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ML:  DALL-E 2/OpenAI Text2Image Generator
INPUT_STRING=“A photo of physicists discussing machine learning in Florence Italy”



ML:  DALL-E 2/OpenAI Text2Image Generator
INPUT_STRING=“Impressionist painting of physicists discussing machine learning in Florence Italy”



ML:  DALL-E 2/OpenAI Text2Image Generator
INPUT_STRING=“Dali painting of physicists discussing machine learning in a bowl of pasta”



Is Machine Learning a Faustian Bargain?



Is Machine Learning a Faustian Bargain?
https://arxiv.org/pdf/2204.06125.pdf



Is Machine Learning a Faustian Bargain?
“Algebra is the offer made by the devil to the mathematicians.  The devil 
says: I will give you this powerful machine, it will answer any question 
you like.  All you need to do is give me your soul:  give up geometry and 
you will have this marvelous machine.” – Michael Atiyah
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Physics and Machine Learning
X – Properties

Y - Observations



Supervised vs. Unsupervised Learning
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Supervised Learning

How do we 
find this?

LABEL = F( Q(DATA) )

Discriminative Supervised Learning uses geometric objects as boundaries:  Hyper-planes, hyper-boxes, hyper-spheres



Information Bottleneck
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Goal:  Compress the data as much as possible 
while retaining the relevant information.
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We want to maximize I(S,L) to retain relevance.

We want to minimize I(Y,S), 
to compress the data transferred 
by the  Generative model

The parameter λ is the Lagrange multiplier that 
tunes between these two competing objectives.
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Supervised Learning

Brittle in Applications:  
May not always transfer 
well to the real world.

Not Explanatory:  
Does not match the 

human mental model.

Narrow focus on 
performance:
Matches the 
training data.

What are the issues with labels:
• Labels are NOT independent of the context that created them.
• Labels are EXTREME data compression preserving relevance in that context.
• Labels are a SUPERFICIAL transfer of intelligence into machine learning.



History of Machine Learning

http://www.erogol.com/brief-history-machine-learning/

Minsky’s XOR problem (Perceptrons, 1969) and MLP solution:

Neural Network Winter (1970-1985)

Backpropagation enables training of 
multi-layer perceptrons (MLP), ~1985

Missing Bayesian techniques, PGM’s, statistical techniques (e.g., Naïve 
Bayes, linear and logistic regression, PCA, k-NN, bootstrap, LASSO, Ridge 
regression), NLDR, logic and relational techniques, sampling techniques 
like MCMC, etc.   Advancements from signal processing … sparse 
dictionaries, regularization techniques, ICA, matrix factorizations (NNMF)
Also, reinforcement learning, active learning, 



Learning Dynamics of Neural Networks

Stochastic Gradient Descent:  
Backpropagation on mini-batches

Random sub-sampling of data

Cost Function: Gradient descent:
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Magic:  “Inductive Bias” 
imposed on the network.

More sophisticated choices 
(e.g., ADAM) are possible.

Automatic
Differentiation

Learning Rate

The Illusion of an Optimization Problem
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Nonlinear transform of each 
coordinate of an affine map



Deep Convolutional Neural Networks



How intelligent are neural networks?
airliners

2014

MIT CSAIL



Deep Learning:  Adversarial Examples

“Deep Neural Networks are Easily Fooled:  High Confidence Predictions for Unrecognizable Images”, Anh Nguyen, Jason Yosinski and Jeff Clune, CVPR 2015, p.427-436.

The algorithm is >99.6% confident of these labels



Geometry of Neural Networks
However, the Neural Network typically chops up the space with 
hyperplanes to form non-local decision boundaries for classes.

The data lies along a manifold constrained to 
low-dimensions by the generative mechanism.

d << D

Exception!



Deep Learning:  Adversarial Examples

https://thomas-tanay.github.io/post--L2-regularization/

Adversarial dataReal data

MIT CSAIL

Use of ShapeShifter by Shang-Tse Chen, Ga.Tech

Nudging images in high-dimensional spaces



Generative Adversarial Network (GAN):  Bug as Feature
“This, and the variations that are now being proposed is the 
most interesting idea in the last 10 years in ML, in my opinion.” 

-Yann LeCun (2016)

LABEL = { Real, Fake }More Supervised Learning to the rescue …



Generative Adversarial Network (GAN):  Bug as Feature
“This, and the variations that are now being proposed is the 
most interesting idea in the last 10 years in ML, in my opinion.” 

-Yann LeCun (2016)

This is a form of Implicit Density Estimation

Is this data from the manifold?

LABEL = { Real, Fake }More Supervised Learning to the rescue …

NOT on data manifold

Data manifold

YES
NO



ML Work Flow leads to Gamification

Apply to standardized data

Invent new algorithm

Place in archival literature

Analyze the algorithm

REPEAT

Unknown 
intrinsic 

complexity

Design choices smashed 
together, difficult to see 
sub-component interactions
(Ablation studies?)

To be fair, a bit of a caricature of …



My algorithm is like your brain …
Bio-inspiration! Biomimetic solution?

• Birds are a solution to an engineering problem with physical constraints.  
The Wright brothers understood the physical problem and then found 
an appropriate engineering solution different from birds.

• Brains are an evolutionary solution to the statistical constraints of 
inference from experience.  What are those statistical constraints?

Neuromorphic computing
Neural networks 

“Flapping  wings” = “Firing  neurons”

Propeller ?
Flapping wings Firing neurons

=

Or not?



Ti fa solo fermare e pensare, vero?



Geometry of Machine Learning
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But we want to use Linear Algebra and Multivariable Calculus!

So just work in a huge vector space!

Functions acting on these vectors should have:
Continuity  Smoothness  Differentiability

Model regularization (prior) Learning via gradient descent

Diverse and complex data structures

manifold



Geometry of Machine Learning

26

( ) ( )2
similarity

2

2

1ln ,   dist ( ), ( )
2

1                            
2

p y y y y′ ′− ≈

′≈ −y y

M A A

( ) ( )sim sim,  = ,  where , .p y y p g y g y g g Gα β α β′ ′ ∈

A group, G, acting on the set, , that leaves the 
similarity measure invariant:

1. Form a DATA space, , as a high-dimensional vector space, D.
2. Identify transformations, S, on the DATA space that leave the 

similarity measure invariant.
3. Learn the underlying MODEL space, M, or “embedding” that 

preserves the invariances of the similarity measure. 

Need sufficient sampling so  the data is 
“close” enough to use this approximation.  

manifold

STEPS:



Geometry of ML:  How much data is enough?

Assumption:  The distance encodes information about statistical similarity.

Answer:  It’s not about having “a lot of data”, it’s about having 
enough data in the right places to answer a particular question.

Close = 
statistically 
similar

Far = 
statistically 
dissimilar

If distant data points are mapped nearby in the model space, then there 
has to be significant inferential evidence (more data), and likewise if 
local data points are mapped to large separations by the model.
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Geometry of ML:  How much data is enough?

Local structure
High-D Noise Balls

Crossover Regime
Noisy Tangent Spaces

(with an envelope)

Large-scale structure
Low-d Manifold

LOCAL MODELS

Signal 
subspace

Noise subspace

d<<D

dN=D-d

To find the best local linear model:  We need enough data locally to distinguish curvature from finite sampling noise



Geometry of ML:  Experimental Calibration

KNOWN DATA SOURCE or more a MODEL

UNKNOWN DATA SOURCE
(Experiment)

( | )f=Y X α

Observations
(Dependent var.)

Latent variables
(Independent var.)

Instrument state
(Model parameters)

( | )calibf=Y X α

KNOWN KNOWN UNKNOWN

Regression with 
training data

Generative model for data:

Inferring latent 
variables

Estimate of the unknown 
latent variablesˆ( | )f=Y X α

KNOWN UNKNOWN

X̂

Estimate of the unknown 
state of the instrument

α̂

1.  CALIBRATION

2.  MEASUREMENT

( | )calibp α X

( | ) ( | ) ( | )calib calib p d p p= ⋅∫X X α X α α X

Nuisance   
variable to 

marginalize out

Did the calibration 
provide coverage?



Geometry of ML:  Experimental Calibration
(1,1)-tensor field of covariance1.  CALIBRATION

Examples of different possible calibrations across the DATA space …

How do we use this information in Machine Learning?



Geometry of ML:  Experimental Calibration
(1,1)-tensor field of covariance2.  MEASUREMENT

1( ) ( ) T
y y Dy y−= = → =g Σ J J g 

Use the covariance to estimate the metric tensor of the measurement space

…. with the “same” data measurements.

Now, the ML Euclidean 
space ansatz is true!



Geometry of ML:  Manifolds and Relevance
Parts Representation Object RepresentationLow-level Representation
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Example:  Choosing the Relevance of Triangles
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Example:  Shapes and Geometric Invariants
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Isosceles

Right

Equilateral

α β

γ

α β γ π+ + =

Model Relevance SpaceData Space D rM
1( )rx f yπ −= 

LRelevance Set

6= M

dim 2r =M
dim 6=M



Transformations:  From Model to Model Relevance Space
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Model compression:  Triangle Example
6= M

dim 6=M
dim 2r =M

1( )rx f yπ −= 

sim(2)
• Translation invariance
• Scale invariance
• Rotation invariance



Physics and Machine Learning
X – Properties

Y - Observations
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