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ML: DALL-E 2/0OpenAl Text2Ilmage Generator

INPUT STRING="A photo of physicists discussing machine learning in Florence Italy”




ML: DALL-E 2/0OpenAl Text2Ilmage Generator

INPUT STRING="“Impressionist painting of physicists discussing machine learning in Florence Italy”




ML: DALL-E 2/0OpenAl Text2Ilmage Generator

INPUT STRING="“Dali painting of physicists discussing machine learning in a bowl of pasta”
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S I\/Iachine Learning a Faustian Bargain?




Is Machine Learning a Faustian Bargain?

https://arxiv.org/pdf/2204.06125.pdf
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Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process,
through which we learn a joint representation space for text and images. Below the dotted line, we depict our
text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior
to produce an image embedding, and then this embedding is used to condition a diffusion decoder which
produces a final image. Note that the CLIP model is frozen during training of the prior and decoder.



Is Machine Learning a Faustian Bargain?

“Algebra is the offer made by the devil to the mathematicians. The devil
says: | will give you this powerful machine, it will answer any question
you like. All you need to do is give me your soul: give up geometry and
you will have this marvelous machine.” — Michael Atiyah
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Physics and Machine Learning
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Supervised vs. Unsupervised Learning

Supervised Learning

Regression Quantization Classification
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Supervised Learning
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TRAINING CLASSIFICATION

Discriminative Supervised Learning uses geometric objects as boundaries: Hyper-planes, hyper-boxes, hyper-spheres



Information Bottleneck

Goal: Compress the data as much as possible Formal description:
while retaining the relevant information. Relevance Compression
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Supervised Learning

What are the issues with labels:

e Labels are NOT independent of the context that created them.

e Labels are EXTREME data compression preserving relevance in that context.
* Labels are a SUPERFICIAL transfer of intelligence into machine learning.
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History of Machine Learning

Missing Bayesian techniques, PGM'’s, statistical techniques (e.g., Naive
Bayes, linear and logistic regression, PCA, k-NN, bootstrap, LASSO, Ridge
regression), NLDR, logic and relational techniques, sampling techniques
like MCMC, etc. Advancements from signal processing ... sparse
dictionaries, regularization techniques, ICA, matrix factorizations (NNMF)
Also, reinforcement learning, active learning,
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Learning Dynamics of Neural Networks

The Illlusion of an Optimization Problem
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Deep Convolutional Neural Networks
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How intelligent are neural networks?

. . airliners
Intriguing properties of
Christian Szegedy Wojciech Zaremba Ilya Sutskever Joan Bruna
Google Inc. New York University Google Inc. New York University
Dumitru Erhan Ian Goodfellow Rob Fergus
Google Inc. University of Montreal New York University

Facebook Inc.




Deep Learning: Adversarial Examples

The algorithm is >99.6% confident of these labels
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“Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images”, Anh Nguyen, Jason Yosinski and Jeff Clune, CVPR 2015, p.427-436.
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Geometry of Neural Networks

The data lies along a manifold constrained to However, the Neural Network typically chops up the space with
low-dimensions by the generative mechanism. hyperplanes to form non-local decision boundaries for classes.
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Deep Learning:

Real data

Image y

Image X

Image y

https://thomas-tanay.github.io/post--L2-regularization/

Adversarial Examples

Adversarial data
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Generative Adversarial Network (GAN): Bug as Feature

“This, and the variations that are now being proposed is the
most interesting idea in the last 10 years in ML, in my opinion.”
-Yann LeCun (2016)

More Supervised Learning to the rescue ... LABEL ={ Real, Fake }
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Generative Adversarial Network (GAN): Bug as Feature

“This, and the variations that are now being proposed is the
most interesting idea in the last 10 years in ML, in my opinion.”
-Yann LeCun (2016)

More Supervised Learning to the rescue ... LABEL ={ Real, Fake }
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To be fair, a bit of a caricature of ...

ML Work Flow leads to Gamification

Invent new algorithm Analyze the algorithm
L
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Design choices smashed
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sub-component interactions
(Ablation studies?)
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My algorithm is like your brain ...

Bio-inspiration! Biomimetic solution? Or not?

Neuromorphic computing Propeller ?

Neural networks Flapping wings  Firing neurons
“Flapping wings” = “Firing neurons”

e Birds are a solution to an engineering problem with physical constraints.
The Wright brothers understood the physical problem and then found
an appropriate engineering solution different from birds.

* Brains are an evolutionary solution to the statistical constraints of
inference from experience. What are those statistical constraints?
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"It sort of makes you stop and think, doesn’t 1t.”
Ti fa solo fermare e pensare, vero?



Sets
or Spaces:

Elements
or Variables:

Geometry of Machine Learning

Physics
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Diverse and complex data structures
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But we want to use Linear Algebra and Multivariable Calculus!

La So just work in a huge vector space! RD
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Continuity = Smoothness = Differentiability

Model regularization (prior) Learning via gradient descent
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Geometry of Machine Learning

STEPS: 1. Form a DATA space, D, as a high-dimensional vector space, R”.

2. ldentify transformations, S, on the DATA space that leave the
similarity measure invariant.

3. Learn the underlying MODEL space, M, or “embedding” that
preserves the invariances of the similarity measure.

A group, G, acting on the set, S, that leaves the
similarity measure invariant:

y.y e R”

DATA : Pim (¥:7') =Py (8,7,8,)") where g, g, €G.
manifold
DATA {VECTDRS} Vectors in a space 'f
D T /
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Elements of o set Organized into sub-sets
¥V, J-"' ES SXS >R Need sufficient sampling so the data is

“close” enough to use this approximation.
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Geometry of ML: How much data is enough?

Answer: It’s not about having “a lot of data”, it’s about having
enough data in the right places to answer a particular question.

Assumption: The distance encodes information about statistical similarity.
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Geometry of ML: How much data is enough?

To find the best local linear model: We need enough data /locally to distinguish curvature from finite sampling noise

LOCAL MODELS
Noise subspace

d\=D-d

Signal
subspace

° 0& d<<D
Local structure Crossover Regime Large-scale structure
High-D Noise Balls Noisy Tangent Spaces Low-d Manifold

(with an envelope)




Geometry of ML: Experimental Calibration

Generative model for data:

1. CALIBRATION

Regression with
training data

2. MEASUREMENT

Inferring latent
variables

Observations Latent variables
(Dependent var.) (Independent var.)

Instrument state
(Model parameters)

KNOWN KNOWN UNKNOWN

v

Y=/ X,pl0)

KNOWN DATA SOURCE or more a MODEL

KNOWN UNKNOWN

y
Y= f(X]a)

UNKNOWN DATA SOURCE
(Experiment)

p(a | Xcalib)
Estimate of ti?e unknown Nuisance
state of the instrument .
N variable to
()} marginalize out

P(X| X)) = [do p(X|0)- p(a| X,,,)

Estimate of the unknown

latent variables Did the calibration
X provide coverage?



Geometry of ML: Experimental Calibration

Examples of different possible calibrations across the DATA space ...

1. CALIBRATION
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2. MEASUREMENT

Homogeneous, isotropic
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Geometry of ML: Experimental Calibration

.... with the “same” data measurements.

Inhomgeneous, anisotropic

ORI
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Use the covariance to estimate the metric tensor of the measurement space

g()=X"(=3J, —>g=1,

1.5

Now, the ML Euclidean

space ansatz is true!



Geometry of ML: Manifolds and Relevance
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Example: Choosing the Relevance of Triangles

Types of Triangles OH-,B-I-]/ —
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Example: Shapes and Geometric Invariants
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Transformations: From Model to Model Relevance Space

MODEL space Xr — E(X) Translation Scale Rotation
invariance invariance invariance
5
u,,v )
u,,v 2572 Uy —u
( 3 /?3) b }/ /,P ul u2 —u] %
04 7 Aol n
,’I r v 2 v, =V, 4 a cos”! (—bTé>
/ 4 a Vl Uy —Uy a
v ! c,,/ ﬂ uz u3 _u2 A ~ b 1 ATA
\% \ X=|V, = s=|b|= s=|b|=| p|=|cos (—c'a
; 3 P v, v, =V, V3=V,
/ ,/VZ /,,:/O \£ ¢ ¢ ’ Y -1 _aTh
/I e ”V]_” (UI,Vl) u3 ul _u3 s COS —a b
1,7 -~ c
1 V3 i Vs U
Rotation '
Diameter of the circumscribed circle: invariance

b 2 2 . J—
§= a _ ¢ g a+b+c a:\/E:\/(uz—u1 +(v,—v) {f \}E(ﬂ CZ)

“sinag sinfB  siny  sina +sin B+siny ) |
2 2 — —
P=a+b+c=s-(sina+sinf+siny) b= bTb:\/(”s_“z) +(v;—v,) » X, =\1n\|= %(27/_05_ )

a+b+c
sina+sin f+sin y

o
Il
()
S
(g}
Il
=2
—_
=
|
<
W
~
[\S]
+
—_
=
|
o=
~
(38
)

A :%s2 sina sin fsin y

. . s is NOT scale invariant
siny =sin(z—a—f3)

=sinz-cos(a+ f)—cos-sin(a + f)

=sin(a+ f) | 35



Model compression: Triangle Example
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Physics and Machine Learning
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