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Motivation

e We want to do something with a quantum computer, like simulate field theories.
e But quantum computers are inherently noisy devices.
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Motivation

e We want to do something with a quantum computer, like simulate field theories.
e But quantum computers are inherently noisy devices.

e So, we have to do something to deal with the noise / errors.



Objectives

1. Define the key elements and principles of quantum error correction.
2. Introduce the stabilizer formalism through the repetition code.
3. Link to recent literature on experimental QEC.

Exercises in red
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Recap of the gate model of qguantum computing

e Qubits |O> = [17 O]T |1> = [07 1]T
o Complex vectors |¢> _ CV|O> 1+ 5|1>
a, e C lo)* + 8] =1
e Gates
o Unitary operators, e.g. :
1 0 0 1 {0 =i {10
1=lo 1] XZL 0] Y_li o] Z‘[o —1]

e Measurements Mivn =1
o Setof operators { }[;} such that Z P
o Probability of outcomeiis p(i) = <¢|M;Mi|¢>

o State after obtaining outcome iis 7714\ /. /p(7)




A bit of history

e Shor (1994): “Check out this poly-time algorithm for factoring.”

Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer®

Peter W. Shor/

Abstract

A digital computer is generally believed to be an efficient universal computing
device; that is, it is believed able to simulate any physical computing device with
an increase in computation time by at most a polynomial factor. This may not be
true when quantum mechanics is taken into consideration. This paper considers

factoring integers and finding discrete logarithms, two problems which are generally
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A bit of history

e Community (1994): “Cool! But there’s no way this could ever be done
in practice. Quantum states are very fragile.”

Maintaining coherence in quantum computers

W. G. Unruh*
Canadian Institute for Advanced Research, Cosmology Program, Department of Physics,
University of British Columbia, Vancouver, Canada V6T 1Z1
(Received 10 June 1994)

The effects of the inevitable coupling to external degrees of freedom of a quantum computer are
examined. It is found that for quantum calculations (in which the maintenance of coherence over
a large number of states is important), not only must the coupling be small, but the time taken
in the quantum calculation must be less than the thermal time scale i/kpT. For longer times the
condition on the strength of the coupling to the external world becomes much more stringent.



A bit of history

e Shor (1995): “Check out this quantum error correcting code.”

Scheme for reducing decoherence in quantum computer memory

Peter W. Shor*
AT&T Bell Laboratories, Room 2D-149, 600 Mountain Avenue, Murray Hill, New Jersey 07974

(Received 17 May 1995)

Recently, it was realized that use of the properties of quantum mechanics might speed up certain computa-
tions dramatically. Interest has since been growing in the area of quantum computation. One of the main
difficulties of quantum computation is that decoherence destroys the information in a superposition of states
contained in a quantum computer, thus making long computations impossible. It is shown how to reduce the
effects of decoherence for information stored in quantum memory, assuming that the decoherence process acts
independently on each of the bits stored in memory. This involves the use of a quantum analog of error-
correcting codes.




A bit of history

e Shor (1996): Fault-tolerant quantum computation.

Fault-Tolerant Quantum Computation

Peter W. Shor
AT&T Research
Abstract

It has recently been realized that use of the properties
of quantum mechanics might speed up certain compu-
tations dramatically. Interest in quantum computation
has since been growing. Omne of the main difficulties
in realizing quantum computation is that decoherence
tends to destroy the information in a superposition of
states in a quantum computer, making long compu-
tations impossible. A further difficulty is that inac-
curacies in quantum state transformations throughout
the computation accumulate, rendering long computa-
tions unreliable. However, these obstacles may not be
as formidable as originally believed. For any quantum
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Errors in guantum computers

Classically, bits can flip. (Or be erased.)
o ie,0->1and 1 ->0 with some probability p.
Qubits have a larger state space, therefore more things can go wrong.

o Any operation which can be considered a gate can also be
considered an error.

o Example: Pauli errors

alla
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Z|1) = =|1)
Phase flip

Y[0) = i[1) = iX Z|0)
Y[1) = —i[0) = iX Z[1)

Bit & phase flip
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The most important fact about QEC

e Errors are continuous (analog). How can we hope to correct these?
e Suppose some error E introduces a relative phase E’¢> — a’()) + 6156‘ 1>
e The angle delta could be (in principle) infinitesimal.

e Any error can be written as (discrete) Pauli errors with continuous coeffs
o This is because Paulis (+ identity) span C?x?

E’w> = (6()]—|— e1X +eY + 632)‘¢> VE, |¢>

e But coefficients e_i could still be (in principle) infinitesimal.
o Is it possible to deal with this?
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The most important fact about QEC
e Measurement maps continuous errors to discrete errors.

e Suppose we measure the error state using operators {MZ}

ElY) = (egl + e1 X + exY + e3Z)|)

e Then, with probability p(i) we get

M;E|vY)/+/p(i)

e This collapses the superposition and makes the continuous coefficient an
irrelevant global phase

o For example, we could choose M_i such that E’¢> = 1;0; ’¢>
o The o; € {I,X,Y, Z}isnow a discrete error which can be corrected.

o The 7); € C is continuous buitis’aglobal phase; so doesn't matter.
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e A key conceptin error correction is adding redundancy.
e F[or example, given a bit, we can make three copies of it:
o 0->000
o 1->111
e Thisis known as the (classical) _
e Theideais very simple: If an error occurs on one bit only, we can
correct it by looking at the other two bits and taking a majority vote.

e Suppose each bit flips independently with probability p. For which p is
the repetition code beneficial?



Analyzing the repetition code

e Suppose each bit flips independently with probability p. For which p is the
repetition code beneficial?
o The probability of an error without the encoding is p.
o With the encoding, the probability of an error is prob(> 1 bit flips) which is

2 3 2 3
Pe :=3p~(1 —p) +p° =3p~ —2p
o Bysetting P < P we find that the repetition code is better provided that
p<1/2



QEC: Subtle point about adding redundancy

e Given the classical repetition code, we might try to do the same with qubits,
l.e. map

) = [)|[¥)])

e Thisis not possible in general, as expressed by the “no cloning theorem”



Aside: Remark about no cloning

e Note in the previous proof the only properties we used were tensor products
and linearity.
e |n this respect no cloning is also a classical theorem.
e Specifically: No linear stochastic map (not necessarily unitary map) can clone
arbitrary classical probability distributions in tensor product.
o See http://info.phys.unm.edu//~crosson/Phys572/QI-572-L9.pdf for more.
(The proof is the same, but there is a longer, interesting discussion.)



http://info.phys.unm.edu//~crosson/Phys572/QI-572-L9.pdf
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e Claim: We can “copy basis information” in the following sense:

a|0) + 5]1) — «|000) + 5]|111)

e Note: |0> and |1> are orthogonal, so this can be viewed as the exception to no-cloning
How can this be done?
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QEC: Can we add any redundancy?

e From no cloning we cannot make copies of our state as in the classical repetition code.
Can we copy anything?
e Claim: We can “copy basis information” in the following sense:

a|0) + 5]1) — «|000) + 5]|111)

e Note: |0> and |1> are orthogonal, so this can be viewed as the exception to no-cloning
e How can this be done?

(I|0>+,8 1) ®
0) (I) -« |000) + B|111)
0)

D
\V



QEC: Can we add any redundancy?

e Note that this encoding circuit entangles the “input” qubit with two other qubits.

CY|0>+,3 1) ®
0) & -« |000) + B|111)

0) N7

e Since errors in quantum computers are due to (for the most part) qubits entangling
with their environment, we can understand a quote from John Preskill:
e “We have learned that it is possible to fight entanglement with entanglement.”
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Repetition code for bit flip errors

e The encoding a|0> + b|1> ->a |000> + b|111> gives us redundancy. Now what?
e \We need to check which errors (if any) occured in the encoded state.

e We do this by (projective) measurements. What projections should we apply to
find out what happened?

e There are four things that can happen:

No qubit was flipped.

Py =1000) (000| + [111) (111]
The first qubit was flipped. Pl _ |100> <100| 3, |011> <011|
P>, =1010)<010| + [101) (101|

The third qubit was flipped. P3; =1001)(001| + [110)(110|

The second qubit was flipped.



Turning the table

e By measuring these operators, we learn what errors (if any) occurred.
e Since we know which error occurred, we can correct it.

Syndrome measurement
Py = |000) (000] + |111) (111]
P, = [100)(100] + [011) (011
P, = 1010)(010] + |101) (101]
P5 = |001)(001] + |110) (110]

Meaning

No qubit was flipped.

The first qubit was flipped.

The second qubit was flipped.

The third qubit was flipped.

Correction operator



Repetition code for phase flip errors

e \We can now correct bit flip (X) errors. Can we modify this for phase (Z) errors?
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m And update the syndrome measurements in a similar way.
e Q: What should they be?



Repetition code for phase flip errors

e \We can now correct bit flip (X) errors. Can we modify this for phase (Z) errors?
o These are related by a change of basis

HXH =27

o Thus we can do the encoding:
m |0>->(]0>+|1>)(]0> + |1>)(]0O> + |1>)
m |1>->(]O>-]1>)(]0> - |1>)(]0> - |1>)
m And update the syndrome measurements in a similar way.
e Q: What should they be?

W hat about both bit flip and phase flip errors?



Shor’s 9-qubit code

e Thisis formed by concatenating the bit flip and phase flip
codes.
o Concatenation is an important, often used concept in
error correction.
o Theideais simply to combine the two codes.
e Step 1: Apply bit flip code to physical qubit.
e Step 2: Apply phase flip code to the logical qubit.
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e Thisis formed by concatenating the bit flip and phase flip
codes.
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Shor’s 9-qubit code

e Thisis formed by concatenating the bit flip and phase flip
codes.
o Concatenation is an important, often used concept in
error correction.
o Theideais simply to combine the two codes.
e Step 1: Apply bit flip code to physical qubit.
e Step 2: Apply phase flip code to the logical qubit.

0) = 1000) = (]000) + [111)) (1000) + [111)) (J000) + [111))
1) [111) — (J000) — |111)) (|000) — [111)) (J000) — |[111))

) = a|0) + B|1)




Shor’s 9-qubit code ) 1]
|0)
e Thisis formed by concatenating the bit flip and phase flip 0) —o—
codes. [0) [H]|
o Concatenation is an important, often used concept in 102
error correction. 0) ——=—
10) El

o Theideais simply to combine the two codes.

e Step 1: Apply bit flip code to physical qubit.

e Step 2: Apply phase flip code to the logical qubit.

0) = [000) — (]000) + |111))
1) [111) — (]000) — |111))

1) = a0)

BI1)




Note 1: Error correction vs. fault tolerance

e Error correction:
o Theory in which some components do not have errors (by assumption)

o E.g., state preparation is perfect, errors occur only during gates
o Thisis “easier” than fault tolerance (simplifying assumptions)

e Fault tolerance:

Theory in which all components have errors and errors are not allowed to
propagate.

o State preparation, gates, measurements, ...

o Thisis “harder” than error correction (no simplifying assumptions)



Note 2: Redundancy vs. partitioning

Blue = good basis vector (codeword)

Red = bad basis vector (error state)

m |000> m |100>
m |001> m |101>
m |010> m [110>
m [011> m 111>



From projections to stabilizers

e Remember the four projectors for the bit-flip code?

Syndrome measurement
Py = |000) (000] + |111) (111]
P, = [100)(100] + [011) (011
P, = 1010)(010] + |101) (101]
P5 = 001)(001] + |110) (110]

Meaning

No qubit was flipped.

The first qubit was flipped.

The second qubit was flipped.

The third qubit was flipped.

Correction operator



From projections to stabilizers

e Remember the four projectors for the bit-flip code?

Syndrome measurement Meaning Correction operator
Py = 000) (000] + [111)(111] | Neautwastipred I
P, = [100)(100| + [011)¢011|  '"efretaubitwas flipped Xo
P, = [010)¢010] + |101) (101| The second qubit was flipped. X,
P3 — |001> <001| + |1 10> <110| The third qubit was flipped. X2

e There’s a more succinct way to determine which errors occurred.
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e Consider measuring the operator /1 /o = Z /1
Z = 10)(0] = [1)(1]
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From projections to stabilizers

e Consider measuring the operator /1 /o = Z /1
Z = 10)(0] = [1)(1]

27 = (10){0] = [1)(1]) (|0)0] = [1)(1])
Z7 = (]00)(00] + |11)(11]) — (|01)(01| + [10)(10])

N J N J
4 Y

+1 eigenspace. Bits are the same. -1 eigenspace. Bits are different.
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From projections to stabilizers

e Justas Z1 Z2 asks if the first two bits are the same/different, Z2 Z3 asks if the
second two bits are the same/different.
e (Q: Given this information, can you determine which of the three bits flipped?
o Example: Bits 1 and 2 are the same, bits 2 and 3 are different.
m Bit 3 flipped.
o Example: Bits 1 and 2 are different, bits 2 and 3 are the same.
m Bit1 flipped.
o Example: Bits 1 and 2 are different, bits 2 and 3 are different.
m Bit 2 flipped.
o Example: Bits 1 and 2 are the same, bits 2 and 3 are the same.
m No bit flipped.



From projections to stabilizers

e Justas Z1 Z2 asks if the first two bits are the same/different, Z2 Z3 asks if the
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second two bits are the same/different.
e (Q: Given this information, can you determine which of the three bits flipped?
o Example: Bits 1 and 2 are the same, bits 2 and 3 are different.
m Bit 3 flipped.
o Example: Bits 1 and 2 are different, bits 2 and 3 are the same.
m Bit1 flipped.
o Example: Bits 1 and 2 are different, bits 2 and 3 are different.
m Bit 2 flipped.
o Example: Bits 1 and 2 are the same, bits 2 and 3 are the same.
m No bit flipped.
e This was exactly our table from before! Q: Could we do the same with Z1 Z2 and Z1 237




From projections to stabilizers

Syndrome Meaning Correction operator
((Z122),({Z223))
(1, 1) No qubit was flipped. I
(-1, 1) The first qubit was flipped.
Xo
(-1, -1) The second qubit was flipped. Xl
(1, -1) The third qubit was flipped. Xo

The operators Z1 Z2 and Z2 Z3 are known as stabilizer elements.
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Stabilizer elements? Elements of what?

The operators Z1 Z2 and Z2 Z3 are known as stabilizer elements.

+1 eigenstates of Z1 Z2: 000>, |001>,|110>, and |111>

+1 eigenstates of Z2 Z3: 000>, |100>, |011>, and |111>

These are almost the codewords of the bit-flip code, |000> and |111>.

Preview:

e They are elements of the stabilizer group S ={l, Z1 Z2, 72 73, Z1 Z3}.

o This group is generated by Z1 Z2 and Z2 73,ie.S=</71 72,72 73>.
e Thisis asubgroup of P3 (the Pauli group on 3 qubits).
e The subspace of P3 stabilized by S is spanned by |000> and |111>.

o These are the codewords for the bit-flip code.
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Why the stabilizer formalism?

e Describing codewords themselves is cumbersome with more complicated codes.
o Stabilizers offer a more succinct representation.
o Namely, via the generator representation of a group.
e \Very convenient abstraction that allows for generalization.
o Many codes can be described in the stabilizer formalism.
o Pick a stabilizer and you have your very own code!
e Firstintroduced by Gottesman in his 1996 PhD thesis.

Stabilizer Codes and Quantum Error Correction

Thesis by
Daniel Gottesman

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy



https://arxiv.org/abs/quant-ph/9705052

Current state of affairs

The surface code is a current top candidate.
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Current state of affairs

Four important experimental QEC works:

Article | Open Access | Published: 14 July 2021

Fault-Tolerant Operation of a Quantum Exponential suppression of bit or phase errors with
Error-Correction Code cyclic error correction

Laird Egan'-?, Dripto M. Debroy?, Crystal Noel', Andrew Risinger!, Daiwei Zhu!,

Debopriyo Biswas', Michael Newman®', Muyuan Li°, Kenneth R. Brown>**>, Marko Google Quantum Al

Cetina'?, and Christopher Monroe'
Nature 595, 383-387 (2021) | Cite this article

Article | Published: 25 May 2022

Realizing repeated quantum error correctionina
distance-three surface code

Suppressing quantum errors by scaling a surface code logical qubit
Sebastian Krinner &, Nathan Lacroix, Ants Remm, Aqustin Di Paolo, Elie Genois, Catherine Leroux,

Christoph Hellings, Stefania Lazar, Francois Swiadek, Johannes Herrmann, Graham J. Norris, Christian Google Quantum ATI*
(Dated: July 21, 2022)

Kraglund Andersen, Markus Miiller, Alexandre Blais, Christopher Eichler & Andreas Wallraff

Nature 605, 669-674 (2022) | Cite this article



Objectives review

1. Define the key elements and principles of quantum error correction.
2. Introduce the stabilizer formalism through the repetition code.
3. Link to recent literature on experimental QEC.
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Emphasis on Pauli errors

e To emphasize some points in the previous slide(s):
e We can only consider Pauli errors in QEC without loss of generality.



Emphasis on Pauli errors

e To emphasize some points in the previous slide(s):

e We can only consider Pauli errors in QEC without loss of generality.
o Paulis + identity span (2%2
o Y =1iXZand global phase doesn’'t matter
o (ldentity is not an error!)
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Proof of no cloning

e Suppose there exists a U such that U’¢> ’O> — |77D> W)
e |If this is for arbitrary states, then U’q§> |O> = ’q§> ’q§>

e Then, by definition,

U(l9) +10))10) = (1¥) +|0))([4) + |9))
= [V)|¥) + ) o) + D)) + D))

e However, by linearity,

U(l9) 4 10))[0) = U[4)|0) + U|9)|0) = |[¥) 1) + |$)|)

e By taking the inner product of these equations, we can see there can only
exist such a U if the states |psi> and |phi> are orthogonal
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e Measurements Aot
o Setof operators { )M/, } such that Z :
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e The encoded state (logical qubit) is |1L> = «|000) + B[111)
e Suppose no qubit was flipped. (Case 1 out of 4).
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Understandlng the projectors: More detail

Measuremen ts

+
o Set of operato {M} hthtZ”” L
o Probability of outcome i is p() ( |UJr M;|v)
o State after obtaining outcome S M;|v) /~/p

e The encoded state (logical qubit) is |¢> e a!OOO} + 5|111>
e Suppose no qubit was flipped. (Case 1 out of 4).

e Then:

p(0) = (| Polp) = (1| (/000)(000] + [111)(111]) [)) =
p(1) = (Y| P1Y) = (¢ (100><100 +[011)(011]) [¢)) =

0
p(2) = p(3) = ( |soesrermeasingp 0 _
Do this with the other 3 projectors! Py |¢>/\/m _ ’¢>




