z

The system thermalizes if] pa,r= pa(o0)
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Entanglement vs Thermodynamics |
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The equivalence of reduced density matrices

PATD = PA(®)
Implies that the subsystem’s entropies are the same: Sa 1D = Sa(0)

The TD entropy Stp=-Tr p1p In pTD iIs extensive

For large time the entanglement entropy
becomes thermodynamic entropy




Quantum thermalization through
entanglement in an isolated
many-body system

Adam M. Kaufman, M. Eric Tai, Alexander Lukin, Matthew Rispoli, Robert Schittko,
Philipp M. Preiss, Markus Greiner®

Downloaded from http:/
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closed systems. An isolated quantum system at zero tem-
perature can be described by a single pure wavefunction |¥).
Subsystems of the full quantum state appear pure, as long
as the entanglement (indicated by grey lines) between sub-
systems is negligible. If suddenly perturbed, the full system
evolves unitarily, developing significant entanglement between
all parts of the system. While the full system remains in a
pure, zero-entropy state, the entropy of entanglement causes
the subsystems to equilibrate, and local, thermal mixed states
appear to emerge within a globally pure quantum state.
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Quantum thermalization through
entanglement in an isolated
many-body system

Adam M. Kaufman, M. Eric Tai, Alexander Lukin, Matthew Rispoli, Robert Schittko,

Downloaded from http:/

Philipp M. Preiss, Markus Greiner® /

- 1’s a paradigm
pure state

quantum quench
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evolves unitarily, developing significant entanglement between
all parts of the system. While the full system remains in a
pure, zero-entropy state, the entropy of entanglement causes
the subsystems to equilibrate, and local, thermal mixed states
appear to emerge within a globally pure quantum state.
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FIG. 3. Dynamics of entanglement entropy.

Kaufmann et al 2016
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Starting from a low-entanglement ground state, a global quantum quench

leads to the development of large-scale entanglement between all subsystems. We quench a six-site system from the Mott
insulating product state (J/U < 1) with one atom per site to the weakly interacting regime of J/U = 0.64 and measure the
dynamics of the entanglement entropy. As it equilibrates, the system acquires local entropy while the full system entropy
remains constant and at a value given by measurement imperfections. The dynamics agree with exact numerical simulations
with no free parameters (solid lines). Error bars are the standard error of the mean (S.E.M.). For the largest entropies
encountered in the three-site system, the large number of populated microstates leads to a significant statistical uncertainty
in the entropy, which is reflected in the upper error bar extending to large entropies or being unbounded. Inset: slope of the
early time dynamics, extracted with a piecewise linear fit (see Supplementary Material). The dashed line is the mean of these

measurements.



Another experiment (on traps)
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Figure 3: Second-order Rényi entropy of 1- to 10-qubit partitions of a 20-qubit
system. The intial low-entropy Néel state evolves under Hxy (Jo = 370 s !, a = 1.01)
within 10 ms into a state with high-entropy partitions, corresponding to nearly fully mixed
subsystems. For the data taken at 6 ms (10 ms) time evolution, the two (three) data points
corresponding to highly mixed states are not shown due to their large statistical error bars.
For details regarding numerical simulations (dotted curves) and error bars, see (26).

QUANTUM ENTANGLEMENT

Probing Rényi entanglement entropy
via randomized measurements

Tiff Brydges>*, Andreas Elben"?*, Petar Jurcevic"?, Benoit Vermersch'?,
Christine Maier"?, Ben P. Lanyon"?, Peter Zoller"?, Rainer Blatt"?, Christian F. Roos"?t

Entanglement is a key feature of many-body quantum systems. Measuring the entropy of
different partitions of a quantum system provides a way to probe its entanglement structure.
Here, we present and experimentally demonstrate a protocol for measuring the second-order
Rényi entropy based on statistical correlations between randomized measurements. Our
experiments, carried out with a trapped-ion quantum simulator with partition sizes of up to

10 qubits, prove the overall coherent character of the system dynamics and reveal the growth of
entanglement between its parts, in both the absence and presence of disorder. Our protocol
represents a universal tool for probing and characterizing engineered quantum systems in the
laboratory, which is applicable to arbitrary quantum states of up to several tens of qubits.

Brydges et al., Science 364, 260-263 (2019) 19 April 2019
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Figure 4: Spread of quantum correlations under Hxy (Jy = 420s™!, a = 1.24) with
and without disorder. (a) Half-chain entropy growth versus time without disorder
(red data points) and with disorder (blue data points). Numerical simulations based
on unitary dynamics (dotted curves) including known sources of decoherence (full lines)
are in agreement with the measured second-order Rényi entropies. (b) Quantum mutual
information of selected subsystems versus time. The decrease of I1?) with distance between
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FIG. 1. The membrane picture of entanglement and other
® B B dynamical quantities. (a) Example of a membrane for evaluating

€ Rényi entropy growth in a 1D quench. Minimizing the membrane
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Differences are observed with more
complicated geometries:

= Asplund, Bernamonti, Galli, Hartman ‘15
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" Mixed state entanglement: Partial transpose and negativity |

Q: what is the entanglement in 2 mixed state?

e} and |e/) bases of A and A,

(lei. €) (ex. €f1)"" = leg. €5) (e;, €]

12 1 2y, 1 2v/1 2
pa = leh, Elpalek, eDlel, e2) ek, f 7
ikl ¢
4 PP
PPT criterion:
T _ 12 1 2\ 1 2y/.1 2 If,oT1 has negative eigenvalues
Pa — Z<€k76j‘pz4|6i7€l>‘6k7€j><6i76l| A
ijkl P4 1s entangled
Peres, 1996
T N
. Tr‘pAl‘ — 1 : T
' The Negativity = A = 5 measures how much the eigenvalues of p
are negative (it is also an entanglement monotone) Vidal Werner 2002

Replica trick: Tr\pATl\ = lim Tr(pATl)Z”
n—1/2

P. Calabrese, J. Cardy, E. Tonni 2012
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| Negativity and QFT |
B A A> B
Tripartition:
U1 Vi u2 V2
N
Te( 12\ — | T = =
r(py?)" = = (Tn(u1) Ty (v1) T (u2) T (v2))
N
v, The partial transposition exchanges

two twist operators

It led to different Riemann surfaces and new twist fields that found applications from

topological matter to black holes
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“Negativity”’ in experiments

The negativity is difficult to measure experimentally, but the moments of the partial transpose p, can

E. Cornfeld, M. Goldstein, and E. Sela, PRA 98, 032302 (2018)
J. Gray, L. Banchi, A. Bayat, and S. Bose, Phys. Rev. Lett. 121, 150503 (2018)

A. Elben, R. Kueng, H.-Y. Huang, R. van Bijnen, C. Kokail, M. Dalmonte, P. Calabrese, B. Kraus, J. Preskill, P. Zoller, and B. Vermersch, PRL 125, 200501 (2020)
a)

p-ﬁP
PPT

p, are obtained by performing local random measurements and post-

. . . separable
processing using the classical shadows framework

p3-PPT condition: if-hen PPT is violated and there is entanglement

) B esas b) [E¥jeeolEess c) [:!A:!:L:E:::::
A d B
2 o] 1], 2]
“m PN AaB 20 1 ’
32 X 1,2, (3,4 ¢ [1,2),[3,4] |
= X : 1,2, 14,5 ~ ¢ [1,2,3],[4,5,6] ¢ ®
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Quench from Neel state
FIG. 4. Evolution of the ratio R3 from experimental data [10)]. in a long range XX
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ﬁ Measurement induced transition 1 Li, Chen, Fisher 2019
- - — —_—— Skinner, Ruhman, Nahum 2019
Chan et al, 2019
(o5 Volume law phase Area law phase
_ o _——— -
e S p <Ppe P p > po
= ® ® A
1—:— - -1 [ i p<pe A=A+ A
=3 O Q O
s s s e p=Pe. Sa=a(p) InlA
t=2 : ‘I : -I l % 7 menstrement Emergent CFT at criticality
t=1 o o p > pc, Sa=c(p) |A|°
B s |A|
t=0 ® ®

X

Without looking at entanglement, observing and identifying this transition would been
very hard, likely impossible



Many fundamental results have not ber ‘tioned here:

étion
A1C QFT

@® Disordered systems and manv

@® Entanglement Hamiltoniar
® Gauge theories
@® Symmetries and er.

@® Operator entar
® QFT resultr

@® Quantu’

, QNEC,...

, quantum circuits

~

e message

feep enough, you get much more than by other means
J

Whenever you look at ent”




