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★Why, What, When Quantum Machine Learning?

★Parameterized Quantum Circuits as Machine 

Learning Models

★Applications in Analysis of HEP Data

★Barren plateaus, and how to avoid them?

★ Is Quantum Advantage the Right Goal for QML?



The main goal of Quantum Machine Learning (QML) is to speed things up by applying what we know from 
quantum computing to machine learning

QML takes elements from classical machine learning theory, and views quantum computing from that lens
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The main goal of Quantum Machine Learning (QML) is to speed things up by applying what we know from 
quantum computing to machine learning

QCs can naturally solve certain problems with complex relations between inputs that can be incredibly hard for traditional, or 
“classical”, computers. This suggest that learning models made on QC may be dramatically powerful for select applications, 

potentially boasting faster computation, better generalization on less data, or both. 

Q
ua

nt
um

 
C

om
pu

tin
g

M
ac

hi
ne

 
Le

ar
ni

ng

o Exponentially 

large Hilbert 

space

o Entanglement

o Superposition

o Interference

o Inference

o Optimization

o Fitting over a large 

feature/hyperpara

meter space

o Linear algebraic 

problems

o Kernel methods

o Optimization

o Deep quantum 

learning
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The intersection of quantum computing and ML is rich! 

classical ML on 
quantum data
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• Chemical simulation
• Quantum matter 

simulation
• Quantum control
• Quantum networks
• Quantum metrology
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[*] Huang, HY., Broughton, M., Mohseni, M. et al. ”Power of data in quantum machine learning,” Nat Commun 12, 2631 (2021). 
https://doi.org/10.1038/s41467-021-22539-9 

Understanding when a QC 
can help in a ML task 

depends not only on the 
task, but also on the data 
available, and a complete 
understanding of this must 

include both [*].

★ Very unlikely that QML will 

beat ML performance on 

classical data. 

★ Data generated by a 

quantum circuit that is hard 

to simulate classically is not 

necessarily hard to learn for 

a classical model.

★ Datasets that are hard for 

classical models and easy 

for quantum models to 

learn do exist.



★ Motivated by access to cloud-based processors and commercial 
applications.

★ Developed for deployment on NISQ devices.
o Few qubits,
o Noisy,
o Low gate fidelity.

★ Applications in Quantum Machine Learning (QML) spurred by the 
release of Xanadu’s PennyLane / Google’s Tensorflow.

★ Co-design:
o Algorithmic development/research is adapting to match the pace of 

hardware development.
★ Hybrid frameworks to leverage benefits of both classical and 

quantum computing - variational quantum circuits.



In both cases, learning describes the process of iteratively updating the model’s parameters towards a goal

Benedetti, arXiv:1906.07682
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Benedetti, arXiv:1906.07682



Benedetti, arXiv:1906.07682

How to encode data into 
a quantum state?

1. Start from a feature vector x.
2. Optional: dimensionality reduction, PCA, etc.
3. Quantum embedding through a quantum 

feature map: Basis embedding, amplitude 
embedding. 

★ Havlicek, et al, arXiv:1804.11326
★ Schuld, Killoran, arXiv:1803.07128
★ Lloyd, Schuld, et al, arXiv:2001.03622



Benedetti, arXiv:1906.07682

The “variational”, optimizable 
part of the circuit.

The “guess” or trial function is the unitary U parameterized by a set of 
free parameters 𝜃 that will be updated during training.



Benedetti, arXiv:1906.07682

The measurement output is then used to 
construct a decision function, a 

probability distribution, a boundary, etc.

Quantum information is turned back into classical information by 
evaluating the expectation value of an observable, or measurement.



Applications



Input Space Feature Space
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Quantum machine learning models for supervised learning and kernel 
methods are based on a similar principle.

A high-level overview, for more details check 
references: arXiv:2101.11020, Phys. Rev. Lett. 122, 

040504 (2019), Nature. vol. 567, pp. 209-212 (2019)
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To optimize a loss 
function of the form

Support 
vectors

Boundary/ 
decision line

Quantum machine learning models for supervised learning and kernel 
methods are based on a similar principle.

A high-level overview, for more details check 
references: arXiv:2101.11020, Phys. Rev. Lett. 122, 

040504 (2019), Nature. vol. 567, pp. 209-212 (2019)
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Data x living in  
space 𝝌

Quantum machine learning models for supervised learning and kernel 
methods are based on a similar principle.

Feature space 
Φ(x) 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒
𝑚𝑎𝑝 Φ

Input space 𝝌

Quantum Hilbert 
space ⟩|Φ(x)

𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔 𝑓𝑒𝑎𝑡𝑢𝑟𝑒
𝑚𝑎𝑝 Φ

Kernel Methods Quantum Machine Learning

Access via kernel 
manipulation Access via 

measurements

A high-level overview, for more details check 
references: arXiv:2101.11020, Phys. Rev. Lett. 122, 

040504 (2019), Nature. vol. 567, pp. 209-212 (2019)
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Construct a kernel 
matrix of the form

Quantum machine learning models for supervised learning and kernel 
methods are based on a similar principle.

A high-level overview, for more details check 
references: arXiv:2101.11020, Phys. Rev. Lett. 122, 

040504 (2019), Nature. vol. 567, pp. 209-212 (2019)
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𝑡 ̅𝑡𝐻(𝑏&𝑏)classification 
problem on 4,6, and 8 

qubit QSVM

”Higgs analysis with quantum classifiers”, Belis, Gonzalez-Castillo, et al., arXiv:2104.07692 (2021)

𝑡 ̅𝑡𝐻classificatio
n problem on 

20 qubit QSVM 
in simulation 

and 15 qubits in 
HW

”Application of Quantum Machine Learning Using the Quantum Kernel Algorithm on 
High-Energy Physics Analysis at the LHC”, Wu, Sun, Guan, et al., arXiv:2104.05059 (2021)



Signal/background classification problem on 6 qubit QSVM

”Quantum Support Vector Machines for Continuum Suppression in B meson 
Decays”, Heredge, Hill, Hollenberg, Sevior, Computing and Software for Big 

science (2021) 5:27

Supernovae classification with QSVM at Google’s 
Sycamore processor

”Machine Learning of high-dimensional data on a noisy quantum processor”, Peters, 
Caldeira, Ho, et al., npj Quantum Information (2021) 7:161



★ Kernel methods are essentially based on 
feature maps that allow for classification on 
a higher-dimensional space.

★ Quantum machine learning models based 
on kernel methods might provide an 
advantage when the kernel is hard to 
estimate classically.
★ But… the efficiency of kernel-based 

methods compared to variational 
circuits depends on the number of 
parameters used in a variational model. 

★ Meaning that for specific applications, if 
the number of parameters scales 
linearly, most likely your application is 
better suited for a VQC.

Checkout PennyLane tutorial on “Kernel-based training of a quantum models with scikit-
learn” https://pennylane.ai/qml/demos/tutorial_kernel_based_training.html



Quantum Circuit Born Machines are generative models which represent 
the probability distribution of a classical dataset as quantum pure states

A high-level overview, for more details 
check references: Phys. Rev. A 98, 

062324 (2018), arXiv:2203.03578

𝟐𝒏𝒒𝒖𝒃𝒊𝒕𝒔 basis states or bins, i.e., 0000, 
0001, 0010, etc.

Discretized Gaussian probability 
distribution over 𝟐𝒏𝒒𝒖𝒃𝒊𝒕𝒔 basis states or 

bins.



Quantum Circuit Born Machines are generative models which represent 
the probability distribution of a classical dataset as quantum pure states

A high-level overview, for more details 
check references: Phys. Rev. A 98, 

062324 (2018), arXiv:2203.03578

Parameterized quantum circuit (PQC)

x 𝑛*+,-./

𝜃*0
A PQC consists of layers or blocks of 

rotational and entangling gates that can 
be repeated to maximize the circuit’s 

expressibility.

Block of rotation gates, 
with tunable parameters Block of 

entangling gates Discussion on smart Ansatz choices in 
a few slides J



Quantum Circuit Born Machines are generative models which represent 
the probability distribution of a classical dataset as quantum pure states

A high-level overview, for more details 
check references: Phys. Rev. A 98, 

062324 (2018), arXiv:2203.03578
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Quantum Circuit Born Machines are generative models which represent 
the probability distribution of a classical dataset as quantum pure states

A high-level overview, for more details 
check references: Phys. Rev. A 98, 

062324 (2018), arXiv:2203.03578

Start End

QCBM trained on 4 qubits using cosine distance metric optimized using gradient-based optimizer (Adam). Hyperparameters: 
learning rate = 0.1, number of steps = 100 , 8192 shots.



Can QCBM’s learn joint distributions? Yes!

Delgado, A., Hamilton, K. E., “Unsupervised Quantum Circuit Learning in High-Energy Physics” arXiv:2203.03578



Can QCBM’s learn joint distributions?

The effect of number of shots in training

Delgado, A., Hamilton, K. E., “Unsupervised Quantum Circuit Learning in High-Energy Physics” arXiv:2203.03578



What about hardware noise?

Delgado, A., Hamilton, K. E., “Unsupervised Quantum Circuit Learning in High-Energy Physics” arXiv:2203.03578



★ Quantum generative models are currently 

a candidate for quantum advantage in QML, 

with current performance comparable to 

classical methods… when trained on 

simulation.

★ There are sill a lot of open questions.

★ Scalability?

★ Ansatz choice

★ Training

★ Scalable error correction



”Conditional Born machine for Monte Carlo events generation”, Kiss, O., 
Grossi, M., Kajomovitz, E., Vallecorsa, S., arXiv:2205.07674

”Style-based quantum generative adversarial networks for Monte Carlo 
events”, Bravo-Prieto, C., Baglio, J., Ce, M., Francis, A., Grabowska, D., 

Carrazza, S., arXiv: 2110.06933



Barren Plateaus, and 
how to avoid them



★A barren plateau (BP) occurs in
PQCs if the variational ansatz
circuit is too random.
★ Prepares a random state with nearly

maximal entropy.
★The wave function is essentially
spread over the exponentially
large Hilbert space.
★ Larger number of measurements to

estimate observable.
★ Extrapolates to gradient calculation,

to navigate the optimization
landscape

★How to overcome them?
★ Several techniques have been

explored

PennyLane tutorial on “Barren plateaus in 
quantum neural networks”, 

https://pennylane.ai/qml/demos/tutorial
_barren_plateaus.html



PennyLane tutorial on “Alleviating barren 
plateaus with local cost functions”, 

https://pennylane.ai/qml/demos/tutorial
_local_cost_functions.html

(1) Local vs Global Functions

★Most applications to date
use global cost functions
★ We just saw the effect of

vanishing gradient with
increasing number of qubits.

★Evaluate cost function on
shallower circuits.
★ i.e., local cost function.

Global cost function

Local cost function

“Cost Function Dependent Barren Plateaus in Shallow 
Parameterized Quantum Circuits,” M. Cerezo, A. Sone, T. Volkoff, 

L. Cincio, P. J. Coles, arXiv:2001.00550



(2) Layerwise Learning (LL)

★ Method consists on
incrementally growing the
circuit during optimization,
★ As opposed to training all

layers.
★ Only subsets of parameters are

updated in each training step.
★ Essentially restoring back to

training shallow circuits.
★ LL is expected to:

★ Decrease runtime,
★ Increase probability of

success on random restarts.

“Layerwise learning for quantum neural networks,” A. Skolik, J. R. 
McClean, M. Mohseni, P. van der Smagt, M. Leib, 

arXiv:2006.14904



(3) Block Identity Initialization

★ Create the circuit in blocks such
that the blocks satisfy: 𝑈"𝑈 = 1.

★ The resulting state is a product
state (no entanglement) and
this, no BP.

★ Too random -> Nearly maximal
entanglement entropy.

“An initialization strategy for addressing barren plateaus in 
parameterized quantum circuits,” E. Grant, L. Wossnig, M. 

Ostaszewski, M. Benedetti, arXiv:1903.05076



(4) Small qubit rotations

★ Studies showed that using small
single qubit rotation angles can
slow down the growth of
entanglement.

★ By controlling the magnitude of
the angles, the BP can be
delayed to arbitrary circuit
depth.

“Connecting Ansatz Expressibility to Gradient Magnitudes and 
Barren Plateaus,” Z. Holmes, K. Sharma, M. Cerezo, P. J. Coles, 

PRX Quantum 3, 010313 (2022)



Analysis

Based on the Perspective Manuscript by M. Schuld and N. Killoran, PRX Quantum 3, 030101 (2022)

★ML is a hard problem!
q There is no rigorous basis for

generalization.
q NNs are sequences of linear

and non-linear transformations,
making them unwieldy for
mathematical modeling.

★Once we add “quantumness”
to the mix
q We only have minimal access to

empirical results from “just
running the algorithm”.

q We cannot say much about the
behavior that quantum models
will have at a scale beyond what
can be “simulated”.

”The question on whether quantum computers can really play a role in 
identifying practical ML application is still wide open, and It is unlikely 

to be decided by theoretical proofs or small-scale experiments”

★ What architecture is best suited for 
a problem?

★ What affects trainability?
★ Model expressibility
★ Generalization power?



Analysis

Quantum 
Machine Learning 

on Quantum 
Data?

Ensemble learning methods for 
network of quantum sensors?

Anomaly detection?

System Control



★ Machine Learning algorithms based on parameterized 

quantum circuits are a prime candidate for near-term 

applications on noisy quantum computers. But…
★ We still don’t understand how these QML models compare, both mutually 

and to classical ML models.
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★ We still don’t understand how these QML models compare, both mutually 

and to classical ML models.
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encourage you to read about them:
★ Continuous variable quantum machine learning

★ Tensor networks as ML models.



★ Machine Learning algorithms based on parameterized 

quantum circuits are a prime candidate for near-term 

applications on noisy quantum computers. But…
★ We still don’t understand how these QML models compare, both mutually 

and to classical ML models.

★ There are several things I didn’t cover today, but I 

encourage you to read about them:
★ Continuous variable quantum machine learning

★ Tensor networks as ML models.

★ Its an exciting time for QML!
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