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The second quantum revolution 

However, this talk is not 
about quantum 
technologies



What is entanglement

◉ It is a spooky action at distance (1930-70)

◉ It is a resource for quantum tech (1980-90) 

◉ It is a tool to study and characterise (new) phases of matter (2000) 

It depends to whom you ask and when

◉ It is the key to understand fundamental laws of nature (2010) 



From few to many body entanglement

Figure from Kaufman et al, Science 353, 794 (2016)

Figure from Wikipedia

Entanglement between two (few) particles 
is studied theoretically and experimentally 
from decades

Many-body entanglement became a mature 
subject only in the last 20 (theory) or 10 
(experiment) years



Many body entanglement in popular culture

Martin Mystere (# 368, April 2020)
talks about entanglement and 
ER=EPR conjecture by Maldacena
and Susskind



Goal of the talk

I’ll show (too?) many apparently unrelated results in disparate fields of 
physics that have as common denominator many-body entanglement.
(I worked only on few of them, so be patient with things I do not master) 

The goal is to convene the message that many-body entanglement brought 
new and fresh ideas for a deeper understanding of nature 
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Figure 1: hep-th arXiv preprints with “entanglement” in the title. (The last entry is an extrapolation from data up to 15
March 2015.)

hypothetical quantum computers, there is another, entirely natural arena in which they play a crucial role: the physics of
black holes, horizons and emergent spacetime.

Black holes and quantum gravity are remote phenomena that cannot at present be accessed experimentally, but —
in an example of what might be called the unreasonable connectivity of physics — quantum field theory, condensed-
matter physics, and quantum gravity are now all using the same tools of quantum information theory, and confronting
many of the same underlying problems. This circumstance has led to a highly productive multidirectional flow of ideas
among research areas. A key example is provided by the so-called holographic dualities connecting quantum gravity and
lower-dimensional gauge theories. In addition to illuminating the nature of quantum gravity, these dualities have been an
extremely productive tool for discovering new phenomena in quantum field theory.

Concepts from quantum information theory have driven other important advances in quantum field theory, involving
a rich interplay between quantum mechanics and special relativity. This has led to profound insights into the structure of
the space of quantum field theories, in particular how different theories are related under changes of scale. This question,
the structure of the renormalization group, has played a central role in quantum field theory for several decades, yet in
many cases important progress has come only recently, with the injection of ideas from quantum information theory.

Meanwhile, there are indications that quantum computational complexity may play a central role in the evolution of
the geometry behind black-hole horizons. These developments are closely related to quantum chaos and have opened up
a new way to define this elusive concept. They are also related to deep mathematical questions of complexity theory of
interest in computer science. The connection of quantum gravity with complexity opens the possibility of a novel and
fruitful collaboration between quantum gravity and theoretical computer science.

A rapid change is taking place in our thinking about fundamental physics that amounts to a nascent paradigm shift.
The language itself is changing: fifteen years ago very few high-energy theorists used the term qubit, and most thought
that quantum entanglement was an esoteric subject most suitable for philosophical debate. No longer. Figure 1 is a
histogram showing the number of papers from the high-energy theory arXiv containing the term “entanglement” in the
title. Between the year 2000 and today the growth has been exponential and far faster than the growth of the total number
of papers on the arXiv. Almost all of this growth represents the connection between quantum gravity, quantum field
theory, and quantum information theory.

In spite of these exciting developments, fundamental physics and quantum information theory remain distinct disci-
plines and communities, separated by significant barriers to communication and collaboration. These barriers are of both
a historical and an institutional nature, and are exacerbated by the pigeonholed nature of governmental funding mecha-
nisms. Given the scope of the topic, achieving the necessary systemic change to fulfill its scientific promise will require
a large-scale and concerted effort, involving many of the key players on both sides.

We are proposing just such an effort. It from Qubit: Simons Collaboration on Quantum Fields, Gravity, and Informa-

tion will be a global, intensive program bringing together some of the very best people of all generations in fundamental
physics and quantum information theory. It will spur communication and education between the two communities, foster
deep and sustained collaborations among their members, and nurture a new generation of scientists who will think in a
new way. The result will be the creation of a new scientific discipline, leading to paradigm-changing discoveries on some
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How to quantify entanglement: the entanglement entropy 

     Consider a system in a pure quantum state                                        

The entanglement entropy 

measures the bipartite entanglement between A & B

A

B

ℋ = ℋA ⊗ ℋB |ψ⟩ ≠ |ψA⟩ ⊗ |ψB⟩

|ψ⟩, ρ = |ψ⟩⟨ψ |

SA = − Tr (ρA log ρA)

The reduced density matrix of A is ρA = TrB |ψ⟩⟨ψ |

Note: In the remainder of the talk A & B refer to a spatial bipartition



How to access the (many-body) entanglement entropy 

◉ Possibility 1: with a quantum computer (analog or digital) 

◉ Possibility 2: developing appropriate theoretical or numerical frameworks 

2N coefficients: too many for a classical PC

3

In a finite chain with Llat, CFT provides the correct result including the additive constant that comes from the
knowledge of the infinite volume ones:
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Lattice and continuum distance are connected by the lattice spacing a, i.e.

Llat = La, ⇤lat = ⇤a, kF �
⇥N

Llat
=

a⇥N

L
. (20)

The continuum limit is obtained by considering a ⇥ 0 with ⇤, L,N constant, and from Eq. (19) we recover Eq. (17).
Notice that this does not correspond to low density regime, but N/L is arbitrary. What makes it similar to low
density is the limit a ⇥ 0.
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Replica approach to the entanglement entropy 

PC, J Cardy 2004

Path integral and Riemann surfaces PC and J Cardy ’04

⇤�1(x)|�A|�2(x)⌅ =

Tr�n
A =

Tr�n
A = for n integer is the partition function on a n-sheeted

Riemann surface Rn,1

Replica trick: SA = � lim
n�1

⇥

⇥n
Tr�n

A
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For n integer, the ground state Tr ρA is obtained by sewing cyclically n cut 
planes resulting in a partition function on a n-sheeted Riemann surface

n

Replica trick

SA = �Tr⇢A log ⇢A = � lim
n!1
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has a unique analytic continuation to Re n > 1 and that its

first derivative at n = 1 gives the required entropy:
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is equivalent to the 2-point function of some twist fields

From (1.24) we get the trace norm

||�TA ||1 = lim
p⇥ 1/2

Tr(�TA)2p =
⇤ 

r

|cr|
⌅2

(1.25)

By using that TrA �A = 1 in (1.23) and (1.24), we find

Tr �TA = lim
p⇥ 0

Tr(�TA)2p+1 = 1 Tr(�TA)2 = lim
p⇥ 1

Tr(�TA)2p = 1 (1.26)

An important property of EN (�) is that for pure states it is an upper bound of the entanglement
entropy [2]. This comes from (1.14) and the concavity of the logarithm as follows

SA = 2
 

j

|cj |2 log |cj |�1 � 2 log
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j

|cj |
⌅

= log ||�TA ||1 (1.27)

where (1.25) has been used.

2 Separability and transposition

3 Conformal field theory description

3.1 One interval in a pure state

Tr�n
A = ⌅Tn(u) T̄n(v)⇧ (3.1)

Can we say that T 2
n =
�n

k=1 T2k/n? NO, otherwise �T 2
n

=
⌥

k �T2k/n

We are going to use that (WHY?)

Tr(�TA)n = ⌅T 2
n (0) T̄ 2

n (⇥)⇧ (3.2)

where �T 2
n

= �̄T 2
n
.

Now we employ the identities (1.23) and (1.24) distinguishing between the odd and even cases
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where we recall that [12]
TrA �n

A = ⌅Tn(0) T̄n(⇥)⇧ =
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Taking the limit p ⇥ 1/2 in the second equation of (3.4), we obtain the trace norm and the
logarithmic negativity

||�TA ||1 = c2
1/2 ⇥

c
2 EN (�) =

c

2
log ⇥ + 2 log c1/2 (3.7)
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Area Law
SA∝ Area separating A and B Srednicki ’93 

+many more

If |ψ〉 is the ground state of a local gapped Hamiltonian:

B BA

l

In a 1+1 D CFT Holzhey, Larsen, Wilczek ’94

This is the most effective way to determine the central charge

SA = c ln l  3
_

A
B

Entanglement in the ground state of physical systems 



Only a tiny fraction of states satisfy the area law (or 
small violations)

          If we can limit the search for the ground state to 
this small subset, the complexity of the problem would 
be exponentially reduced 

Full Hilbert space

Area law states

exp(SA) gives the minimal amount of 
classical information required to specify |Ψ⟩

One meaning of SA:

One application



Tensor network states

Renormalization and tensor product states in spin chains and lattices 18

Figure 2. Graphical representation of an MPS in terms of contracted tensors (tensor
network). (a) The set of matrices An are represented in terms of a rank–3 tensor where
the index n is pointing vertically; (b) We consider the set of tensors corresponding to
each spins and (c) contract them according to the horizontal indices; (d) the same can
be done with periodic boundary conditions by adding an extra bond on the end spins;
(e) Tensor representation of an operator acting on a spin; (f.1) In order to calculate
〈Ψ|Ψ〉 we contract the tensor corresponding to Ψ with that of Ψ̄, giving rise to (f.2) a
row of tensors which are contracted to give a number. The tensors can be viewed as
matrices (one double-index to the left and another to the right). (g.1) and (g.2) the
same but with an expectation value.

matrices (Fig. 2(f.2), compare (14)). In the same way, we can represent expectation
values of product of local observables (Figs. 2(g.1) and (g.2)).

2.7. Sequential generation of Matrix Product States

We have seen so far that the family of MPS corresponds to those that appear in real

space renormalization schemes. Here we will show that they also coincide with the

states that can be sequentially generated[59]. For that, let us assume first that we have
an auxiliary system, i.e an ancilla (which, in practice, could be a D–level atom) with

Hilbert space Ha of dimension D, initially prepared in state |1〉, and also all the spins

in the chain in state |1〉. Now we consider a unitary operation between the ancilla and

the first spin, then between the ancilla and the second on, and so on, until the ancilla

interacts with last spin (see Fig. 3(a)). Let us denote by U (A,M) the unitary operation

Renormalization and tensor product states in spin chains and lattices 34

Figure 11. Tensor network representation of a PEPS. (a) Representation of the tensor
corresponding to a single site. The indices in the plane correspond to the auxiliary
particles, whereas the one orthogonal is the spin one; (b) Representation of the whole
state where the auxiliary indices are contracted.

the region times log D. In fact, the rank of the reduced density operator will be exactly

DnA. On the other hand, the maps P cannot increase the rank of the density operator,

and thus we obtain the area law for the real spins, given that the entropy of an operator

is upper bounded by the logarithm of its rank.
The expectation values of observables in a PEPS have a similar structure to those

in a MPS (see Fig. 12(a)). We have to sandwich the operator between the tensors

corresponding to Ψ and Ψ̄ as shown in the figure. At the end, everything boils down

to contracting a tensor of the form shown in Fig. 12(b). This is very hard, in general.

The reason is that if we start contracting the tensors appearing there, the indices will

proliferate and in the middle of the calculation we will have of the order of
√

N indices,
which amounts to having an exponential number of coefficients. This is very different

to what occurs in 1D, in which chase the linear geometry makes it possible to contract

the tensors while always keeping two indices at most.

One way to proceed is to realize that the tensor network displayed in Fig. 12(b)

can be viewed as follows. The first row can be considered as a tensor which in turns is

built out of smaller tensors, in much the same way as a MPS is built out of the tensors
A. The next row can be viewed as a MPO. Thus the contraction of the first row with

MPS

PEPS

MERA

“Alphabet soup of proposals”

A powerful set of numerical methods based on entanglement content of 
quantum states

Subir Sachdev
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ARTICLE
doi:10.1038/nature15750

Measuring entanglement entropy in a 
quantum many-body system
Rajibul Islam1, Ruichao Ma1, Philipp M. Preiss1, M. Eric Tai1, Alexander Lukin1, Matthew Rispoli1 & Markus Greiner1

Entangled quantum objects1 are correlated in ways that reject the 
principle of local realism. In few-level quantum systems, entangled 
states have been investigated extensively as a means of studying the 
foundations of quantum mechanics2 and as a resource for quantum 
information applications3. Recently, it was realized that the concept of 
entanglement has broad impact in many areas of quantum many-body 
physics, ranging from condensed matter4 to high-energy field theory5 
and quantum gravity6. In this general context, entanglement is most 
often quantified by the entropy of entanglement1 that arises in a sub-
system when the information about the remaining system is ignored. 
This entanglement entropy exhibits qualitatively different behaviour 
from that of classical entropy and has been used in theoretical physics  
to probe various properties of many-body systems. In condensed 
matter physics, for example, the scaling behaviour7 of entanglement 
entropy allows phases to be distinguished that cannot be characterized 
by symmetry properties, such as topological states of matter8–10 and 
spin liquids11,12. Entanglement entropy can be used to probe quan-
tum criticality13 and non-equilibrium dynamics14,15, and to determine 
whether efficient numerical techniques for computing many-body 
physics exist16.

Despite the growing importance of entanglement in theoretical 
physics, current condensed matter experiments do not have a direct 
probe with which to detect and measure entanglement. Synthetic 
quantum systems such as cold atoms17,18, photonic networks19, and 
some microscopic solid state devices20 have unique advantages: in such 
systems control and detection of single particles are possible, they pro-
vide experimental access to relevant dynamical time scales, and they 
are isolated from the environment. In these systems, specific entan-
gled states of few qubits, such as the highly entangled Greenberger–
Horne–Zeilinger (GHZ) state21 have been experimentally created and 
detected using witness operators22. However, entanglement witnesses 
are state specific. For arbitrary states, an exhaustive method of recon-
structing the entire quantum state by tomography23 can be used to 
measure entanglement. This has been accomplished in small systems 
of photonic qubits24 and trapped ion spins25, but there is no known 
way to perform tomography for systems involving itinerant delocal-
ized particles. With multiple copies of a system, however, one can use 
quantum many-body interference to quantify entanglement even in 
itinerant systems15,26,27.

In this work, we take advantage of the precise control and readout 
afforded by our quantum gas microscope28 to prepare and interfere two 
identical copies of a four-site Bose–Hubbard system. This many-body 
quantum interference enables us to measure quantities that are not 
directly accessible in a single system (without tomography), for exam-
ple, quadratic functions of the density matrix15,26,27,29–32. Such non-
linear functions can reveal entanglement1. In our system, we directly 
measure the quantum purity, Rényi entanglement entropy, and mutual 
information to probe the entanglement in site occupation numbers.

Bipartite entanglement
To detect entanglement in our system, we use a fundamental property 
of entanglement between two subsystems (bipartite entanglement): 
ignoring information about one subsystem results in the other becom-
ing a classical mixture of pure quantum states. This classical mixture 
in a density matrix ρ can be quantified by measuring the quantum 
purity, defined as Tr(ρ2). For a pure quantum state the density matrix 
is a projector and Tr(ρ2) = 1, whereas for a mixed state Tr(ρ2) <  1.  
In the case of a product state, the subsystems A and B of a many-body 
system AB described by a separable wavefunction | ψAB〉  (Fig. 1)  
are individually pure as well, that is, ρ ρ ρ( )= ( )= ( )=Tr Tr Tr 1A

2
B
2

AB
2 . 

Here the reduced density matrix of A is ρA =  TrB(ρAB), where  
ρAB =  | ψAB〉 〈ψAB|  is the density matrix of the full system. TrB indicates 
tracing over or ignoring all information about the subsystem B. For an 
entangled state, the subsystems become less pure compared to the full 
system as the correlations between A and B are ignored in the reduced 
density matrix, ρ ρ ρ( )= ( )< ( )= .Tr Tr Tr 1A

2
B
2

AB
2   Even if the many-body 

state is mixed ( ρ( )<Tr 1AB
2 ), it is still possible to measure entanglement 

between the subsystems1. It is sufficient33 to prove this entanglement by 
showing that the subsystems are less pure than the full system, that is:

ρ ρ

ρ ρ

( )< ( )

( )< ( ) ( )

Tr Tr
Tr Tr 1

A
2

AB
2

B
2

AB
2

These inequalities provide a powerful tool with which to detect entan-
glement in the presence of experimental imperfections. Furthermore, 
quantitative bounds on the entanglement present in a mixed many-
body state can be obtained from these state purities34.

Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between 
quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse 
fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. 
This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of 
spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using 
quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms 
in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly 
measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for 
using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

© 2015 Macmillan Publishers Limited. All rights reserved
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Equation (1) can be framed in terms of entropic quantities1,33.  
A particularly useful and well studied quantity is the nth-order Rényi 
entropy:

ρ( )=
−

( ) ( )S
n

A 1
1

log Tr 2n
n

A

From equation (2), we see that the second-order (n =  2) Rényi entropy 
and purity are related by ρ( )=− ( )S A log Tr2 A

2 . S2(A) provides a lower 
bound15 for the von Neumann entanglement entropy SVN(A) =  S1(A) 
=  − Tr(ρAlogρA), which has been extensively studied theoretically. The 
Rényi entropies are rapidly gaining importance in theoretical con-
densed matter physics because they can be used to extract information 
about the “entanglement spectrum”35, thus providing more complete 
knowledge about the quantum state than just the von Neuman entropy. 
In terms of the second-order Rényi entropy, the conditions sufficient 
to demonstrate entanglement1,33 become S2(A) >  S2(AB), and 
S2(B) >  S2(AB), that is, the subsystems have more entropy than the full 
system. These entropic inequalities are more powerful in detecting 
certain entangled states than other inequalities such as the  
Clauser–Horne–Shimony–Holt (CHSH) inequality30,33.

Measurement of quantum purity
The quantum purity and hence the second-order Rényi entropy can be 
directly measured by interfering two identical and independent copies 
of the quantum state on a 50%–50% beam splitter15,26,27,30. For two 
identical copies of a bosonic Fock state, the output ports always have 
even particle numbers, as illustrated in Fig. 2a. This is due to the 
destructive interference of all odd outcomes. If the system is composed 
of multiple modes, such as internal spin states or various lattice sites 
the expectation value of the total number parity =∏ ( )P pi k i

k  is equal to 
unity in the output ports i =  1, 2. Here the parity for mode k is =±( )p 1i

k  
for even or odd numbers of particles, respectively.

The well known Hong–Ou–Mandel (HOM) interference of two 
identical single photons36 is a special case of this scenario. Here a pair 
of indistinguishable photons incident upon different input ports of a 
50%–50% beam splitter interfere such that both photons always exit 
from the same output port. In general, the average parity measured 
in the many-body bosonic interference on a beam splitter probes the 
quantum state overlap (Supplementary Information) between the two 
copies, 〈 Pi〉  =  Tr(ρ1ρ2), where ρ1 and ρ2 are the density matrices of 
the two copies respectively and 〈 ...〉  denotes averaging over repeated 
experimental realizations, as shown in Fig. 2b. Hence, for two identical 

systems, that is, for ρ1 =  ρ2 =  ρ, the average parity for both output ports 
(i =  1, 2) equals the quantum purity of the many-body state15,26,27:

ρ〈 〉= ( ) ( )P Tr 3i
2

Equation (3) represents the most important theoretical foundation 
behind this work—it connects a quantity depending on quantum 
coherences in the system to a simple observable in the number of par-
ticles. It holds even without fixed particle number, as long as there 
is no definite phase relationship between the copies (Supplementary 
Information). From equations (1) and (3), detecting entanglement 
in an experiment is thus reduced to simply measuring the average 
particle number parity in the output ports of the multi-mode beam  
splitter.

We probe entanglement formation in a system of interacting 87Rb 
atoms on a one-dimensional optical lattice with a lattice constant 
of 680 nm. The dynamics of atoms in the lattice is described by the  
Bose–Hubbard Hamiltonian:

†∑ ∑=− + ( − )
( )〈 〉

H J a a U n n
2

1
4i j

i j
i

i i
,

where †a a,i i  and †=n a ai i i  are the bosonic creation, annihilation,  
and the number operators at site i, respectively. The atoms tunnel 
between neighbouring lattice sites (indicated by 〈 i, j〉 ) with a rate J and 
experience an onsite repulsive interaction energy U. Planck’s constant 
h is set to 1 and hence both J and U are expressed in hertz. The dimen-
sionless parameter U/J is controlled by the depth of the optical lattice. 
Additionally, we can superimpose an arbitrary optical potential with 
the resolution of a single lattice site by using a spatial light modulator 
as an amplitude hologram through a high-resolution microscope 
(Supplementary Information). This microscope also allows us to image 
the number parity of each lattice site independently28.

Figure 1 | Bipartite entanglement and partial measurements.  
A generic pure quantum many-body state has quantum correlations 
(shown as arrows) between different parts. If the system is divided into  
two subsystems A and B, the subsystems will be bipartite entangled  
with each other when there are quantum correlations between them 
(right column). Only when there is no bipartite entanglement present, 
the partitioned system | ψAB〉  can be described as a product of subsystem 
states | ψA〉  and | ψB〉  (left column). A path for measuring the bipartite 
entanglement emerges from the concept of partial measurements: 
ignoring all information about subsystem B (indicated as ‘Trace’) will put 
subsystem A into a statistical mixture, to a degree given by the amount of 
bipartite entanglement present. Finding ways of measuring the many-body 
quantum state purity of the system and comparing that of its subsystems 
would then enable measurements of entanglement. For an entangled state, 
the subsystems will have less purity than the full system.

Entangled stateProduct state

\ \ \ \\ \

A B A B

TracePure TraceMixed

|����³�= |����³A ⊗ | ���³B |����³�≠ |����³A ⊗ | ���³B

Figure 2 | Measurement of quantum purity with many-body bosonic 
interference of quantum twins. a, When two N-particle bosonic systems 
that are in identical pure quantum states are interfered on a 50%–50% 
beam splitter, they always produce output states with an even number 
of particles in each copy. This is due to the destructive interference of 
odd outcomes and represents a generalized HOM interference, in which 
two identical photons always appear in pairs after interfering on a beam 
splitter. b, If the input states ρ1 and ρ2 are not perfectly identical or not 
perfectly pure, the interference contrast is reduced. In this case the 
expectation value of the parity of particle number 〈 Pi〉  in either output 
(i =  1, 2) measures the quantum state overlap between the two input states. 
For two identical input states ρ1 =  ρ2, the average parity 〈 Pi〉  therefore 
directly measures the quantum purity of the states. We assume only that 
the input states have no relative macroscopic phase relationship.
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Renyi entanglement entropies  Sn =
1

1 − n
Tr ρn

A
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It is instructive to investigate the scaling of Rényi entropy and mutual 
information with subsystem size7,44, since in larger systems they can 
characterize quantum phases, for example by measuring the central 
charge of the underlying quantum field theory5. Figure 5b shows these 
quantities versus the subsystem size for various partitioning schemes 
with a single boundary. For the atomic Mott insulator the Rényi entropy 
increases linearly with the subsystem size and the mutual information 
is zero, consistent with both a product state and classical entropy being 
uncorrelated between various sites. In the superfluid state the measured 
Rényi entropy curves are asymmetric and first increase with the system 
size, then fall again as the subsystem size approaches that of the full 
system. This represents the combination of entanglement entropy and 
the linear classical entropy. The non-monotonicity is a signature of 
the entanglement entropy, as the entropy for a pure state must vanish 
when the subsystem size is zero or the full system. The asymmetry due 
to classical entropy is absent in the mutual information.

The mutual information between two subsystems comes from the 
correlations across their separating boundary. For a 4-site system, 
the boundary size ranges from one to three for various partitioning 
schemes. Among those schemes with a single boundary, maximum 
mutual information in the superfluid is obtained when the boundary 
divides the system symmetrically (Fig. 5a). Increasing the boundary 
size increases the mutual information, as more correlations are inter-
rupted by the partitioning (Fig. 5c).

Mutual information also elucidates the onset of correlations between 
various sites as the few-body system crosses over from a Mott insula-
tor to a superfluid phase. In the Mott insulator phase (U/Jx ! 1) the 
mutual information between all sites vanish (Fig. 5c, bottom). As the 
particles start to tunnel, only the nearest-neighbour correlations start 
to build up (U/Jx ≈  12) and the long-range correlations remain negligi-
ble. Further into the superfluid phase, the correlations extend beyond 
the nearest neighbour and become long range for smaller U/Jx. These 
results suggest disparate spatial behaviour of the mutual information 

in the ground state of an uncorrelated (Mott insulator) and a strongly 
correlated phase (superfluid). For larger systems this can be exploited 
to identify quantum phases and the onset of quantum phase transitions.

Non-equilibrium entanglement dynamics
Away from the ground state, the non-equilibrium dynamics of a quan-
tum many-body system is often theoretically intractable. This is due to 
the growth of entanglement beyond the access of numerical techniques, 
such as the time-dependent density matrix renormalization group the-
ory46,47. Experimental investigation of entanglement may shed valuable 
light onto non-equilibrium quantum dynamics. Towards this goal, we 
study a simple system: two particles oscillating in a double well37,48. The 
non-equilibrium dynamics are described by the Bose–Hubbard model. 
The quantum state of the system oscillates between unentangled (parti-
cles localized in separate wells) states and entangled states in the Hilbert 
space spanned by | 1, 1〉 , | 2, 0〉  and | 0, 2〉 . Here, | m, n〉  denotes a state 
with m and n atoms in the two subsystems (wells), respectively. Starting 
from the product state | 1, 1〉  the system evolves through the maximally 
entangled states | 2, 0〉  +  | 0, 2〉  ±  | 1, 1〉  and the symmetric, HOM-like 
state | 2, 0〉  +  | 0, 2〉 . In the maximally entangled states the subsystems 
are completely mixed, with a probability of 1/3 of having zero, one or 
two particles. The system then returns to the initial product state | 1, 1〉  
before re-entangling. In our experiment, we start with a Mott insulating 
state (U/Jx ! 1), and suddenly quench the interaction parameter to a 
low value, U/Jx ≈  0.3. The non-equilibrium dynamics is demonstrated 
(Fig. 6) by the oscillation in the second-order Rényi entropy of the sub-
system, while the full system assumes a constant value originating from 
classical entropy. This experiment also demonstrates entanglement in 
HOM-like interference of two massive particles.

Summary and outlook
In this work, we perform a direct measurement of quantum purity, the 
second-order Rényi entanglement entropy, and mutual information 
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Figure 5 | Rényi mutual information in the ground state. Any 
contribution from the extensive classical entropy in our measured Rènyi 
entropy can be factored out by constructing the mutual information 
IAB =  S2(A) +  S2(B) −  S2(AB). a, We plot the summed entropy 
S2(A) +  S2(B) (in blue, green and light blue corresponding to the partitions 
shown) and the entropy of the full system S2(AB) (in red) separately. 
Mutual information is the difference between the two, as shown by the 
arrow for a partitioning scheme. In the Mott insulator phase (U/Jx ! 1) 
the sites are not correlated, and IAB ≈  0. Correlations start to build up 
for smaller U/Jx, resulting in a non-zero mutual information. The theory 
curves are from exact diagonalization, with added offsets consistent with 
the extensive entropy in the Mott insulator phase (about 0.5 for the full 
system). b, Classical and entanglement entropies follow qualitatively 
different scaling laws in a many-body system. The top panel in b shows 
that in the Mott insulator phase classical entropy dominates and S2(A) 

and S2(B) follow a volume law: entropy increases with the size of the 
subsystem. The mutual information IAB ≈  0. The bottom panel in b shows 
the non-monotonic behaviour of S2(A) and S2(B) in the superfluid regime, 
due to the dominance of entanglement over classical entropy, which 
makes the curves asymmetric. IAB restores the symmetry by removing the 
classical uncorrelated noise. The solid lines are linear (top) and quadratic 
(bottom) fits included as a guide to the eye. The top panel in c shows that 
more correlations are affected (red arrow) with increasing boundary area, 
leading to a growth of mutual information between subsystems. The data 
points are for various partitioning schemes shown in Fig. 4b. The bottom 
panel in c plots IAB as a function of the distance d between the subsystems 
to show the onset and spread of correlations in space, as the Mott insulator 
adiabatically melts into a superfluid. In these plots some overlapping data 
points are offset from each other horizontally for clarity.

© 2015 Macmillan Publishers Limited. All rights reserved



Holographic entanglement entropy

where γA is the d-dimensional static 
minimal surface in AdSd+2 whose 
boundary is given by ∂A

In the framework of the AdS/CFT correspondence, Ryu and Takayanagi (2006) proposed 
the nowadays extremely famous formula  



Black hole information paradox and Page curve

As a block hole evaporates, it emits radiation which is entangled with the back hole interior. 
A semiclassical calculation by Hawking predicts to a liner increase of the entropy, leading to 
the information paradox when the black hole fully evaporated 

Entangled particles are 
emitted as radiation by the 
black hole, causing the 
entanglement reduction



Black hole information paradox and replica wormholes



Topological entanglement entropy

A (non-local) order parameter for topological phases
Kitaev & Preskill 2006; Levin & Wen, 2006



Topological order and entanglement spectrum
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Entanglement & thermodynamics in non-equilibrium systems

Reduced density matrix: ρA(t)=TrB ρ(t)

Stationary state: if exists the limit 
lim ρA(t) = ρA(∞)
t→∞

◉

◉

B

A

Infinite system (AUB )
A finite

◉ SA(t)= -Tr[ρA(t) ln ρA(t)]

Consider the Gibbs ensemble for the entire system ρT= e-βH/Z

The system thermalizes if   ρA,T = ρA(∞)

Thermalization: 

prepare a many-body quantum system in a pure state 
|Ψ0⟩ that is not an eigenstate of the Hamiltonian

Path integral formulation

|⇧(t)⇤ = e�iHt |⇧0⇤, thus

⇥O(t, {ri})⇤ =

Z�1

⇥⇧0|e iHt

��H

O({ri})e�iHt

��H

|⇧0⇤

where Z = ⇥⇧0|e�2�H |⇧0⇤.
Path integral in imaginary time

1

Z

�
[d⌅]O({ri}) e�S[�]�(⌅(⇤2)�⇧0)�(⌅(⇤1)�⇧0) =

continued to ⇤1 = �⇥ � it and ⇤2 = ⇥ � it
We end in a slab of width 2⇥

Pasquale Calabrese Quantum Quenches

◉



Entanglement vs Thermodynamics 

ρA,TD = ρA(∞)

The equivalence of reduced density matrices

Implies that the subsystem’s entropies are the same: SA,TD = SA(∞)
The TD entropy STD=-Tr ρTD ln ρTD is extensive

STD SA,TD SA(∞)
VA VAV =≃

For large time the entanglement entropy 
becomes thermodynamic entropy 

The entropy of the stationary state is just 
the entanglement accumulated during time



Quantum thermalization through entanglement in an isolated many-body system

A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, P. M. Preiss, and M. Greiner⇤

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
(Dated: March 17, 2016)

The concept of entropy is fundamental to thermalization, yet appears at odds with basic principles
in quantum mechanics. While statistical mechanics relies on the maximization of entropy for a
system at thermal equilibrium, an isolated many-body system undergoing Schrödinger dynamics has
zero entropy because, at any given time, it is described by a single quantum state. The underlying
role of quantum mechanics in many-body physics is then seemingly antithetical to the success of
statistical mechanics in a large variety of systems. Here we observe experimentally how this conflict
is resolved: we perform microscopy on an evolving quantum state, and we see thermalization occur
on a local scale, while we measure that the full quantum state remains pure. We directly measure
entanglement entropy and observe how it assumes the role of the thermal entropy in thermalization.
Although the full state has zero entropy, entanglement creates local entropy that validates the
use of statistical physics for local observables. In combination with number-resolved, single-site
imaging, we demonstrate how our measurements of a pure quantum state agree with the Eigenstate
Thermalization Hypothesis and thermal ensembles in the presence of a near-volume law in the
entanglement entropy.

When an isolated quantum system is significantly per-
turbed, for instance due to a sudden change in the Hamil-
tonian, we can predict the ensuing dynamics with the
resulting eigenstate distribution induced by the pertur-
bation or so-called “quench” [1]. At any given time, the
evolving quantum state will have amplitudes that depend
on the eigenstates populated by the quench, and the en-
ergy eigenvalues of the Hamiltonian. In many cases, how-
ever, such a system can be extremely di�cult to simu-
late, often because the resulting dynamics entail a large
amount of entanglement [2–5]. Yet, surprisingly, this
same isolated quantum system can thermalize under its
own dynamics unaided by a reservoir (Figure 1) [6–8],
so that the tools of statistical mechanics apply and chal-
lenging simulations are no longer required. Under such
circumstances, a quantum system coherently evolving
according to the Schrödinger equation eventually looks
thermal: the average values of most observables can be
predicted from a thermal ensemble and thermodynamic
quantities. The equivalence of these observables implies
that a globally-pure, zero-entropy quantum state appears
nearly identical to a mixed, globally-entropic thermal
ensemble [6, 7, 9, 10]. Ostensibly the coherent quan-
tum amplitudes that define the quantum state in Hilbert
space are no longer relevant, even though they evolve in
time and determine the expectation values of observables.
The dynamic convergence of the measurements of a pure
quantum state to the predictions of a thermal ensemble,
and the physical process by which this convergence oc-
curs, is the experimental focus of this work.

On-going theoretical studies over the past three
decades [6, 7, 9–13] have, in many regards, clarified the
role of quantum mechanics in statistical physics. The co-
nundrum surrounding the agreement of zero entropy pure
states with extensively entropic thermal states is resolved

⇤ E-mail: greiner@physics.harvard.edu
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FIG. 1. Schematic of thermalization dynamics in

closed systems. An isolated quantum system at zero tem-
perature can be described by a single pure wavefunction | i.
Subsystems of the full quantum state appear pure, as long
as the entanglement (indicated by grey lines) between sub-
systems is negligible. If suddenly perturbed, the full system
evolves unitarily, developing significant entanglement between
all parts of the system. While the full system remains in a
pure, zero-entropy state, the entropy of entanglement causes
the subsystems to equilibrate, and local, thermal mixed states
appear to emerge within a globally pure quantum state.

by the counter-intuitive e↵ects of quantum entanglement.
A canonical example of this point is the Bell state of two
spatially separated spins: while the full quantum state
is pure, local measurements of just one of the spins re-
veals a statistical mixture of reduced purity. This local
statistical mixture is distinct from a superposition, be-
cause no operation on the single spin can remove these
fluctuations or restore its quantum purity. In such a way,
the spin’s entanglement with another spin creates local
entropy, called entanglement entropy. Entanglement en-
tropy is not a phenomenon restricted to spins, but exists
in all quantum systems that exhibit entanglement. And
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while probing entanglement is a notoriously di�cult ex-
perimental problem, this loss of local purity, or, equiva-
lently, the development of local entropy, establishes the
presence of entanglement when it can be shown that the
full quantum state is pure.

In this work, we directly observe a globally pure quan-
tum state dynamically lose local purity to entanglement,
and in parallel become locally thermal. Recent exper-
iments with few-qubit spin systems have demonstrated
analogies between the role of entanglement in quantum
systems and classical chaotic dynamics [14]. Further-
more, studies of bulk gases have shown the emergence
of thermal ensembles and the e↵ects of conserved quan-
tities in isolated quantum systems through macroscopic
observables and correlation functions [15–18]. We are
able to directly measure the global purity as thermal-
ization occurs through single-particle resolved quantum
many-body interference. In turn, we can observe mi-
croscopically the role of entanglement in producing local
entropy in a thermalizing system of itinerant particles,
which is paradigmatic of the systems studied in classical
statistical mechanics.

In such studies, we will explore the equivalence be-
tween the entanglement entropy we measure and the ex-
pected thermal entropy of an ensemble [11, 12]. We fur-
ther address how this equivalence is linked to the Eigen-
state Thermalization Hypothesis (ETH), which provides
an explanation for thermalization in closed quantum sys-
tems [6, 7, 9, 10]. ETH is typically framed in terms of
the smooth variation of observables among energy eigen-
states [6, 7, 10], but the role of entanglement in these
eigenstates is paramount [12]. Indeed, fundamentally,
ETH is a statement about the equivalence of the local
reduced density matrix of a single excited energy eigen-
state and the local reduced density matrix of a globally
thermal state [19], an equivalence which is made possible
only by quantum entanglement and the impurity it pro-
duces locally within a global pure state. The equivalence
between these two seemingly distinct systems, the sub-
systems of a quantum pure state and a thermal ensemble,
ensures thermalization of most observable quantities af-
ter a quantum quench. Through parallel measurements
of the entanglement entropy and local observables within
a many-body Bose-Hubbard system, we are able to exper-
imentally study this equivalence at the heart of quantum
thermalization.

For our experiments, we utilize a Bose-Einstein con-
densate of 87Rb atoms loaded into a two-dimensional op-
tical lattice that lies at the focus of a high resolution
imaging system [20, 21]. The system is described by the
Bose-Hubbard Hamiltonian,

H =
U

2

X

x,y

nx,y(nx,y � 1)� Jx

X

x,y

a
†
x,yax+1,y (1)

�Jy

X

x,y

a
†
x,yax,y+1 + h.c., (2)

where a†x,y, ax,y, and nx,y = a
†
x,yax,y are the bosonic cre-
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FIG. 2. Experimental sequence (A) Using tailored optical
potentials superimposed on an optical lattice, we determin-
istically prepare two copies of a six-site Bose-Hubbard sys-
tem, where each lattice site is initialized with a single atom.
We enable tunneling in the x-direction and obtain either the
ground state (adiabatic melt) or a highly excited state (sud-
den quench) in each six-site copy. After a variable evolution
time, we freeze the evolution and characterize the final quan-
tum state by either acquiring number statistics or measur-
ing the local and global purity. (B) We show site-resolved
number statistics right after the quench (first panel, strongly
peaked about one atom with vanishing fluctuations), or at
later times (second panel) to which we compare the predic-
tions of a canonical thermal ensemble. Alternatively, we can
measure the global many-body purity, and observe a static,
high purity. This is in stark contrast to the vanishing global
purity of a canonical thermal ensemble, yet this same ensem-
ble may be employed to predict the local number distribution
we observe. (C) To measure the atom number locally, we al-
low the atoms to expand in half-tubes along the y-direction,
while pinning the atoms along x. In separate experiments,
we apply a many-body beam splitter by allowing the atoms
in each column to tunnel in a projected double-well potential.
The resulting atom number parity, even or odd, on each site
encodes the global and local purity.

ation, annihilation, and number operators at the site lo-
cated at {x, y}, respectively. Atoms can tunnel between
neighboring lattice sites at a rate Ji and experience a
pairwise interaction energy U when multiple atoms oc-
cupy a site. We have independent control over the tun-
neling amplitudes Jx and Jy through the lattice depth,
which can be tuned to yield J/U ⌧ 1 to J/U � 1.
In addition to the optical lattice, we are able to super-
impose arbitrary potentials using a digital micromirror
device (DMD) placed in the Fourier plane of our imaging
system [22].
To initiate the experiment, we isolate a 2 ⇥ 6 plaque-

tte from a larger low-entropy Mott insulator with unity

We find that for both consumption and assets,
models trained in-country uniformly outperform
models trained out-of-country (Fig. 5), as would
be expected. But we also find that models appear
to “travelwell” across borders,with out-of-country
predictions often approaching the accuracy of
in-country predictions. Pooled models trained
on all four consumption surveys or all five asset
surveys very nearly approach the predictive power
of in-country models in almost all countries for
both outcomes. These results indicate that, at least
for our sample of countries, common determi-
nants of livelihoods are revealed in imagery,
and these commonalities can be leveraged to
estimate consumption and asset outcomes with
reasonable accuracy in countries where survey
outcomes are unobserved.

Discussion

Our approach demonstrates that existing high-
resolution daytime satellite imagery can be used
to make fairly accurate predictions about the
spatial distribution of economic well-being across
five African countries. Our model performs well
despite inexact data on both the timing of the
daytime imagery and the location of clusters in
the training data, andmore precise data in either
of these dimensions are likely to further improve
model performance.
Notably, we show that our model’s predictive

powerdeclines onlymodestlywhenamodel trained
in one of our sample countries is used to estimate
consumption or assets in another country. Despite
differences in economic and political institutions
across countries, model-derived features appear
to identify fundamental commonalities in the de-
terminants of livelihoods across settings, suggest-
ing that our approach could be used to fill in the
large data gaps resulting from poor survey cover-
age inmanyAfrican countries. In contrast to other
recent approaches that rely on proprietary com-
mercial data sets, our method uses only publicly
available data and so is straightforward and nearly
costless to scale across countries.
Although ourmodel outperforms other sources

of passively collected data (e.g., cellphone data,
nightlights) in estimating economic well-being at
the cluster level, we are currently unable to assess
its ability to discern differences within clusters, as
public-domain survey data assign identical coordi-
nates to all households in a given cluster to preserve
respondent privacy. In principle, our model can
make predictions at any resolution for which day-
time satellite imagery is available, though predic-
tions on finer scales would likely be noisier. New
sources of ground truth data, whether from more
disaggregated surveys or novel crowdsourced chan-
nels, could enable evaluation of our model at the
household level. Combining our extracted features
with other passively collected data, in locations
where such data are available, could also increase
both household- and cluster-level predictive power.
Given the limited availability of high-resolution

time series of daytime imagery, we also have not
yet been able to evaluate the ability of our transfer
learning approach to predict changes in economic
well-being over time at particular locations. Such

predictionswouldbeveryhelpful tobothresearchers
and policy-makers and should be enabled in the
near futureas increasingamountsof high-resolution
satellite imagery become available (22).
Our transfer learning strategy of using a plen-

tiful but noisy proxy shows howpowerfulmachine
learning tools, which typically thrive in data-rich
settings, can be productively employed even when
data on key outcomes of interest are scarce. Our
approach could have broad application across
many scientific domains andmay be immediately
useful for inexpensively producing granular data
on other socioeconomic outcomes of interest to
the international community, such as the large
set of indicators proposed for the United Nations
Sustainable Development Goals (5).
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STATISTICAL PHYSICS

Quantum thermalization through
entanglement in an isolated
many-body system
Adam M. Kaufman, M. Eric Tai, Alexander Lukin, Matthew Rispoli, Robert Schittko,
Philipp M. Preiss, Markus Greiner*

Statistical mechanics relies on the maximization of entropy in a system at thermal
equilibrium. However, an isolated quantum many-body system initialized in a pure state
remains pure during Schrödinger evolution, and in this sense it has static, zero entropy. We
experimentally studied the emergence of statistical mechanics in a quantum state and
observed the fundamental role of quantum entanglement in facilitating this emergence.
Microscopy of an evolving quantum system indicates that the full quantum state remains
pure, whereas thermalization occurs on a local scale. We directly measured entanglement
entropy, which assumes the role of the thermal entropy in thermalization. The entanglement
creates local entropy that validates the use of statistical physics for local observables. Our
measurements are consistent with the eigenstate thermalization hypothesis.

W
hen an isolated quantum system is
perturbed—for instance, owing to a sud-
den change in the Hamiltonian (a so-
called quench)—the ensuing dynamics
are determined by an eigenstate distri-

bution that is induced by the quench (1). At any
given time, the evolving quantum state will have

amplitudes that depend on the eigenstates popu-
lated by the quench and the energy eigenvalues
of the Hamiltonian. In many cases, however,
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Quantum thermalization through entanglement in an isolated many-body system

A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, P. M. Preiss, and M. Greiner⇤

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
(Dated: March 17, 2016)

The concept of entropy is fundamental to thermalization, yet appears at odds with basic principles
in quantum mechanics. While statistical mechanics relies on the maximization of entropy for a
system at thermal equilibrium, an isolated many-body system undergoing Schrödinger dynamics has
zero entropy because, at any given time, it is described by a single quantum state. The underlying
role of quantum mechanics in many-body physics is then seemingly antithetical to the success of
statistical mechanics in a large variety of systems. Here we observe experimentally how this conflict
is resolved: we perform microscopy on an evolving quantum state, and we see thermalization occur
on a local scale, while we measure that the full quantum state remains pure. We directly measure
entanglement entropy and observe how it assumes the role of the thermal entropy in thermalization.
Although the full state has zero entropy, entanglement creates local entropy that validates the
use of statistical physics for local observables. In combination with number-resolved, single-site
imaging, we demonstrate how our measurements of a pure quantum state agree with the Eigenstate
Thermalization Hypothesis and thermal ensembles in the presence of a near-volume law in the
entanglement entropy.

When an isolated quantum system is significantly per-
turbed, for instance due to a sudden change in the Hamil-
tonian, we can predict the ensuing dynamics with the
resulting eigenstate distribution induced by the pertur-
bation or so-called “quench” [1]. At any given time, the
evolving quantum state will have amplitudes that depend
on the eigenstates populated by the quench, and the en-
ergy eigenvalues of the Hamiltonian. In many cases, how-
ever, such a system can be extremely di�cult to simu-
late, often because the resulting dynamics entail a large
amount of entanglement [2–5]. Yet, surprisingly, this
same isolated quantum system can thermalize under its
own dynamics unaided by a reservoir (Figure 1) [6–8],
so that the tools of statistical mechanics apply and chal-
lenging simulations are no longer required. Under such
circumstances, a quantum system coherently evolving
according to the Schrödinger equation eventually looks
thermal: the average values of most observables can be
predicted from a thermal ensemble and thermodynamic
quantities. The equivalence of these observables implies
that a globally-pure, zero-entropy quantum state appears
nearly identical to a mixed, globally-entropic thermal
ensemble [6, 7, 9, 10]. Ostensibly the coherent quan-
tum amplitudes that define the quantum state in Hilbert
space are no longer relevant, even though they evolve in
time and determine the expectation values of observables.
The dynamic convergence of the measurements of a pure
quantum state to the predictions of a thermal ensemble,
and the physical process by which this convergence oc-
curs, is the experimental focus of this work.

On-going theoretical studies over the past three
decades [6, 7, 9–13] have, in many regards, clarified the
role of quantum mechanics in statistical physics. The co-
nundrum surrounding the agreement of zero entropy pure
states with extensively entropic thermal states is resolved
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FIG. 1. Schematic of thermalization dynamics in

closed systems. An isolated quantum system at zero tem-
perature can be described by a single pure wavefunction | i.
Subsystems of the full quantum state appear pure, as long
as the entanglement (indicated by grey lines) between sub-
systems is negligible. If suddenly perturbed, the full system
evolves unitarily, developing significant entanglement between
all parts of the system. While the full system remains in a
pure, zero-entropy state, the entropy of entanglement causes
the subsystems to equilibrate, and local, thermal mixed states
appear to emerge within a globally pure quantum state.

by the counter-intuitive e↵ects of quantum entanglement.
A canonical example of this point is the Bell state of two
spatially separated spins: while the full quantum state
is pure, local measurements of just one of the spins re-
veals a statistical mixture of reduced purity. This local
statistical mixture is distinct from a superposition, be-
cause no operation on the single spin can remove these
fluctuations or restore its quantum purity. In such a way,
the spin’s entanglement with another spin creates local
entropy, called entanglement entropy. Entanglement en-
tropy is not a phenomenon restricted to spins, but exists
in all quantum systems that exhibit entanglement. And
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while probing entanglement is a notoriously di�cult ex-
perimental problem, this loss of local purity, or, equiva-
lently, the development of local entropy, establishes the
presence of entanglement when it can be shown that the
full quantum state is pure.

In this work, we directly observe a globally pure quan-
tum state dynamically lose local purity to entanglement,
and in parallel become locally thermal. Recent exper-
iments with few-qubit spin systems have demonstrated
analogies between the role of entanglement in quantum
systems and classical chaotic dynamics [14]. Further-
more, studies of bulk gases have shown the emergence
of thermal ensembles and the e↵ects of conserved quan-
tities in isolated quantum systems through macroscopic
observables and correlation functions [15–18]. We are
able to directly measure the global purity as thermal-
ization occurs through single-particle resolved quantum
many-body interference. In turn, we can observe mi-
croscopically the role of entanglement in producing local
entropy in a thermalizing system of itinerant particles,
which is paradigmatic of the systems studied in classical
statistical mechanics.

In such studies, we will explore the equivalence be-
tween the entanglement entropy we measure and the ex-
pected thermal entropy of an ensemble [11, 12]. We fur-
ther address how this equivalence is linked to the Eigen-
state Thermalization Hypothesis (ETH), which provides
an explanation for thermalization in closed quantum sys-
tems [6, 7, 9, 10]. ETH is typically framed in terms of
the smooth variation of observables among energy eigen-
states [6, 7, 10], but the role of entanglement in these
eigenstates is paramount [12]. Indeed, fundamentally,
ETH is a statement about the equivalence of the local
reduced density matrix of a single excited energy eigen-
state and the local reduced density matrix of a globally
thermal state [19], an equivalence which is made possible
only by quantum entanglement and the impurity it pro-
duces locally within a global pure state. The equivalence
between these two seemingly distinct systems, the sub-
systems of a quantum pure state and a thermal ensemble,
ensures thermalization of most observable quantities af-
ter a quantum quench. Through parallel measurements
of the entanglement entropy and local observables within
a many-body Bose-Hubbard system, we are able to exper-
imentally study this equivalence at the heart of quantum
thermalization.

For our experiments, we utilize a Bose-Einstein con-
densate of 87Rb atoms loaded into a two-dimensional op-
tical lattice that lies at the focus of a high resolution
imaging system [20, 21]. The system is described by the
Bose-Hubbard Hamiltonian,

H =
U

2
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†
x,yax+1,y (1)
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†
x,yax,y+1 + h.c., (2)

where a†x,y, ax,y, and nx,y = a
†
x,yax,y are the bosonic cre-
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FIG. 2. Experimental sequence (A) Using tailored optical
potentials superimposed on an optical lattice, we determin-
istically prepare two copies of a six-site Bose-Hubbard sys-
tem, where each lattice site is initialized with a single atom.
We enable tunneling in the x-direction and obtain either the
ground state (adiabatic melt) or a highly excited state (sud-
den quench) in each six-site copy. After a variable evolution
time, we freeze the evolution and characterize the final quan-
tum state by either acquiring number statistics or measur-
ing the local and global purity. (B) We show site-resolved
number statistics right after the quench (first panel, strongly
peaked about one atom with vanishing fluctuations), or at
later times (second panel) to which we compare the predic-
tions of a canonical thermal ensemble. Alternatively, we can
measure the global many-body purity, and observe a static,
high purity. This is in stark contrast to the vanishing global
purity of a canonical thermal ensemble, yet this same ensem-
ble may be employed to predict the local number distribution
we observe. (C) To measure the atom number locally, we al-
low the atoms to expand in half-tubes along the y-direction,
while pinning the atoms along x. In separate experiments,
we apply a many-body beam splitter by allowing the atoms
in each column to tunnel in a projected double-well potential.
The resulting atom number parity, even or odd, on each site
encodes the global and local purity.

ation, annihilation, and number operators at the site lo-
cated at {x, y}, respectively. Atoms can tunnel between
neighboring lattice sites at a rate Ji and experience a
pairwise interaction energy U when multiple atoms oc-
cupy a site. We have independent control over the tun-
neling amplitudes Jx and Jy through the lattice depth,
which can be tuned to yield J/U ⌧ 1 to J/U � 1.
In addition to the optical lattice, we are able to super-
impose arbitrary potentials using a digital micromirror
device (DMD) placed in the Fourier plane of our imaging
system [22].
To initiate the experiment, we isolate a 2 ⇥ 6 plaque-

tte from a larger low-entropy Mott insulator with unity

We find that for both consumption and assets,
models trained in-country uniformly outperform
models trained out-of-country (Fig. 5), as would
be expected. But we also find that models appear
to “travelwell” across borders,with out-of-country
predictions often approaching the accuracy of
in-country predictions. Pooled models trained
on all four consumption surveys or all five asset
surveys very nearly approach the predictive power
of in-country models in almost all countries for
both outcomes. These results indicate that, at least
for our sample of countries, common determi-
nants of livelihoods are revealed in imagery,
and these commonalities can be leveraged to
estimate consumption and asset outcomes with
reasonable accuracy in countries where survey
outcomes are unobserved.

Discussion

Our approach demonstrates that existing high-
resolution daytime satellite imagery can be used
to make fairly accurate predictions about the
spatial distribution of economic well-being across
five African countries. Our model performs well
despite inexact data on both the timing of the
daytime imagery and the location of clusters in
the training data, andmore precise data in either
of these dimensions are likely to further improve
model performance.
Notably, we show that our model’s predictive

powerdeclines onlymodestlywhenamodel trained
in one of our sample countries is used to estimate
consumption or assets in another country. Despite
differences in economic and political institutions
across countries, model-derived features appear
to identify fundamental commonalities in the de-
terminants of livelihoods across settings, suggest-
ing that our approach could be used to fill in the
large data gaps resulting from poor survey cover-
age inmanyAfrican countries. In contrast to other
recent approaches that rely on proprietary com-
mercial data sets, our method uses only publicly
available data and so is straightforward and nearly
costless to scale across countries.
Although ourmodel outperforms other sources

of passively collected data (e.g., cellphone data,
nightlights) in estimating economic well-being at
the cluster level, we are currently unable to assess
its ability to discern differences within clusters, as
public-domain survey data assign identical coordi-
nates to all households in a given cluster to preserve
respondent privacy. In principle, our model can
make predictions at any resolution for which day-
time satellite imagery is available, though predic-
tions on finer scales would likely be noisier. New
sources of ground truth data, whether from more
disaggregated surveys or novel crowdsourced chan-
nels, could enable evaluation of our model at the
household level. Combining our extracted features
with other passively collected data, in locations
where such data are available, could also increase
both household- and cluster-level predictive power.
Given the limited availability of high-resolution

time series of daytime imagery, we also have not
yet been able to evaluate the ability of our transfer
learning approach to predict changes in economic
well-being over time at particular locations. Such

predictionswouldbeveryhelpful tobothresearchers
and policy-makers and should be enabled in the
near futureas increasingamountsof high-resolution
satellite imagery become available (22).
Our transfer learning strategy of using a plen-

tiful but noisy proxy shows howpowerfulmachine
learning tools, which typically thrive in data-rich
settings, can be productively employed even when
data on key outcomes of interest are scarce. Our
approach could have broad application across
many scientific domains andmay be immediately
useful for inexpensively producing granular data
on other socioeconomic outcomes of interest to
the international community, such as the large
set of indicators proposed for the United Nations
Sustainable Development Goals (5).
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STATISTICAL PHYSICS

Quantum thermalization through
entanglement in an isolated
many-body system
Adam M. Kaufman, M. Eric Tai, Alexander Lukin, Matthew Rispoli, Robert Schittko,
Philipp M. Preiss, Markus Greiner*

Statistical mechanics relies on the maximization of entropy in a system at thermal
equilibrium. However, an isolated quantum many-body system initialized in a pure state
remains pure during Schrödinger evolution, and in this sense it has static, zero entropy. We
experimentally studied the emergence of statistical mechanics in a quantum state and
observed the fundamental role of quantum entanglement in facilitating this emergence.
Microscopy of an evolving quantum system indicates that the full quantum state remains
pure, whereas thermalization occurs on a local scale. We directly measured entanglement
entropy, which assumes the role of the thermal entropy in thermalization. The entanglement
creates local entropy that validates the use of statistical physics for local observables. Our
measurements are consistent with the eigenstate thermalization hypothesis.

W
hen an isolated quantum system is
perturbed—for instance, owing to a sud-
den change in the Hamiltonian (a so-
called quench)—the ensuing dynamics
are determined by an eigenstate distri-

bution that is induced by the quench (1). At any
given time, the evolving quantum state will have

amplitudes that depend on the eigenstates popu-
lated by the quench and the energy eigenvalues
of the Hamiltonian. In many cases, however,
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The understanding of the quench dynamics cannot 
prescind the characterisation of the entanglement
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FIG. 3. Dynamics of entanglement entropy. Starting from a low-entanglement ground state, a global quantum quench
leads to the development of large-scale entanglement between all subsystems. We quench a six-site system from the Mott
insulating product state (J/U ⌧ 1) with one atom per site to the weakly interacting regime of J/U = 0.64 and measure the
dynamics of the entanglement entropy. As it equilibrates, the system acquires local entropy while the full system entropy
remains constant and at a value given by measurement imperfections. The dynamics agree with exact numerical simulations
with no free parameters (solid lines). Error bars are the standard error of the mean (S.E.M.). For the largest entropies
encountered in the three-site system, the large number of populated microstates leads to a significant statistical uncertainty
in the entropy, which is reflected in the upper error bar extending to large entropies or being unbounded. Inset: slope of the
early time dynamics, extracted with a piecewise linear fit (see Supplementary Material). The dashed line is the mean of these
measurements.

filling as shown in Figure 2A (see Supplementary Mate-
rial). At this point, each system is in a product state of
single-atom Fock states on each of the constituent sites.
We then suddenly switch on tunneling in the x-direction
while the y-direction tunneling is suppressed. Each chain
is restricted to the original six sites by introducing a bar-
rier at the ends of the chains to prevent tunneling out
of the system. These combined steps quench the six-site
chains into a Hamiltonian for which the initial state rep-
resents a highly excited state that has significant over-
lap with an appreciable number of energy eigenstates.
Each chain represents an identical but independent copy
of a quenched system of six particles on six sites, which
evolves in the quenched Hamiltonian for a controllable
duration.

In the data that follow, we realize measurements of
the quantum purity and on-site number statistics (Fig-
ure 2C). For measurements of the former, we append
to the quench evolution a beam splitter operation that
interferes the two identical copies by freezing dynam-
ics along the chain and allowing for tunneling in a pro-
jected double-well potential for a prescribed time [23]. In
the last step for both measurements, a potential barrier
is raised between the two copies and a one-dimensional
time-of-flight in the direction transverse to the chain is
performed to measure the resulting occupation on each
site of each copy.

The ability to measure quantum purity is crucial to

assessing the role of entanglement in our system. To-
mography of the full quantum state would typically be
required to extract the global purity, which is particu-
larly challenging in the full 462-dimensional Hilbert space
defined by the itinerant particles in our system. Fur-
thermore, while in spin systems global rotations can be
employed for tomography [24], there is no known anal-
ogous scheme for extracting the full density matrix of a
many-body state of itinerant particles. The many-body
interference described here, however, allows us to extract
quantities that are quadratic in the density matrix, such
as the purity [23]. After performing the beam splitter
operation, we can obtain the quantum purity of the full
system and any subsystem simply by counting the num-
ber of atoms on each site of one of the six-site chains
(Figure 2C). Each run of the experiment yields the par-

ity P
(k) = ⇧ip

(k)
i , where i is iterated over a set of sites of

interest in copy-k. The single-site parity operator p(k)i re-
turns 1 (-1) when the atom number on site-i is even (odd).
It has been shown that the beam splitter operation yields
hP (1)i = hP (2)i = Tr (⇢1⇢2), where ⇢i is the density ma-
trix on the set of sites considered for each copy [4, 23, 25].
Because the preparation and quench dynamics for each
copy are identical, yielding ⇢1 = ⇢2 ⌘ ⇢, the average par-
ity reduces to the purity: hP (i)i = Tr(⇢2). When the
set of sites considered comprises the full six-site chain,
the expectation value of this quantity returns the global
many-body purity, while for smaller sets it provides the

Kaufmann et al 2016
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Figure 3: Second-order Rényi entropy of 1- to 10-qubit partitions of a 20-qubit
system. The intial low-entropy Néel state evolves under HXY (J0 = 370 s

�1, ↵ = 1.01)
within 10 ms into a state with high-entropy partitions, corresponding to nearly fully mixed
subsystems. For the data taken at 6 ms (10 ms) time evolution, the two (three) data points
corresponding to highly mixed states are not shown due to their large statistical error bars.
For details regarding numerical simulations (dotted curves) and error bars, see (26).

purity is in agreement with control experiments, which show a purity loss of 0.08 due
to imperfect state preparation and an underestimation of the purity by approximately
0.17 due to decoherence during the random spin rotations (26). At short times, the
figure shows that the single-spin subsystem became quickly entangled with the rest of the
system, seen as a rapid decrease (increase) of the single-spin purity (entropy), up until the
reduced state became completely mixed. At longer times, the purity (entropy) of larger
subsystems continued to decrease (increase), as they became entangled with the rest. The
dotted curves represent numerical simulations for the experimental parameters, including
decoherence, during state initialization, evolution and measurement (26). While panels
(a,b) correspond to a specific set of connected partitions A, the data gives access to the
purities for all partitions A of the system; represented in panel (c) for a specific time t = 5
ms. Since the second-order Rényi entropy of every subsystem is, within three standard
deviations, larger than for the total system, this demonstrates entanglement between all
29 � 1 = 511 bipartitions of the 10-qubit system.

Next, a 20-qubit experiment was performed, in which the entropy growth of the central
part of the chain was measured during time evolution under HXY, for partitions of up
to 10 qubits. Our observations, shown in Fig. 3, are consistent with the formation of
highly entangled states. The entropy is seen to increase rapidly over the time evolution
of 10 ms, with the reduced density matrices of up to 7 qubits becoming nearly fully
mixed. The experimental data agree very well with numerical simulations (dotted curves)
obtained with a matrix-product state (MPS) algorithm (31), which includes the (weak)
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Figure 4: Spread of quantum correlations under HXY (J0 = 420 s�1, ↵ = 1.24) with
and without disorder. (a) Half-chain entropy growth versus time without disorder
(red data points) and with disorder (blue data points). Numerical simulations based
on unitary dynamics (dotted curves) including known sources of decoherence (full lines)
are in agreement with the measured second-order Rényi entropies. (b) Quantum mutual
information of selected subsystems versus time. The decrease of I

(2) with distance between
subsystems is a manifestation of the inhibition of correlation spreading by local disorder.
Note that for longer time scales, decoherence leads to a slow increase in the entropy of
the total system (S(2)(⇢) ⇡ 0.9 for t = 10 ms for the full system (26)). Consequently,
there is an additional contribution to the slow entropy growth of the system from this
decoherence, compared to the case of purely unitary dynamics.

averaged entropy growth clearly demonstrates how disorder reduces the growth of en-
tanglement. After an initial rapid evolution, a considerable slowing of the dynamics is
observed, with a small, but non-vanishing, growth rate at later times; a behaviour com-
patible with the scenario of MBL. This observation is accompanied with a remembrance
of the initial Néel state during the dynamics, manifest in the measured time evolution of
the local magnetization (26).

Finally, Fig. 4 (b) shows the evolution of the second-order Rényi mutual information,
defined as I

(2)(⇢A : ⇢B) = S
(2)(⇢A) + S

(2)(⇢B) � S
(2)(⇢AB), quantifying the total amount

of classical and quantum correlations between various pairs of subsystems (16). In the
presence of disorder, I

(2)(⇢A : ⇢B) saturates quickly to approximately constant values,
which decrease with increasing distance between the two partitions A and B. This spatial
decay of correlations provides a further indication of localization due to the presence of
disorder in our system.

We have demonstrated a new tool for measuring second-order Rényi entropies, and
shown how it provides a powerful method for both characterizing engineered quantum sys-
tems and using them to tackle open questions in physics. In our experiments, we studied
the entropy of partitions of up to 10 qubits, due to technical restrictions that currently
limit our experimental repetition rate. Straightforward technical improvements should
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Mixed state entanglement: Partial transpose and negativity

A1
A2

B
(|e1i , e2j i he1k, e2l |)T1 ⌘ |e1k, e2j i he1i , e2l |

⇢A =
X

ijkl

he1i , e2j |⇢A|e1k, e2l i|e1i , e2j ihe1k, e2l |

⇢T1
A =

X

ijkl

he1k, e2j |⇢A|e1i , e2l i|e1k, e2j ihe1i , e2l |

 and  bases of   and |e1
k ⟩ |e2

l ⟩ A1 A2

PPT criterion:
If  has negative eigenvalues

 is entangled

ρT1
A

ρA

The Negativity  measures how much the eigenvalues of  

are negative (it is also an entanglement monotone)

= 𝒩 =
Tr |ρT1

A | − 1
2

ρT1
A

Replica trick:  Tr |ρT1
A | = lim

n→1/2
Tr(ρT1

A )2n

Peres, 1996

Vidal Werner 2002

P. Calabrese, J. Cardy, E. Tonni 2012

Q: what is the entanglement in a mixed state?



Negativity and QFT
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Tripartition:
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FIG. 2: Top: The reduced density matrix �A of two disjoint
intervals. Middle: Partial transpose with respect to the sec-
ond interval �T2

A . Bottom: Reversed partial transpose �C2
A .

where �2 is the reduced density matrix on H2. Taking
the limit ne ⇥ 1, we recover the result [2] that for a
pure state the logarithmic negativity is the Rényi entropy
S1/2 = 2 ln Tr�1/2

2 .
Negativity and QFT. For concreteness we refer to a 1D

system and we consider the tripartition depicted in Fig. 1
with A composed of two parts A = A1  A2 = [u1, v1]  
[u2, v2] and B the remainder, but most of the following
ideas apply to more general cases. In the ground-state
of a QFT, the reduced density matrix �A has the path
integral representation in Fig. 2 (top) [6]. The two open
cuts correspond to the rows and columns of �A. Tr�n

A for
integer n can be obtained by joining cyclically n of the
above density matrices as in Fig. 3 (top). Thus Tr�n

A is
(proportional to) the partition function on this n-sheeted
Riemann surface which is equivalent to the correlation
function of the twist fields Tn(z) constructed exploiting
the cyclic permutation symmetry of the sheets, i.e. [6, 7]

Tr�n
A = ⌦Tn(u1)T̄n(v1)Tn(u2)T̄n(v2)↵ . (4)

The partial transposition with respect to the second in-
terval A2 corresponds to the exchange of row and column
indices in A2. In the path integral representation, this
is equivalent to interchange the upper and lower edges
of the second cut in �A as in the middle of Fig. 2. It is
convenient to reverse the order of the column and row
indices in A2 as in the bottom of Fig. 2, to obtain the
reversed partial transpose �C2

A . This is related to the par-
tial transpose as �C2

A = C�T2
A C, where C reverses the

order of indices either on the lower or on the upper cut.
Clearly Tr(�T2

A )n = Tr(�C2
A )n and so Tr(�T2

A )n is the parti-
tion function on the n-sheeted surface obtained by joining
cyclically n of the above �C2

A as in the bottom of Fig. 3.
It is then straightforward to see that

Tr(�T2
A )n = ⌦Tn(u1)T̄n(v1)T̄n(u2)Tn(v2)↵ , (5)

i.e. the partial transposition has the net e⇥ect to ex-
change two twist operators compared to Eq. (4). To
replace �T2

A with �C2
A it has been fundamental to consider

integer cyclical traces. The operator C enters in quanti-
ties like Tr(�A�T2

A ) which is in fact the partition function
on a non-orientable surface with the topology of a Klein
bottle. This can be computed using CFT methods [14].

FIG. 3: Path integral representation of Tr�n
A (top) and

Tr(�T2
A )n (bottom) for n = 3.

For n = 2, T2 = T̄2 and so Tr�2
A = Tr(�T2

A )2 which
follows from the properties of the trace.

We first specialize to a pure state by letting B ⇥ ⇧ for
which Tr(�T2

A )n can be worked out in full generality as

Tr(�T2
A )n = ⌦T 2

n (u2)T̄ 2
n (v2)↵ . (6)

This expression depends on the parity of n because T 2
n

connects the j-th sheet with the (j + 2)-th one. For n =
ne even, the ne-sheeted Riemann surface decouples in
two independent (ne/2)-sheeted surfaces. Conversely for
n = no odd, the surface remains a no-sheeted Riemann
surface. Thus we have
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A2
)2 ,

Tr(�T2
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, (7)

which are the results for pure states in Eq. (3), recovered
here purely from QFT.

We now specialize to the case of a CFT, for which the
twist fields transform like primary operators of dimension
�Tn = c(n� 1/n)/12 [6]. Thus when A2 is embedded in
an infinite system we have ( = u2 � v2)
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A )ne ⌅  �
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3 ( ne
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c
6 (no� 1

no
). (8)

Despite of the simplicity of the above calculation, it
shows one important point of the CFT analysis: for
n = ne even, T 2

ne
has dimension �T 2

ne
= c(ne/2�2/ne)/6,

while for n = no odd, T 2
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has dimension �T 2
no

=
c(no � 1/no)/12, the same as Tno . We finally have

||�T2
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2 ⇤ E =

c
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ln  + cnst . (9)
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It led to different Riemann surfaces and new twist fields that found applications from 
topological matter to black holes 
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FIG. 1. Protocol and illustrations. a) The p3-PPT condition
can be used to demonstrate mixed-state bipartite entangle-
ment with PT-moments. Separable states are PPT states and
also fulfill the p3-PPT condition. Thus, quantum states which
violate the p3-PPT condition must be bipartite entangled [see
also Eq. (2)]. b) In our protocol, PT-moments are measured
by applying local random unitaries followed by computational
basis measurements. c-d) Violation of the p3-PPT condition,
i.e. p22 > p3, is experimentally observed for connected c) and
disconnected (separated by d = 0, 2, 4 spins) d) partitions A
and B at various times t after a quantum quench [10]. Dots:
experimental results. Error bars: Jackknife estimates of sta-
tistical errors. Lines: numerical simulations including the
decoherence model presented in Ref. [10].

the SM [23], the p3-PPT condition becomes equivalent to
the PPT condition for Werner states (in this case, it is a
necessary and su�cient condition for bipartite entangle-
ment [27]).

The second main contribution of this letter is a mea-
surement protocol to determine PT-moments in NISQ
devices. Crucially, we employ randomized measurements
implemented with local (single-qubit) random unitaries,
see Fig. 1b) which are readily available in NISQ devices
and have been already successfully applied to measure
entanglement entropies, many-body state-fidelities, and
out-of-time ordered correlators [10, 28–30]. In contrast to
previous proposals for measuring PT-moments, our pro-
tocol does not rely on many-body interference between
identical state copies [6, 24, 31], or on using global entan-
gling random unitaries [32] built from interacting Hamil-
tonians [16, 33–35]. Instead, it only requires single-qubit
control, and allows for the estimation of many distinct
PT-moments from the same data. In particular, arbi-
trary orders n � 2 and arbitrary (connected, as well as
disconnected) partitions A, B can be measured.

While the experimental setup for our measurement
protocol is reminiscent of quantum state tomogra-
phy [36–39], there are fundamental di↵erences regarding
the required number of measurements (as independent
state copies), and the way the measured data is pro-

cessed. Without strong assumptions on the state [37, 38],
performing tomography to infer an ✏-approximation of
an unknown density matrix ⇢AB (e.g. in order to sub-
sequently compute ✏-approximations of pn) requires (at
least) order 2|AB|rank(⇢AB)/✏2 measurements [40, 41].
In the high accuracy regime (✏ ⌧ 1), our direct es-
timation protocol instead only requires order 2|AB|/✏2

measurements. For highly mixed states – the central
topic of this work – this discrepancy heralds a signifi-
cant reduction in measurement resources. Furthermore,
we predict PT-moments through a ’direct’ and (multi-
) linear postprocessing of the measurement data repre-
sented as ’classical shadows’ [18]. Thus, data process-
ing is cheap – both in memory and runtime – and can
be massively parallelized. Similar to previous measure-
ment [10, 15, 16, 18, 29, 30, 42–44] and entanglement
detection [45–49] protocols based on randomized mea-
surements, this is another distinct advantage over tomog-
raphy which typically requires expensive data-processing
algorithms [36] or training a neural network [38].

Finally, we demonstrate our measurement protocol and
the p3-PPT condition experimentally in the context of
the quantum simulation of many-body systems. Here,
PT-moments have been shown to reveal universal prop-
erties of quantum phases of matter [22, 50–53] and their
transitions [22, 50, 54, 55]. Out of equilibrium, PT-
moments allow to understand the dynamical process of
thermalization [56–59], and the fate of (many-body) lo-
calization in presence of decoherence [60]. In this work,
we analyze the data of Ref. [10] corresponding to the
out-of-equilibrium dynamics in a spin model with long-
range interactions, which was implemented in a 10-qubit
trapped ion quantum simulator. In particular, we cer-
tify the presence of mixed-state entanglement via the p3-
PPT condition [see Fig. 1(c-d), and for details below].
Furthermore, we monitor the time-evolution of p3 and
observe dynamical signatures of entanglement spreading
and thermalization [56, 57].

Protocol– The experimental ingredients to measure
PT-moments build on resources similar to the ones pre-
sented in Ref. [16] and realized in Ref. [10] to mea-
sure Rényi entropies. The key new element is the post-
processing of the experimental data [18]. As shown in
Fig. 1, the quantum state of interest is realized in a sys-
tem of N qubits. In the partitions A and B, consisting
of |A| and |B| spins, respectively, a randomized measure-
ment is performed by applying random local unitaries
u = u1 ⌦ · · · ⌦ u|AB|, with ui independent single qubit
rotation sampled from a unitary 3-design [33, 61], and a
subsequent projective measurement in the computational
basis with outcome k = (k1, . . . , k|AB|). This is subse-
quently repeated with M di↵erent random unitaries such
that a data set of M bitstrings k(r) with r = 1, . . . ,M is
collected.

From this data set, the PT-moments pn can be esti-
mated without having to reconstruct the density matrix
⇢AB , and with a significantly smaller number of experi-
mental runs M than required for full quantum state to-

“Negativity” in experiments 

 are obtained by performing local random measurements and post-
processing using the classical shadows framework
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p3-PPT condition: if , then PPT is violated and there is entanglement p3 < p2
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The negativity is difficult to measure experimentally, but the moments of the partial transpose  canpn
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Emergent CFT at criticality

Without looking at entanglement, observing and identifying this transition would been 
very hard, likely impossible  



Many fundamental results have not been mentioned here: 

◉ Disordered systems and many-body localization

◉ Entanglement Hamiltonian and algebraic QFT

◉ Gauge theories

◉ Symmetries and entanglement

◉ Operator entanglement 

◉ QFT results: c-theorem, QNEC,… 

◉ Quantum chaos, SYK, quantum circuits

Whenever you look at entanglement deep enough, you get much more than by other means
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