
Quantum error correction

SQMS/GGI Summer School on Quantum Simulation of Field Theories
July 28, 2022
Ryan LaRose

https://www.ggi.infn.it/showevent.pl?id=436

Motivation

● We want to do something with a quantum computer, like simulate field theories.
● But quantum computers are inherently noisy devices.

Motivation https://quantum-computing.ibm.com/

https://quantum-computing.ibm.com/

Motivation https://quantum-computing.ibm.com/

https://quantum-computing.ibm.com/

Motivation

● We want to do something with a quantum computer, like simulate field theories.
● But quantum computers are inherently noisy devices.

● So, we have to do something to deal with the noise / errors.

Objectives

1. Define the key elements and principles of quantum error correction.
2. Introduce the stabilizer formalism through the repetition code.
3. Link to recent literature on experimental QEC.

Exercises in red

Recap of the gate model of quantum computing
● Qubits

○ Complex vectors

Recap of the gate model of quantum computing
● Qubits

○ Complex vectors

● Gates
○ Unitary operators, e.g.

Recap of the gate model of quantum computing
● Qubits

○ Complex vectors

● Gates
○ Unitary operators, e.g.

● Measurements
○ Set of operators such that
○ Probability of outcome i is
○ State after obtaining outcome i is

A bit of history
● Shor (1994): “Check out this poly-time algorithm for factoring.”

A bit of history
● Community (1994): “Cool! But there’s no way this could ever be done

in practice. Quantum states are very fragile.”

A bit of history
● Shor (1995): “Check out this quantum error correcting code.”

A bit of history
● Shor (1996): Fault-tolerant quantum computation.

Errors in quantum computers
● Classically, bits can flip. (Or be erased.)

○ i.e., 0 -> 1 and 1 -> 0 with some probability p.

Errors in quantum computers
● Classically, bits can flip. (Or be erased.)

○ i.e., 0 -> 1 and 1 -> 0 with some probability p.
● Qubits have a larger state space, therefore more things can go wrong.

○ Any operation which can be considered a gate can also be
considered an error.

○ Example: Pauli errors

Errors in quantum computers
● Classically, bits can flip. (Or be erased.)

○ i.e., 0 -> 1 and 1 -> 0 with some probability p.
● Qubits have a larger state space, therefore more things can go wrong.

○ Any operation which can be considered a gate can also be
considered an error.

○ Example: Pauli errors

Bit flip Phase flip Bit & phase flip

The most important fact about QEC
● Errors are continuous (analog). How can we hope to correct these?

The most important fact about QEC
● Errors are continuous (analog). How can we hope to correct these?
● Suppose some error E introduces a relative phase
● The angle delta could be (in principle) infinitesimal.

The most important fact about QEC
● Errors are continuous (analog). How can we hope to correct these?
● Suppose some error E introduces a relative phase
● The angle delta could be (in principle) infinitesimal.

● Any error can be written as (discrete) Pauli errors with continuous coeffs
○ This is because Paulis (+ identity) span

The most important fact about QEC
● Errors are continuous (analog). How can we hope to correct these?
● Suppose some error E introduces a relative phase
● The angle delta could be (in principle) infinitesimal.

● Any error can be written as (discrete) Pauli errors with continuous coeffs
○ This is because Paulis (+ identity) span

● But coefficients e_i could still be (in principle) infinitesimal.
○ Is it possible to deal with this?

The most important fact about QEC
● Measurement maps continuous errors to discrete errors.

The most important fact about QEC
● Measurement maps continuous errors to discrete errors.
● Suppose we measure the error state using operators

● Then, with probability p(i) we get

The most important fact about QEC
● Measurement maps continuous errors to discrete errors.
● Suppose we measure the error state using operators

● Then, with probability p(i) we get

● This collapses the superposition and makes the continuous coefficient an
irrelevant global phase

The most important fact about QEC
● Measurement maps continuous errors to discrete errors.
● Suppose we measure the error state using operators

● Then, with probability p(i) we get

● This collapses the superposition and makes the continuous coefficient an
irrelevant global phase
○ For example, we could choose M_i such that
○ The is now a discrete error which can be corrected.
○ The is continuous but is a global phase, so doesn’t matter.

Classical error correction : The repetition code
● A key concept in error correction is adding redundancy.
● For example, given a bit, we can make three copies of it:

○ 0 -> 000
○ 1 -> 111

Classical error correction : The repetition code
● A key concept in error correction is adding redundancy.
● For example, given a bit, we can make three copies of it:

○ 0 -> 000
○ 1 -> 111

● This is known as the (classical) repetition code.
● The idea is very simple: If an error occurs on one bit only, we can

correct it by looking at the other two bits and taking a majority vote.

Classical error correction : The repetition code
● A key concept in error correction is adding redundancy.
● For example, given a bit, we can make three copies of it:

○ 0 -> 000
○ 1 -> 111

● This is known as the (classical) repetition code.
● The idea is very simple: If an error occurs on one bit only, we can

correct it by looking at the other two bits and taking a majority vote.

● Suppose each bit flips independently with probability p. For which p is
the repetition code beneficial?

Analyzing the repetition code
● Suppose each bit flips independently with probability p. For which p is the

repetition code beneficial?
○ The probability of an error without the encoding is p.
○ With the encoding, the probability of an error is prob(> 1 bit flips) which is

○ By setting we find that the repetition code is better provided that

QEC: Subtle point about adding redundancy
● Given the classical repetition code, we might try to do the same with qubits,

i.e. map

● This is not possible in general, as expressed by the “no cloning theorem”

Aside: Remark about no cloning
● Note in the previous proof the only properties we used were tensor products

and linearity.
● In this respect no cloning is also a classical theorem.
● Specifically: No linear stochastic map (not necessarily unitary map) can clone

arbitrary classical probability distributions in tensor product.
○ See http://info.phys.unm.edu//~crosson/Phys572/QI-572-L9.pdf for more.

(The proof is the same, but there is a longer, interesting discussion.)

http://info.phys.unm.edu//~crosson/Phys572/QI-572-L9.pdf

QEC: Can we add any redundancy?
● From no cloning we cannot make copies of our state as in the classical repetition code.

Can we copy anything?
● Claim: We can “copy basis information” in the following sense:

QEC: Can we add any redundancy?
● From no cloning we cannot make copies of our state as in the classical repetition code.

Can we copy anything?
● Claim: We can “copy basis information” in the following sense:

● Note: |0> and |1> are orthogonal, so this can be viewed as the exception to no-cloning
● How can this be done?

QEC: Can we add any redundancy?
● From no cloning we cannot make copies of our state as in the classical repetition code.

Can we copy anything?
● Claim: We can “copy basis information” in the following sense:

● Note: |0> and |1> are orthogonal, so this can be viewed as the exception to no-cloning
● How can this be done?

?

QEC: Can we add any redundancy?
● From no cloning we cannot make copies of our state as in the classical repetition code.

Can we copy anything?
● Claim: We can “copy basis information” in the following sense:

● Note: |0> and |1> are orthogonal, so this can be viewed as the exception to no-cloning
● How can this be done?

QEC: Can we add any redundancy?
● Note that this encoding circuit entangles the “input” qubit with two other qubits.

● Since errors in quantum computers are due to (for the most part) qubits entangling
with their environment, we can understand a quote from John Preskill:

● “We have learned that it is possible to fight entanglement with entanglement.”

Repetition code for bit flip errors
● The encoding a|0> + b|1> -> a |000> + b|111> gives us redundancy. Now what?
● We need to check which errors (if any) occured in the encoded state.

Repetition code for bit flip errors
● The encoding a|0> + b|1> -> a |000> + b|111> gives us redundancy. Now what?
● We need to check which errors (if any) occured in the encoded state.
● We do this by (projective) measurements. What projections should we apply to

find out what happened?
● There are four things that can happen:

No qubit was flipped.

Repetition code for bit flip errors
● The encoding a|0> + b|1> -> a |000> + b|111> gives us redundancy. Now what?
● We need to check which errors (if any) occured in the encoded state.
● We do this by (projective) measurements. What projections should we apply to

find out what happened?
● There are four things that can happen:

No qubit was flipped.

The first qubit was flipped.

Repetition code for bit flip errors
● The encoding a|0> + b|1> -> a |000> + b|111> gives us redundancy. Now what?
● We need to check which errors (if any) occured in the encoded state.
● We do this by (projective) measurements. What projections should we apply to

find out what happened?
● There are four things that can happen:

No qubit was flipped.

The first qubit was flipped.

Repetition code for bit flip errors
● The encoding a|0> + b|1> -> a |000> + b|111> gives us redundancy. Now what?
● We need to check which errors (if any) occured in the encoded state.
● We do this by (projective) measurements. What projections should we apply to

find out what happened?
● There are four things that can happen:

No qubit was flipped.

The first qubit was flipped.

The second qubit was flipped.

Repetition code for bit flip errors
● The encoding a|0> + b|1> -> a |000> + b|111> gives us redundancy. Now what?
● We need to check which errors (if any) occured in the encoded state.
● We do this by (projective) measurements. What projections should we apply to

find out what happened?
● There are four things that can happen:

No qubit was flipped.

The first qubit was flipped.

The second qubit was flipped.

Repetition code for bit flip errors
● The encoding a|0> + b|1> -> a |000> + b|111> gives us redundancy. Now what?
● We need to check which errors (if any) occured in the encoded state.
● We do this by (projective) measurements. What projections should we apply to

find out what happened?
● There are four things that can happen:

No qubit was flipped.

The first qubit was flipped.

The second qubit was flipped.

The third qubit was flipped.

Repetition code for bit flip errors
● The encoding a|0> + b|1> -> a |000> + b|111> gives us redundancy. Now what?
● We need to check which errors (if any) occured in the encoded state.
● We do this by (projective) measurements. What projections should we apply to

find out what happened?
● There are four things that can happen:

No qubit was flipped.

The first qubit was flipped.

The second qubit was flipped.

The third qubit was flipped.

Repetition code for bit flip errors
● The encoding a|0> + b|1> -> a |000> + b|111> gives us redundancy. Now what?
● We need to check which errors (if any) occured in the encoded state.
● We do this by (projective) measurements. What projections should we apply to

find out what happened?
● There are four things that can happen:

Syndrome measurement Meaning Correction operator

No qubit was flipped.

The first qubit was flipped.

The second qubit was flipped.

The third qubit was flipped.

Turning the table
● By measuring these operators, we learn what errors (if any) occurred.
● Since we know which error occurred, we can correct it.

Repetition code for phase flip errors
● We can now correct bit flip (X) errors. Can we modify this for phase (Z) errors?

Repetition code for phase flip errors
● We can now correct bit flip (X) errors. Can we modify this for phase (Z) errors?

○ These are related by a change of basis

○ Thus we can do the encoding:
■ |0> -> (|0> + |1>)(|0> + |1>)(|0> + |1>)
■ |1> -> (|0> - |1>)(|0> - |1>)(|0> - |1>)
■ And update the syndrome measurements in a similar way.

● Q: What should they be?

Repetition code for phase flip errors
● We can now correct bit flip (X) errors. Can we modify this for phase (Z) errors?

○ These are related by a change of basis

○ Thus we can do the encoding:
■ |0> -> (|0> + |1>)(|0> + |1>)(|0> + |1>)
■ |1> -> (|0> - |1>)(|0> - |1>)(|0> - |1>)
■ And update the syndrome measurements in a similar way.

● Q: What should they be?

What about both bit flip and phase flip errors?

Shor’s 9-qubit code
● This is formed by concatenating the bit flip and phase flip

codes.
○ Concatenation is an important, often used concept in

error correction.
○ The idea is simply to combine the two codes.

● Step 1: Apply bit flip code to physical qubit.
● Step 2: Apply phase flip code to the logical qubit.

Shor’s 9-qubit code
● This is formed by concatenating the bit flip and phase flip

codes.
○ Concatenation is an important, often used concept in

error correction.
○ The idea is simply to combine the two codes.

● Step 1: Apply bit flip code to physical qubit.
● Step 2: Apply phase flip code to the logical qubit.

Shor’s 9-qubit code
● This is formed by concatenating the bit flip and phase flip

codes.
○ Concatenation is an important, often used concept in

error correction.
○ The idea is simply to combine the two codes.

● Step 1: Apply bit flip code to physical qubit.
● Step 2: Apply phase flip code to the logical qubit.

Shor’s 9-qubit code
● This is formed by concatenating the bit flip and phase flip

codes.
○ Concatenation is an important, often used concept in

error correction.
○ The idea is simply to combine the two codes.

● Step 1: Apply bit flip code to physical qubit.
● Step 2: Apply phase flip code to the logical qubit.

Shor’s 9-qubit code
● This is formed by concatenating the bit flip and phase flip

codes.
○ Concatenation is an important, often used concept in

error correction.
○ The idea is simply to combine the two codes.

● Step 1: Apply bit flip code to physical qubit.
● Step 2: Apply phase flip code to the logical qubit.

Note 1: Error correction vs. fault tolerance
● Error correction:

○ Theory in which some components do not have errors (by assumption)
○ E.g., state preparation is perfect, errors occur only during gates
○ This is “easier” than fault tolerance (simplifying assumptions)

● Fault tolerance:
○ Theory in which all components have errors and errors are not allowed to

propagate.
○ State preparation, gates, measurements, …
○ This is “harder” than error correction (no simplifying assumptions)

Note 2: Redundancy vs. partitioning
Blue = good basis vector (codeword)

Red = bad basis vector (error state)

■ |000>
■ |001>
■ |010>
■ |011>

■ |100>
■ |101>
■ |110>
■ |111>

From projections to stabilizers
● Remember the four projectors for the bit-flip code?

Syndrome measurement Meaning Correction operator

No qubit was flipped.

The first qubit was flipped.

The second qubit was flipped.

The third qubit was flipped.

From projections to stabilizers
● Remember the four projectors for the bit-flip code?

● There’s a more succinct way to determine which errors occurred.

Syndrome measurement Meaning Correction operator

No qubit was flipped.

The first qubit was flipped.

The second qubit was flipped.

The third qubit was flipped.

From projections to stabilizers
● Consider measuring the operator

From projections to stabilizers
● Consider measuring the operator

From projections to stabilizers
● Consider measuring the operator

From projections to stabilizers
● Consider measuring the operator

+1 eigenspace. Bits are the same. -1 eigenspace. Bits are different.

From projections to stabilizers
● Just as Z1 Z2 asks if the first two bits are the same/different, Z2 Z3 asks if the

second two bits are the same/different.
● Q: Given this information, can you determine which of the three bits flipped?

From projections to stabilizers
● Just as Z1 Z2 asks if the first two bits are the same/different, Z2 Z3 asks if the

second two bits are the same/different.
● Q: Given this information, can you determine which of the three bits flipped?

○ Example: Bits 1 and 2 are the same, bits 2 and 3 are different.

From projections to stabilizers
● Just as Z1 Z2 asks if the first two bits are the same/different, Z2 Z3 asks if the

second two bits are the same/different.
● Q: Given this information, can you determine which of the three bits flipped?

○ Example: Bits 1 and 2 are the same, bits 2 and 3 are different.
■ Bit 3 flipped.

From projections to stabilizers
● Just as Z1 Z2 asks if the first two bits are the same/different, Z2 Z3 asks if the

second two bits are the same/different.
● Q: Given this information, can you determine which of the three bits flipped?

○ Example: Bits 1 and 2 are the same, bits 2 and 3 are different.
■ Bit 3 flipped.

○ Example: Bits 1 and 2 are different, bits 2 and 3 are the same.

From projections to stabilizers
● Just as Z1 Z2 asks if the first two bits are the same/different, Z2 Z3 asks if the

second two bits are the same/different.
● Q: Given this information, can you determine which of the three bits flipped?

○ Example: Bits 1 and 2 are the same, bits 2 and 3 are different.
■ Bit 3 flipped.

○ Example: Bits 1 and 2 are different, bits 2 and 3 are the same.
■ Bit 1 flipped.

From projections to stabilizers
● Just as Z1 Z2 asks if the first two bits are the same/different, Z2 Z3 asks if the

second two bits are the same/different.
● Q: Given this information, can you determine which of the three bits flipped?

○ Example: Bits 1 and 2 are the same, bits 2 and 3 are different.
■ Bit 3 flipped.

○ Example: Bits 1 and 2 are different, bits 2 and 3 are the same.
■ Bit 1 flipped.

○ Example: Bits 1 and 2 are different, bits 2 and 3 are different.

From projections to stabilizers
● Just as Z1 Z2 asks if the first two bits are the same/different, Z2 Z3 asks if the

second two bits are the same/different.
● Q: Given this information, can you determine which of the three bits flipped?

○ Example: Bits 1 and 2 are the same, bits 2 and 3 are different.
■ Bit 3 flipped.

○ Example: Bits 1 and 2 are different, bits 2 and 3 are the same.
■ Bit 1 flipped.

○ Example: Bits 1 and 2 are different, bits 2 and 3 are different.
■ Bit 2 flipped.

From projections to stabilizers
● Just as Z1 Z2 asks if the first two bits are the same/different, Z2 Z3 asks if the

second two bits are the same/different.
● Q: Given this information, can you determine which of the three bits flipped?

○ Example: Bits 1 and 2 are the same, bits 2 and 3 are different.
■ Bit 3 flipped.

○ Example: Bits 1 and 2 are different, bits 2 and 3 are the same.
■ Bit 1 flipped.

○ Example: Bits 1 and 2 are different, bits 2 and 3 are different.
■ Bit 2 flipped.

○ Example: Bits 1 and 2 are the same, bits 2 and 3 are the same.

From projections to stabilizers
● Just as Z1 Z2 asks if the first two bits are the same/different, Z2 Z3 asks if the

second two bits are the same/different.
● Q: Given this information, can you determine which of the three bits flipped?

○ Example: Bits 1 and 2 are the same, bits 2 and 3 are different.
■ Bit 3 flipped.

○ Example: Bits 1 and 2 are different, bits 2 and 3 are the same.
■ Bit 1 flipped.

○ Example: Bits 1 and 2 are different, bits 2 and 3 are different.
■ Bit 2 flipped.

○ Example: Bits 1 and 2 are the same, bits 2 and 3 are the same.
■ No bit flipped.

From projections to stabilizers
● Just as Z1 Z2 asks if the first two bits are the same/different, Z2 Z3 asks if the

second two bits are the same/different.
● Q: Given this information, can you determine which of the three bits flipped?

○ Example: Bits 1 and 2 are the same, bits 2 and 3 are different.
■ Bit 3 flipped.

○ Example: Bits 1 and 2 are different, bits 2 and 3 are the same.
■ Bit 1 flipped.

○ Example: Bits 1 and 2 are different, bits 2 and 3 are different.
■ Bit 2 flipped.

○ Example: Bits 1 and 2 are the same, bits 2 and 3 are the same.
■ No bit flipped.

● This was exactly our table from before!

From projections to stabilizers
● Just as Z1 Z2 asks if the first two bits are the same/different, Z2 Z3 asks if the

second two bits are the same/different.
● Q: Given this information, can you determine which of the three bits flipped?

○ Example: Bits 1 and 2 are the same, bits 2 and 3 are different.
■ Bit 3 flipped.

○ Example: Bits 1 and 2 are different, bits 2 and 3 are the same.
■ Bit 1 flipped.

○ Example: Bits 1 and 2 are different, bits 2 and 3 are different.
■ Bit 2 flipped.

○ Example: Bits 1 and 2 are the same, bits 2 and 3 are the same.
■ No bit flipped.

● This was exactly our table from before! Q: Could we do the same with Z1 Z2 and Z1 Z3?

From projections to stabilizers

The operators Z1 Z2 and Z2 Z3 are known as stabilizer elements.

Syndrome Meaning Correction operator

(1, 1) No qubit was flipped.

(-1, 1) The first qubit was flipped.

(-1, -1) The second qubit was flipped.

(1, -1) The third qubit was flipped.

Stabilizer elements? Elements of what?
The operators Z1 Z2 and Z2 Z3 are known as stabilizer elements.

+1 eigenstates of Z1 Z2: |000>, |001>, |110>, and |111>

+1 eigenstates of Z2 Z3: |000>, |100>, |011>, and |111>

These are almost the codewords of the bit-flip code, |000> and |111>.

Stabilizer elements? Elements of what?
The operators Z1 Z2 and Z2 Z3 are known as stabilizer elements.

+1 eigenstates of Z1 Z2: |000>, |001>, |110>, and |111>

+1 eigenstates of Z2 Z3: |000>, |100>, |011>, and |111>

These are almost the codewords of the bit-flip code, |000> and |111>.

Preview:

● They are elements of the stabilizer group S = {I, Z1 Z2, Z2 Z3, Z1 Z3}.

Stabilizer elements? Elements of what?
The operators Z1 Z2 and Z2 Z3 are known as stabilizer elements.

+1 eigenstates of Z1 Z2: |000>, |001>, |110>, and |111>

+1 eigenstates of Z2 Z3: |000>, |100>, |011>, and |111>

These are almost the codewords of the bit-flip code, |000> and |111>.

Preview:

● They are elements of the stabilizer group S = {I, Z1 Z2, Z2 Z3, Z1 Z3}.
○ This group is generated by Z1 Z2 and Z2 Z3, i.e. S = <Z1 Z2, Z2 Z3>.

Stabilizer elements? Elements of what?
The operators Z1 Z2 and Z2 Z3 are known as stabilizer elements.

+1 eigenstates of Z1 Z2: |000>, |001>, |110>, and |111>

+1 eigenstates of Z2 Z3: |000>, |100>, |011>, and |111>

These are almost the codewords of the bit-flip code, |000> and |111>.

Preview:

● They are elements of the stabilizer group S = {I, Z1 Z2, Z2 Z3, Z1 Z3}.
○ This group is generated by Z1 Z2 and Z2 Z3, i.e. S = <Z1 Z2, Z2 Z3>.

● This is a subgroup of P3 (the Pauli group on 3 qubits).

Stabilizer elements? Elements of what?
The operators Z1 Z2 and Z2 Z3 are known as stabilizer elements.

+1 eigenstates of Z1 Z2: |000>, |001>, |110>, and |111>

+1 eigenstates of Z2 Z3: |000>, |100>, |011>, and |111>

These are almost the codewords of the bit-flip code, |000> and |111>.

Preview:

● They are elements of the stabilizer group S = {I, Z1 Z2, Z2 Z3, Z1 Z3}.
○ This group is generated by Z1 Z2 and Z2 Z3, i.e. S = <Z1 Z2, Z2 Z3>.

● This is a subgroup of P3 (the Pauli group on 3 qubits).
● The subspace of P3 stabilized by S is spanned by |000> and |111>.

Stabilizer elements? Elements of what?
The operators Z1 Z2 and Z2 Z3 are known as stabilizer elements.

+1 eigenstates of Z1 Z2: |000>, |001>, |110>, and |111>

+1 eigenstates of Z2 Z3: |000>, |100>, |011>, and |111>

These are almost the codewords of the bit-flip code, |000> and |111>.

Preview:

● They are elements of the stabilizer group S = {I, Z1 Z2, Z2 Z3, Z1 Z3}.
○ This group is generated by Z1 Z2 and Z2 Z3, i.e. S = <Z1 Z2, Z2 Z3>.

● This is a subgroup of P3 (the Pauli group on 3 qubits).
● The subspace of P3 stabilized by S is spanned by |000> and |111>.

○ These are the codewords for the bit-flip code.

Why the stabilizer formalism?
● Describing codewords themselves is cumbersome with more complicated codes.

○ Stabilizers offer a more succinct representation.
○ Namely, via the generator representation of a group.

● Very convenient abstraction that allows for generalization.
○ Many codes can be described in the stabilizer formalism.
○ Pick a stabilizer and you have your very own code!

● First introduced by Gottesman in his 1996 PhD thesis.

https://arxiv.org/abs/quant-ph/9705052

Current state of affairs
The surface code is a current top candidate.

Current state of affairs
Four important experimental QEC works:

Objectives review

1. Define the key elements and principles of quantum error correction.
2. Introduce the stabilizer formalism through the repetition code.
3. Link to recent literature on experimental QEC.

Extras

Emphasis on Pauli errors
● To emphasize some points in the previous slide(s):
● We can only consider Pauli errors in QEC without loss of generality.
● Further, we can only consider bit flip and phase flip errors WLOG.

Emphasis on Pauli errors
● To emphasize some points in the previous slide(s):
● We can only consider Pauli errors in QEC without loss of generality.
● Further, we can only consider bit flip and phase flip errors WLOG.

○ Paulis + identity span
○ Y = i XZ and global phase doesn’t matter
○ (Identity is not an error!)

Proof of no cloning
● Suppose there exists a U such that

Proof of no cloning
● Suppose there exists a U such that
● If this is for arbitrary states, then

Proof of no cloning
● Suppose there exists a U such that
● If this is for arbitrary states, then
● Then, by definition,

Proof of no cloning
● Suppose there exists a U such that
● If this is for arbitrary states, then
● Then, by definition,

Proof of no cloning
● Suppose there exists a U such that
● If this is for arbitrary states, then
● Then, by definition,

● However, by linearity,

Proof of no cloning
● Suppose there exists a U such that
● If this is for arbitrary states, then
● Then, by definition,

● However, by linearity,

● By taking the inner product of these equations, we can see there can only
exist such a U if the states |psi> and |phi> are orthogonal

Understanding the projectors: More detail

● The encoded state (logical qubit) is
● Suppose no qubit was flipped. (Case 1 out of 4).

Understanding the projectors: More detail

● The encoded state (logical qubit) is
● Suppose no qubit was flipped. (Case 1 out of 4).
● Then:

Understanding the projectors: More detail

● The encoded state (logical qubit) is
● Suppose no qubit was flipped. (Case 1 out of 4).
● Then:

Understanding the projectors: More detail

● The encoded state (logical qubit) is
● Suppose no qubit was flipped. (Case 1 out of 4).
● Then:

Understanding the projectors: More detail

● The encoded state (logical qubit) is
● Suppose no qubit was flipped. (Case 1 out of 4).
● Then:

State after measuring P_0 is

Understanding the projectors: More detail

● The encoded state (logical qubit) is
● Suppose no qubit was flipped. (Case 1 out of 4).
● Then:

State after measuring P_0 is

Do this with the other 3 projectors!

