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Roadmap of the talk

* Why, What, When Quantum Machine Learning?

% Parameterized Quantum Circuits as Machine
Learning Models

% Applications in Analysis of HEP Data

% Barren plateaus, and how to avoid them?

% Is Quantum Advantage the Right Goal for QML?
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Quantum Machine Learning

The main goal of Quantum Machine Learning (QML) is to speed things up by applying what we know from
quantum computing to machine learning
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QML takes elements from classical machine learning theory, and views quantum computing from that lens




Quantum Machine Learning

The main goal of Quantum Machine Learning (QML) is to speed things up by applying what we know from
quantum computing to machine learning
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QCs can naturally solve certain problems with complex relations between inputs that can be incredibly hard for traditional, or
“classical”, computers. This suggest that learning models made on QC may be dramatically powerful for select applications,
potentially boasting faster computation, better generalization on less data, or both.




Quantum Machine Learning

Type of algorithm

quantum classical

classical
ML
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Type of data
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The intersection of quantum computing and ML is rich!
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Quantum Machine Learning
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Quantum Machine Learning

Type of algorithm

quantum classical

classical

Type of data

Chemical simulation
Quantum matter
simulation
Quantum control
Quantum networks
Quantum metrology

gquantum




Quantum Machine Learning — The Power of Data

* Very unlikely that QML will

beat ML performance on Type of algorithm

classical data. quantum classical

CQ CC
*

* Data generated by a

quantum circuit that is hard

can help in a ML task
depends not only on

to simulate classically is not

classical

task, but also on
available, and
understandir

necessarily hard to learn for

Type of data

a classical model.

% Datasets that are hard for

QQ QC

quantum

classical models and easy

for quantum models to
[*] Huang, HY., Broughton, M., Mohseni, M. et al. "Power of data in quantum machine learning,” Nat Commun 12,2631 (2021).

lea rn do existl https://doi.org/10.1038/541467-021-22539-9



Quantum Machine Learning in the NISQ Era

* Motivated by access to cloud-based processors and commercial
applications.
* Developed for deployment on NISQ devices.
o Few qubits,
o Noisy,
o Low gate fidelity.
* Applications in Quantum Machine Learning (QML) spurred by the
release of Xanadu's PennylLane / Google's Tensorflow.
* Co-design:
o Algorithmic development/research is adapting to match the pace of
hardware development.
* Hybrid frameworks to leverage benefits of both classical and
quantum computing - variational quantum circuits.




Parameterized Quantum Circuits as ML Models

jsel
jsel

In both cases, learning describes the process of iteratively updating the model’s parameters towards a goal

Benedetti, arXiv:1906.07682



Parameterized Quantum Circuits as ML Models

Benedetti, arXiv:1906.07682

Parameterized Quantum Circuit
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Parameterized Quantum Circuits as ML Models

How to encode data into

d

guantum state?

/ Pre-processing
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3.

Start from a feature vector x.

Optional: dimensionality reduction, PCA, etc.
Quantum embedding through a quantum %
feature map: Basis embedding, amplitude

embedding.

Parameterized Quantum Circuit

Benedetti, arXiv:1906.07682
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* Havlicek, et al, arXiv:1804.11326
* Schuld, Killoran, arXiv:1803.07128
* Lloyd, Schuld, et al, arXiv:2001.03622



Parameterized Quantum Circuits as ML Models

Benedetti, arXiv:1906.07682

Parameterized Quantum Circuit
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The “guess” or trial function is the unitary U parameterized by a set of

free parameters 0 that will be updated during training.



Parameterized Quantum Circuits as ML Models

Benedetti, arXiv:1906.07682

Parameterized Quantum Circuit
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Quantum information is turned back into classical information by The measurement output is then used to

construct a decision function, a
probability distribution, a boundary, etc.

evaluating the expectation value of an observable, or measurement.




Applications



Supervised Learning with Kernel-based Quantum Models

A high-level overview, for more details check
references: arXiv:2101.11020, Phys. Rev. Lett. 122,

Quantum machine learning models for supervised learning and kernel
040504 (2019), Nature. vol. 567, pp. 209-212 (2019)

methods are based on a similar principle.
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Supervised Learning with Kernel-based Quantum Models

A high-level overview, for more details check
references: arXiv:2101.11020, Phys. Rev. Lett. 122,

040504 (2019), Nature. vol. 567, pp. 209-212 (2019)
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Quantum machine learning models for supervised learning and kernel

methods are based on a similar principle.
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Supervised Learning with Kernel-based Quantum Models

A high-level overview, for more details check
references: arXiv:2101.11020, Phys. Rev. Lett. 122,

Quantum machine learning models for supervised learning and kernel
040504 (2019), Nature. vol. 567, pp. 209-212 (2019)

methods are based on a similar principle.
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Supervised Learning with Kernel-based Quantum Models

A high-level overview, for more details check
references: arXiv:2101.11020, Phys. Rev. Lett. 122,

040504 (2019), Nature. vol. 567, pp. 209-212 (2019)
V4 7

Quantum machine learning models for supervised learning and kernel

methods are based on a similar principle.
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Supervised Learning with Kernel-based Quantum Models
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(a) Models trained on the AE latent space features

(16).

(c) Models trained on 16 selected features of the input space according to their individual AUC values.

"Higgs analysis with quantum classifiers”, Belis, Gonzalez-Castillo, et al., arXiv:2104.07692 (2021)
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"Application of Quantum Machine Learning Using the Quantum Kernel Algorithm on
High-Energy Physics Analysis at the LHC”, Wu, Sun, Guan, et al., arXiv:2104.05059 (2021)




Supervised Learning with Kernel-based Quantum Models
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Table 1 Average results from 10 random dataset samples obtained by
classically simulating various encoding circuits using Qiskit statevec-
tor_simulator with 60,000 training events and 10,000 testing events

in each sample

Encoding circuit Accuracy AUC
Combinatorial encoding 0.762 0.822
Separate particle encoding 0.776 0.835
Bloch sphere encoding 0.764 0.836
Separate particle with bloch 0.771 0.848
Classical RBF kernel SVM 0.728 0.793
XGBoost 0.590 0.621

The uncertainty on each of the mean values stated is + 0.001

”"Quantum Support Vector Machines for Continuum Suppression in B meson
Decays”, Heredge, Hill, Hollenberg, Sevior, Computing and Software for Big

science (2021) 5:27
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”"Machine Learning of high-dimensional data on a noisy quantum processor”, Peters,
Caldeira, Ho, et al., npj Quantum Information (2021) 7:161



On Kernel-based Quantum Models... / ¥, /

* Kernel methods are essentially based on
feature maps that allow for classification on
a higher-dimensional space.

* Quantum machine learning models based
on kernel methods might provide an
advantage when the kernel is hard to
estimate classically.

* But.. the efficiency of kernel-based
methods compared to variational
circuits depends on the number of
parameters used in a variational model.

* Meaning that for specific applications, if
the number of parameters scales
linearly, most likely your application is
better suited for a VQC.
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Checkout PennyLane tutorial on “Kernel-based training of a quantum models with scikit-
learn” https://pennylane.ai/gml/demos/tutorial_kernel_based_training.html



Quantum Circuit Born Machines are generative models which represent

the probability distribution of a classical dataset as quantum pure states

AU
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Unsupervised Generative Modeling

Target Distribution

1 2 3 4 5 6 7 8 9

Basis states

|

A high-level overview, for more details

check references: Phys. Rev. A 98,
062324 (2018), arXiv:2203.03578

Discretized Gaussian probability
distribution over 2™qubits hasis states or
bins.

2™qubits hasjs states or bins, i.e., 0000,
0001, 0010, etc.



Unsupervised Generative Modeling

e | : : A high-level overview, for more details
Quantum Circuit Born Machines are generative models which represent check references: Phys. Rev. A 98,

the probability distribution of a classical dataset as quantum pure states 062324 (2018), arXiv:2203.03578

A PQC consists of layers or blocks of
rotational and entangling gates that can
be repeated to maximize the circuit’s
expressibility.

%\vl\v\v\
|

Block of rotation gates,
with tunable parameters

Block of

entangling gates Discussion on smart Ansatz choices in

a few slides ©



Unsupervised Generative Modeling

e | : : A high-level overview, for more details
Quantum Circuit Born Machines are generative models which represent check references: Phys. Rev. A 98,

the probability distribution of a classical dataset as quantum pure states 062324 (2018), arXiv:2203.03578
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Unsupervised Generative Modeling

A high-level overview, for more details

Quantum C.lrcwt.Bo.rn Machlnes are generatlve models which represent check references: Phys. Rev. A 98,
the probability distribution of a classical dataset as quantum pure states 062324 (2018), arXiv:2203.03578
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QCBM trained on 4 qubits using cosine distance metric optimized using gradient-based optimizer (Adam). Hyperparameters:
learning rate = 0.1, number of steps = 100, 8192 shots.



Unsupervised Generative Modeling

Can QCBM'’s learn joint distributions? Yes! e P
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Delgado, A., Hamilton, K. E., “Unsupervised Quantum Circuit Learning in High-Energy Physics” arXiv:2203.03578



Unsupervised Generative Modeling

Can QCBM'’s learn joint distributions?
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Delgado, A., Hamilton, K. E., “Unsupervised Quantum Circuit Learning in High-Energy Physics” arXiv:2203.03578



Unsupervised Generative Modeling
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On Unsupervised Quantum Generative Models...

* Quantum generative models are currently
a candidate for quantum advantage in QML,

with current performance comparable to

classical methods.. when trained on

simulation.

:
* There are sill a lot of open questions. ; - § ~—
* Scalability? v
* Ansatz choice I Parameter update
* Training [ Classical J — -
* Scalable error correction e Gf:;‘ﬂ‘;:;:\d
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Also check out:

Quantum neural network model
Latent
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Pi—
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”Conditional Born machine for Monte Carlo events generation”, Kiss, O.,

Grossi, M., Kajomovitz, E., Vallecorsa, S., arXiv:2205.07674

- Classical optimization

"”Style-based quantum generative adversarial networks for Monte Carlo
events”, Bravo-Prieto, C., Baglio, J., Ce, M., Francis, A., Grabowska, D.,
Carrazza, S., arXiv: 2110.06933



I I E i |
| I!I
1K) l

Barren Plateaus, and
how to avoid them



(Overcoming) barren plateaus

* A barren plateau (BP) occurs in
PQCs if the variational ansatz

circuit is too random.
* Prepares a random state with nearly
maximal entropy.

* The wave function is essentially
spread over the exponentially

large Hilbert space.
* Larger number of measurements to
estimate observable.
* Extrapolates to gradient calculation,

to navigate the  optimization
landscape
* How to overcome them?
* Several techniques have been

explored

{#61,1E) variance

1072 1

1073 -

PennyLane tutorial on “Barren plateaus in
guantum neural networks”,
https://pennylane.ai/gml/demos/tutorial
_barren_plateaus.html
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Global cost function

(Overcoming) barren plateaus

(1) Local vs Global Functions

* Most applications to date

use global cost functions

* We just saw the effect of
vanishing gradient  with
Increasing number of qubits.

: Local cost function

% Evaluate cost function on

shallower circuits.
* |.e., local cost function.

1.00
T 0.89
- 0.78
T 0.67
T 0.56
" 0.44
- 0.33
- 0.22
" 0.11
- 0.00

PennylLane tutorial on “Alleviating barren
plateaus with local cost functions”,

https://pennylane.ai/gml/demos/tutorial
_local_cost_functions.html

“Cost Function Dependent Barren Plateaus in Shallow

Parameterized Quantum Circuits,” M. Cerezo, A. Sone, T. Volkoff,
L. Cincio, P. J. Coles, arXiv:2001.00550




(Overcoming) barren plateaus

(2) Layerwise Learning (LL)

102 - —4— LL,n=0.01

* Method consists on i
incrementally  growing  the I e g
circuit during optimization, 2 T

* As opposed to training all
layers.

* Only subsets of parameters are
updated in each training step.

* Essentially restoring back to
training shallow circuits.
* LL is expected to:
* Decrease runtime,
* Increase  probability  of
success on random restarts.
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(b) success probability

“Layerwise learning for quantum neural networks,” A. Skolik, J. R.
McClean, M. Mohseni, P. van der Smagt, M. Leib,
arXiv:2006.14904



(Overcoming) barren plateaus

(3) Block Identity Initialization

* Create the circuit in blocks such
that the blocks satisfy: UTU = 1.

* The resulting state is a product
state (ho entanglement) and
this, no BP.

* Too random -> Nearly maximal
entanglement entropy.

“An initialization strategy for addressing barren plateaus in

parameterized quantum circuits,” E. Grant, L. Wossnig, M.
Ostaszewski, M. Benedetti, arXiv:1903.05076
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(Overcoming) barren plateaus

(b) : Cost function
' ‘ Unitary group " Landscape
(4) Small qubit rotations

* Studies showed that using small

single qubit rotation angles can

slow down the growth of
entanglement.

Accessible space U

* By controlling the magnitude of

the angles, the BP can be (c)

delayed to arbitrary circuit
depth.

\/

“Connecting Ansatz Expressibility to Gradient Magnitudes and

Barren Plateaus,” Z. Holmes, K. Sharma, M. Cerezo, P. J. Coles,

PRX Quantum 3, 010313 (2022) Accessible space U



Is Quantum Advantage the Right Goal for QML?

Based on the Perspective Manuscript by M. Schuld and N. Killoran, PRX Quantum 3, 030101 (2022)

* ML is a hard problem!

O There is no rigorous basis for
generalization.

O NNs are sequences of linear
and non-linear transformations,
making them unwieldy for
mathematical modeling.

* Once we add “quantumness”

to the mix

O We only have minimal access to
empirical results from ‘just
running the algorithm’

0 We cannot say much about the
behavior that quantum models
will have at a scale beyond what
can be ‘simulated”.

/ * What architecture is best suiteo&

a problem?
* What affects trainability?
* Model expressibility
* Generalization power?
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"The question on whether quantum computers can really play a role in

identifying practical ML application is still wide open, and It is unlikely
to be decided by theoretical proofs or small-scale experiments”




But also... what about?
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/Ensemble learning methods for\

network of quantum sensors?
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/System Control \

/Anomaly detection? \
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Summary

* Machine Learning algorithms based on parameterized
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quantum circuits are a prime candidate for near-term

applications on noisy quantum computers. But..

* We still don't understand how these QML models compare, both mutually

and to classical ML models.




Summary
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encourage you to read about them:

% Continuous variable quantum machine learning

% Tensor networks as ML models.




Summary

* Machine Learning algorithms based on parameterized
quantum circuits are a prime candidate for near-term

applications on noisy quantum computers. But..

* We still don't understand how these QML models compare, both mutually

and to classical ML models.

* There are several things | didn’t cover today, but |

encourage you to read about them:

% Continuous variable quantum machine learning

% Tensor networks as ML models.

% Its an exciting time for QML!




Thank you!

delgadoa@ornl.gov



