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l. Introduction: models and experimental motivations
ll. Principles of key numerical methods

lll. Connecting to RG: scaling dimensions, finite-size scaling

IV. Applications: deconfined quantum criticality and related phenomena
(+ spin glasses if time permits)



Why study lattice quantum models?

1) Materials and device driven studies
- “strongly correlated” electronic materials

- quantum magnets (spin degrees of freedom of insulators)
- trapped cold atoms in optical lattices

- guantum emulators: programmable devices (for now mainly spin models)
2) Exploring new physics

- minimal models to capture known and new phenomena

- study phenomena carefully without “distraction” of details

- characterize new types of ground states

- excitations not described by traditional quasiparticles

- quantum phase transitions beyond the LGW paradigm

- finite-T physics like thermalization, many-body localization

3) Connect to quantum field theory
- test existing theories
- stimulate new theories by discovering novel physics



Electron systems; band structure and “ab initio” calculations
- electrons are treated as weakly interacting quasiparticles

- many commercial and free “ab initio” software packages available
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- normally fails for “strongly correlated” systems
Not a topic of these lectures



Effective low-energy Hamiltonians
Goal: to capture essentially physics of strong correlations/entanglement
(new states, phenomena, beyond “ab initio” methods)

Starting point: Tight-binding model
- electron “hopping” between relevant orbitals (Wannier states)
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Include electron-electron interactions
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Heisenberg model
Example: square lattice, =—t> > (cicoj+clicoi) +UD mpny =V + H,
- start from Hubbard model 7 (i) i

Half-filling = S=1/2 Heisenberg antiferromagnet:
- large U/t in Hubbard model — few doubly-occupied sites, insulator
- treat the kinetic energy as a perturbation of the ground state of the U term (Ho)

- 2N degenerate groud states in space D, Eo® = 0. 2nd-order energy shift:
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Think of this as the matrix form
of “second-order” operator
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If we diagonalize this matrix we get shifts including all 2nd order contributions
This matrix is the effective spin Hamiltonian!
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Let’s calculate the contributions ¢
from two nearest neighbors i, v

m@y = (0 V., n(0)
sum over i includes all states with one

o1, oN) = 1_[ ¢ vac) doubly-occupied states which can be reached
kari by moving a particle to a neighboring site

The spin states are defined by
N

k=1
- virtual states with one doubly-occupied site are created

- use convention: particles created in order 1,...,N, spin | before T
- proceeding with anticommutation rules we get
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We also get a minus sign from -1/U and a factor t2 from V 24w
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The fluctuation process is only possible for anti-parallel splns + F e
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We can identify these outcomes with a spin-spin interaction.
Standard spin operators defined in the subspace with singly-occupied sites:
S Ti vy = 31 T, S i) = =31 bi o)
ST Ti...)=0, ST L) =1... T, e)
Sl Tio=l.Li.), S|.L.)=0,




2t2
U

= J(S757 —1/4+[SS; +5751]/2) f +7 <

J = 4t /U exchange constant
We can rewrite the interaction using:

= (1/2)(ST+S7), S"=(i/2)(ST-S7)
SEST = (1/4)(S;7SH + 878 + 878 + S757)
SYSY = —(1/4)(S;7S — 578 — 575 +5757)
SPS§ +87SY = (1/2)(S;"S; +S;75)  Note: sign came from anti-commutation
HM (4, 5) = J(S7S; + S7Sj + 87SY) — J/4
The constant is normally unimportant and we have the Heisenberg Hamiltonian

HHeisenberg — JZ g@ : g
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Now we have an effective

low-energy Hamiltonian _
But we still need to ‘solve it’!

A
- it’s not possible to exactly diagonalize charge gap
the Hamiltonian for large N
_ ¥ ] 2™ spin states
1D: Exact Bethe Ansatz solution
- “quasi-ordered state Hyeisenberg = JZ Si - S;
2D: Spin wave theory can (i)

account for low-energy physics (but not interesting effects at energy ~ J)
- T=0 states has antiferromagnetic order

3D: Spin-wave theory
- T > 0 antiferromagnetic ordering transition

Some times the effective interactions are anisotropic. XXZ model:

H = Z Juy (57 ST + Sz-ijy) + J, 5757 J=0 XY model (or XX model)
(i7) Jxy = 0 : Ising model



The Heisenberg model can also apply in more complicated crystals

Some variants of Heisenberg model motivated by CuO2 based hmaterials ¢ UX
superexchange mechanism H=J S”Z sy
- A G
"H‘ (27) t
J ~ 1500 K # °

#
H. hole doped

Doping charge carriers:

superconductivity
Variants of cuprates that are still insulating - Hubbard & t-J models

- Heisenberg models on other lattices

CuOs layer

& i |
*I* ,"t e Cu(S=1/2)
" ) e Zn(S=0)
Tl
Ladder systems non-magnetic impurities/dilution
- even/odd effects - dilution-driven phase transition

Nature of ground state (ordered
vs disordered), excitations,
quantum phase transitions...



Quantum versus classical antiferromagnets

Starting point: S=1/2 Heisenberg model
JZSi'Sj + gx---
(i.j)
- nearest-neighbor interactions (J>0)
- extend by longer-range or multi-spin couplings

- maintain spin-rotation invariance (or not)

Consider 2 spins:
- classical (S=00) ground state is any anti-parallel configuration
- S5=1/2 (extreme quantum) is a singlet (singlet-triplet gap = J)

/{/ /}/ N = m—\m

Extended quantum magnets (N— ) can have aspects of
- classical-like antiferromagnetic order
- non-classical effects can some times be understood using singlets




Frustrated quantum spins Ising spins: T, |

Competing antiferromagnetic interactions v
- structure of ground state can be highly non-trivial >/ /
Even classical spin models (Ising, XY, /\%%

Heisenberg) can be highly non-trivial when

the interactions are frustrated bipartite non-bipartite
un-frustrated  frustrated

Be careful with classical pictures and intuition:

A A( A " A non-magnetic states dominated by short bonds

classical Heisenberg Quantum S=1/2 Heisenberg RVB

valence bond description (basis) >

ﬁ = (Til; — Lily)/V2

3 over-complete VBS
basis for the
singlet sector




Classical and quantum phase transitions
Classical (thermal) phase transition

- Fluctuations regulated by temperature T>0
Quantum (ground state, T=0) phase transition
- Fluctuations regulated by parameter g in Hamiltonian

(a)

order parameter
order parameter

T. [g]  Tlg] T. lg]  Tlg]

In both cases phase transitions can be
- first-order (discontinuous): finite correlation length ¢ as g—gc org—gc
- continuous: correlation length diverges, €~|g-gc|™ or §~|T-T¢| "V

There are many similarities between classical and quantum transitions
- and also important differences

The quantum phases (ground states) can also be highly non-trivial
- even with rather simple lattice models




Example: Néel-paramagnetic quantum phase transition
Dimerized S=1/2 Heisenberg models

e every spin belongs to a dimer (strongly-coupled pair)

®* many possibilities, e.g., bilayer, dimerized single layer

— strong interactions

=J /J — weak interactions
g=J2/J4 J.
J
Singlet formation on strong bonds = Néel - quantum-paramagnetic transition
M A A =spin gap ground state (T=0) phases
LI X1 - Experimental realization
J L)X (3D coupled-dimer system):
. j » TICuCls
1 ¢~ edT 9e E(T—=0)~1/A g
£~1/T

= 3D classical Heisenberg (O3) universality class; QMC confirmed



What’s so special about quantum-criticality?

- large T>0 quantum-critical “fan” where T is the only relevant energy scale
- physical quantities show power laws governed by the T=0 critical point

A Example: 2D Neel-paramagnet “cross-over
T high-T', lattice effects diagram” [Chakravarty, Halperin, Nelson 1988]
RC: Renormalized classical
0 - exponentially divergent correlation length
S
QC A

QC: Quantum critical

- scaling behaviorin T
RC QD

_ , : QD: Quantum disordered (paramagnetic)
I = 0 Néel order ® non-magnetic 8 - finite correlation length at T=0

Changing T changes the imaginary-time size L:: . .
- Finite-size scaling at gc leads to power laws Experimentally important
« QC effects can extend

-1 ,
f ~ T (correlation length) to relatively high T

C ~ T2 (specific heat)

X(O) ~ T (uniform magnetic susceptibility)



Example: Shastry-Sutherland model

I\.J Unique Z> symmetry  O(3) symmetry
! ground state breaking breaking
\ . 4 Dimer phase Plaquette phase Néel phase

P

Hgs=J) Si-S;j+J > 8;-8;
(i) (i)’

J’ dimer-singlet state is exact eigenstate | |—| > J/J
- ground state up to for J/J1 ~ 0.68 0 0.675(2) 0.765(15)
Recent work Corboz & Mila, PRB 2013 (tensors)

Yang, Sandvik, Wang, PRB 2022
Wang, Zhang, Sandvik, CPL 2022

- gaples spin liquid phase between
PS and AFM phases; Lee, You, Sachdeyv, Vishwanath, PRX 2019 (DMRG)

g ~ (0.79,0.83) - deconfined quantum critical PS-AFM point

« Weak first-order Neel to PS transition
(caveat: small tensor dimension)



Shastry-Sutherland material

Quasi-2D (layered) quantum magnet SrCuz2(BO3)2

Recent work

NMR experiments,
high pressure, high

magnetic field

(arXiv:2204.08133)
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Deconfined quantum criticality

Senthil, Vishwanath, Balents, Sachdev, Fisher (Science 2004)
(+ many previous works; Read & Sachdev, Sachdev & Murthy, Motrunich & Vishwanath....)

Continuous AF - VBS transition at T=0 1
- would be violation of Landau rule

- first-order would normally be expected
- role of topological defects

Numerical (QMC) tests using J-Q models

() (D (D—D—) . .
Cy . CiiCu .. CiCuCmn O = i Si -9
(i) G )—(&) G ——m)

The “J-Q” model with two projectors (J-Q2 model)
H = _‘]ZCU - Q Z Cz'jckl
(i7) (i5kl)
- Néel-VBS transition appears to be continuous

- Possibly very weakly first-order
- Ongoing studies (will be discussed), also J-Q3 and ‘larger’ Qn terms

order parameter




Randomly frustrated quantum antiferromagnet: SrCuTe1-x\WxOs

R J2 I
(a)[ [ [ (b) |
Te = Jq W = Jo

Experiments

LR ( NAF) SroCuTe W, Og
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PHYSICAL REVIEW LETTERS 126, 037201 (2021)

Dominant interaction depends
on ion inside Cu plaquette

Highly non-trivial “random singlet state” between two AF phasé(s
- can be realized and studied in detail with random J-Q models

W fraction x, random mixing
Classical modeling |
' (b) Heisenberg model
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Quantum emulation

Physical devices with interacting 2-level systems (qubits)
Examples: Arrays of Rydberg atoms, coupled supercondicting qubits

D-Wave Systems

Advantage “computer”

« > 5000 superconducting
qubits with programmable
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Quantum annealing
H(S) — SHclassical + (1 — S)Hquantum
D-wave device: Programmable classical Ising model

N N
H lassical = ZZ Jijafoﬁa O_@_z < {_17 —|_1}

i=1 j=1
Couplings restricted restricted to “Pegasus lattice”

Quantum fluctuations; transverse field
N

N
Hquantum — —ZO',EE — —Z(O',;I_ + Uz_)
i=1 i=1
[Hclassicala Hquantum] 7é 0

H(t) — A(S[t])Hquantum + B(S[t])Hclassical
Motivates numerical studies of transverse-field Ising
models (uniform, random interactions)

- Annealing dynamics (generalized finite-size scaling)
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