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I. Introduction: models and experimental motivations

II. Principles of key numerical methods

III. Connecting to RG: scaling dimensions, finite-size scaling

IV. Applications: deconfined quantum criticality and related phenomena
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Why study lattice quantum models?
1) Materials and device driven studies 
     - “strongly correlated” electronic materials

     - quantum magnets (spin degrees of freedom of insulators)

     - trapped cold atoms in optical lattices

     - quantum emulators: programmable devices (for now mainly spin models)
2) Exploring new physics 

- minimal models to capture known and new phenomena

   - study phenomena carefully without “distraction” of details

    - characterize new types of ground states

    - excitations not described by traditional quasiparticles  

    - quantum phase transitions beyond the LGW paradigm

    - finite-T physics like thermalization, many-body localization
3) Connect to quantum field theory 
    - test existing theories

    - stimulate new theories by discovering novel physics



Electron systems; band structure and “ab initio” calculations
• electrons are treated as weakly interacting quasiparticles

http://exciting-code.org

Example: Si

• many commercial and free “ab initio” software packages available

Not a topic of these lectures
• normally fails for “strongly correlated” systems
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Figure 3.1: Examples of Wannier orbitals in one dimension. The orbitals (wave
functions) in the left graph are highly localized around their respective lattice
sites i, in which case only nearest-neighbor hopping has to be included. Those to
the right are more extended, and would require inclusion of longer-range hopping
as well. Note that properly defined Wannier orbitals should be orthogonal to
each other; here only the magnitude of the wave functions is shown, and the
orthogonality is therefore not apparent.

Here c†σi and cσi are, respectively, creation and annihilation operators for spin-σ
electrons, σ =↑ or ↓ (along a chosen quantization axis in spin space, which as
is costumary we choose as z), on an orbital i (a state localized around a lattice
site labeled i). These operators satisfy the familiar fermion anticommutation
relations;

[c†σi, c
†
τj]+ = [cσi, cτj]+ = 0,

[c†σi, cτj]+ = δijδστ , (3.2)

where [a, b]+ = a + b. We will not discuss the technical aspects of the second-
quantization formalism here, but assume that the reader is at least somewhat
familiar with it. Some useful texts discussing this standard framework for many-
body quantum mechanics are listed among the general references.

As indicated above, in the effective hamiltonian (3.1) one often considers
only one orbital per atomic (or molecular) site, and then i can be considered
as an index labeling the lattice sites. In other cases several orbitals may have
to be included (e.g., when deriving the Hund’s couplings discussed above), and
then i should be understood as collectively denoting an orbital and a site. Here
we will only consider models with one orbital per site.

The orbitals i correspond to site-centered orthogonal Wannier states, with
wave functions φi(r), as illustrated for a hypotetical one-dimensional system in
Fig. 3.1. The Wannier states are just the Fourier transforms of the momentum-
space electronic Bloch states and, thus, a real-space hamiltonian such as (3.1)
can in principle always be written down.2 The hopping matrix elements (or
hopping integrals) tij describe the electron transfer (hopping) between Wan-
nier states effected by the kinetic-energy part of the original (continuous space)
electronic hamiltonian;

tij =
!

2m

∫

drφ∗j (r)∇2
rφi(r). (3.3)

2The real-space form is even more general than a momentum space hamiltonian based on
Bloch states, because this form does not require a periodic crystal structure.

72 CHAPTER 3. QUANTUM SPIN SYSTEMS

Higher spins, S = 1, 3
2 , etc., arise in systems with more than one uncompen-

sated electronic spin per site (atom or molecule in the solid), with on-site ferro-
magnetic couplings large enough for these to act, on the relevant energy scales,
as a single, larger spin with S = n/2. These couplings are often referred to as
Hund’s couplings, because they underly Hund’s rule for maximum multiplicity
(highest S state) in atomic physics.

We will study primarily systems with antiferromagnetic inter-site interac-
tions, which from a theoretical perspective are much more interesting than fer-
romagnetic couplings, and also are more prevalent in nature. The most common
form of the spin-spin interaction is the Heisenberg exchange, which couples two
spins according to the hamiltonian Hij = JijSi ·Sj , where J > 0 for an antifer-
romagnet. Often these pair interactions are summed over only nearest-neighbor
sites i, j, but longer-range interactions can also be included. Written as above,
the hamiltonian looks like the classical Heisenberg model that we discussed in
Chapter 2. Now, however, the entities Si are quantum-mechanical spin oper-
ators, and we need to develop different computational methods to study their
many-body physics. Such methods, and the insights gained by using them,
will be discussed at length in the coming chapters. Here we first discuss the
electronic origins of the Heisenberg exchange.

3.1.1 Interacting electrons in solids

In principle, the hamiltonian describing a solid is well established, being a sum of
the electronic and nuclear kinetic energies and the electrostatic electron-electron,
electron-nuclear, and nuclear-nuclear Coulomb interactions.1 However, except
for the simplest solids, this hamiltonian in its full glory is too complex to work
with in practice. Fortunately, a number of further simplifications can be made
without sacrificing too much. Firstly, electrons in inner atomic shells—the core
electrons—do not affect appreciably the low-energy electronic and magnetic
properties of a solid, other than being responsible for the effective electrostatic
background potential seen by the less tightly bound outer-shell, or valence, elec-
trons. Thus, one can think of each atom (or molecule) making up the solid as
contributing only a small number of electrons that need to be included in an
electronic model. These electrons experience a pseudo potential due to the com-
bined effects of the nuclei and core electrons. Such pseudopotentials and their
use in calculating electronic band structures are discussed in many standard
texts. When discussing strongly-correlated electrons and quantum magnetism,
it is instead more practical to write down an effective tight-binding lattice hamil-
tonian for these electrons in real space. Its general second-quantized form is

H = −
∑

σ

∑

i,j

tij(c
†
σjcσi + c†σicσj) +

∑

ijkl

∑

τσ

V στ
ijklc

†
τ lcτkc†σjcσi. (3.1)

1Neglecting relativistic effects is almost always justified in condensed matter physics,
with the exception of spin-orbit interactions, which are often important in metals and semi-
conductors. Here we consider insulators and do not have to include spin-orbit couplings. It is
also safe to neglect the very weak direct dipolar spin-spin interactions.
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In a similar way, the potential-energy parameters V στ
ijkl , which should be thought

of as arising from already screened Coulomb interactions and, thus, are normally
short-ranged, can be also be expressed as integrals over the Wannier states.

In practice, the tight-binding approach is most useful when the Wannier
states are near-atomic orbitals, so that the probability density of finding an
electron in orbital i is large only around site i and its closest neighbors (as
in the left part of Fig. 3.1). This is typically the case in systems with d or f
valence orbitals. The hopping matrix elements can then be approximated as zero
beyond nearest-neighbor, although in some cases it can be important to include
some further neighbors as well. The hopping and interaction parameters can be
obtained from electronic band structure calculations. However, often they are
just considered as adjustable model parameters, that in the end are determined
by comparing calculations for the lattice model with experiments.

Another simplification of the electron hamiltonian, which we have already
made in the effective model (3.1), is that the nuclei are much heavyer than the
electrons and their motion can either be neglected completely (thus considering
a static lattice) or treated in a harmonic approximation, resulting in phonons
and electron-phonon interactions. We will neglect electron-phonon couplings for
now, but will discuss models including them later, in Sec. 3.4.4.

3.1.2 The Hubbard model of strongly-correlated electrons

One can some times argue that the on-site interaction terms in (3.1), i.e., those
with site indices i = j = k = l (and thus the spins σ ̸= τ , because of Pauli
exclusion) are completely dominant. Keeping only this repulsive interaction,
U = V σσ

iiii , and keeping only the hopping t = tij between nearest-neigbor sites
⟨i, j⟩, we obtain the Hubbard hamiltonian;

H = −t
∑

σ

∑

⟨i,j⟩

(c†σicσj + c†σjcσi) + U
∑

i

n↑in↓i. (3.4)

Here nσi = c†σicσi are the number operators, which are diagonal in the occu-
pation number basis; nσi = 0, 1. The model derives its name from a series of
papers by Hubbard in the 1950s, and 60s [13, 14], but it was also introduced in-
dependently by Gutzwiller around the same time [15]. The essential role of the
on-site repulsive interactions in antiferromagnets was recognized by Anderson,
who first presented a rigorous derivation of the Heisenberg exchange mechanism
from the Hubbard model in a ground-breaking 1959 article [16]. This aspect of
the Hubbard model applies at half-filling (one electron per site) and is our main
interest here. We will not discuss the more general role of the Hubbard model,
away from haf-filling, as the most important prototypical model for strongly-
correlated fermion systems.

First, we discuss the representation of the electron states of on the lattice. In
order to keep track of fermion anticommutation, multi-electron states in the site
occupation number basis have to be defined in terms of a products of creation
operators acting on a vacuum state |vac⟩; the empty lattice. We then have to

Effective low-energy Hamiltonians
Goal: to capture essentially physics of strong correlations/entanglement 
          (new states, phenomena, beyond “ab initio” methods)
Starting point: Tight-binding model 
• electron “hopping” between relevant orbitals (Wannier states)

Include electron-electron interactions

Only on-site interactions, one site per unit cell →  
one-band Hubbard model



Heisenberg model

- large U/t in Hubbard model  → few doubly-occupied sites, insulator
Half-filling → S=1/2 Heisenberg antiferromagnet:
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Example: square lattice, 

- start from Hubbard model
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= V +H0

- treat the kinetic energy as a perturbation of the ground state of the U term (H0)

<latexit sha1_base64="mWAXJeHVAd7ZD7ZESzAipDGQdQg="></latexit>

V2 =
V |k(0)ihk(0)|V
E(0)

D � E(0)
k

Think of this as the matrix form 
of “second-order” operator

If we diagonalize this matrix we get shifts including all 2nd order contributions
This matrix is the effective spin Hamiltonian!

<latexit sha1_base64="i7VAPndML7YI7/CQyKVkRqugA8Y="></latexit>

�(2)
nm = hn(0)|V |m(1)i =

X

k/2D

hn(0)|V |k(0)ihk(0)|V |m(0)i
E(0)

D � E(0)
k

<latexit sha1_base64="i7VAPndML7YI7/CQyKVkRqugA8Y="></latexit>

�(2)
nm = hn(0)|V |m(1)i =

X

k/2D

hn(0)|V |k(0)ihk(0)|V |m(0)i
E(0)

D � E(0)
k

2nd-order energy shift:- 2N degenerate groud states in space D, E0(0) = 0.

<latexit sha1_base64="Fi2gwGkMUvm/FNNYFEP5XtFltxo=">AAAB+3icbVDLSsNAFJ3UV42vWJduBotQNyURUZcFN7qrYB/QxjKZTtqhM5MwMxFLzK+4caGIW3/EnX/jpM1CWw9cOJxzL/feE8SMKu2631ZpZXVtfaO8aW9t7+zuOfuVtooSiUkLRyyS3QApwqggLU01I91YEsQDRjrB5Cr3Ow9EKhqJOz2Nic/RSNCQYqSNNHAq8InfpzX3JOtLJEaM2PbAqbp1dwa4TLyCVEGB5sD56g8jnHAiNGZIqZ7nxtpPkdQUM5LZ/USRGOEJGpGeoQJxovx0dnsGj40yhGEkTQkNZ+rviRRxpaY8MJ0c6bFa9HLxP6+X6PDST6mIE00Eni8KEwZ1BPMg4JBKgjWbGoKwpOZWiMdIIqxNXHkI3uLLy6R9WvfO697tWbVxU8RRBofgCNSABy5AA1yDJmgBDB7BM3gFb1ZmvVjv1se8tWQVMwfgD6zPHxm9kzU=</latexit>

|m(0)i

<latexit sha1_base64="5hQP0GlxPsng2r8WxtKCwv9DSzs=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E1DJgo10EEwPJEfY2k2TJ7t65uyeEI3/CxkIRW/+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gorq2vrG8XN0tb2zu5eef+gaeJUM2ywWMS6FVGDgitsWG4FthKNVEYCH6LR9dR/eEJteKzu7TjBUNKB4n3OqHVSq2NS2c34pFuu+FV/BrJMgpxUIEe9W/7q9GKWSlSWCWpMO/ATG2ZUW84ETkqd1GBC2YgOsO2oohJNmM3unZATp/RIP9aulCUz9fdERqUxYxm5Tknt0Cx6U/E/r53a/lWYcZWkFhWbL+qngtiYTJ8nPa6RWTF2hDLN3a2EDammzLqISi6EYPHlZdI8qwYX1eDuvFK7zeMowhEcwykEcAk1uIE6NICBgGd4hTfv0Xvx3r2PeWvBy2cO4Q+8zx96H5BI</latexit>X

i

<latexit sha1_base64="xUXbmWsA3y4AdDaemjTTLM2t7Ro=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF71VtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89hPXRsTqEScJ9yM6VCIUjKKVHjIx7ZcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVa9W9e4vK/W7PI4inMApnIMHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gCWt44G</latexit>

i

<latexit sha1_base64="OJqU1z6C32PlADlBBzTG0d7s+jQ=">AAAB+3icbVBNS8NAEJ3Urxq/Yj16WSxCvZRERD0WvOitgv2ANpbNdtMu3WzC7kYsMX/FiwdFvPpHvPlvTNoctPXBwOO9GWbmeRFnStv2t1FaWV1b3yhvmlvbO7t71n6lrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1vcpX7nQcqFQvFnZ5G1A3wSDCfEawzaWBV0NPkPqnZJ2lfYjHi1DQHVtWu2zOgZeIUpAoFmgPrqz8MSRxQoQnHSvUcO9JugqVmhNPU7MeKRphM8Ij2MipwQJWbzG5P0XGmDJEfyqyERjP190SCA6WmgZd1BliP1aKXi/95vVj7l27CRBRrKsh8kR9zpEOUB4GGTFKi+TQjmEiW3YrIGEtMdBZXHoKz+PIyaZ/WnfO6c3tWbdwUcZThEI6gBg5cQAOuoQktIPAIz/AKb0ZqvBjvxse8tWQUMwfwB8bnDxaXkzM=</latexit>

|k(0)i
<latexit sha1_base64="mh+ksWLFU7H8jFv1Oi9kxMXn2pU=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0lE1GPBi94q2A9oQ9lsN+nSzW7YnVRK6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzwlRwA5737ZTW1jc2t8rblZ3dvf0D9/CoZVSmKWtSJZTuhMQwwSVrAgfBOqlmJAkFa4ej25nfHjNtuJKPMElZkJBY8ohTAlbqu25PKBlrHg+BaK2eKn236tW8OfAq8QtSRQUafferN1A0S5gEKogxXd9LIciJBk4Fm1Z6mWEpoSMSs66lkiTMBPn88ik+s8oAR0rbkoDn6u+JnCTGTJLQdiYEhmbZm4n/ed0Mopsg5zLNgEm6WBRlAoPCsxjwgGtGQUwsIVRzeyumQ6IJBRvWLAR/+eVV0rqo+Vc1/+GyWr8v4iijE3SKzpGPrlEd3aEGaiKKxugZvaI3J3denHfnY9FacoqZY/QHzucPsOeTtw==</latexit>�!

<latexit sha1_base64="wpvZ4xmRhqe6xN2/Ia7qVmDOPUc=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix40VsV+wFtKJvtpF262YTdjVBC/4EXD4p49R9589+4aXPQ1gcDj/dmmJkXJIJr47rfzsrq2vrGZmmrvL2zu7dfOThs6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8k/vtJ1Sax/LRTBL0IzqUPOSMGis9tMr9StWtuTOQZeIVpAoFGv3KV28QszRCaZigWnc9NzF+RpXhTOC03Es1JpSN6RC7lkoaofaz2aVTcmqVAQljZUsaMlN/T2Q00noSBbYzomakF71c/M/rpia89jMuk9SgZPNFYSqIiUn+NhlwhcyIiSWUKW5vJWxEFWXGhpOH4C2+vExa5zXvsubdX1Trd0UcJTiGEzgDD66gDrfQgCYwCOEZXuHNGTsvzrvzMW9dcYqZI/gD5/MH6yaM+w==</latexit>

V <latexit sha1_base64="Dx1mjzX9+ehPTGnecgAUhuSdNJU=">AAAB+3icbVBNS8NAEN3Urxq/Yj16WSxCvZRERD0WvOitgv2ANpbNdtIu3WzC7kYsMX/FiwdFvPpHvPlvTNoctPXBwOO9GWbmeRFnStv2t1FaWV1b3yhvmlvbO7t71n6lrcJYUmjRkIey6xEFnAloaaY5dCMJJPA4dLzJVe53HkAqFoo7PY3ADchIMJ9RojNpYFXwk7hPavZJ2pdEjDiY5sCq2nV7BrxMnIJUUYHmwPrqD0MaByA05USpnmNH2k2I1IxySM1+rCAidEJG0MuoIAEoN5ndnuLjTBliP5RZCY1n6u+JhARKTQMv6wyIHqtFLxf/83qx9i/dhIko1iDofJEfc6xDnAeBh0wC1XyaEUIly27FdEwkoTqLKw/BWXx5mbRP68553bk9qzZuijjK6BAdoRpy0AVqoGvURC1E0SN6Rq/ozUiNF+Pd+Ji3loxi5gD9gfH5AxtQkzY=</latexit>

|n(0)i<latexit sha1_base64="mh+ksWLFU7H8jFv1Oi9kxMXn2pU=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0lE1GPBi94q2A9oQ9lsN+nSzW7YnVRK6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzwlRwA5737ZTW1jc2t8rblZ3dvf0D9/CoZVSmKWtSJZTuhMQwwSVrAgfBOqlmJAkFa4ej25nfHjNtuJKPMElZkJBY8ohTAlbqu25PKBlrHg+BaK2eKn236tW8OfAq8QtSRQUafferN1A0S5gEKogxXd9LIciJBk4Fm1Z6mWEpoSMSs66lkiTMBPn88ik+s8oAR0rbkoDn6u+JnCTGTJLQdiYEhmbZm4n/ed0Mopsg5zLNgEm6WBRlAoPCsxjwgGtGQUwsIVRzeyumQ6IJBRvWLAR/+eVV0rqo+Vc1/+GyWr8v4iijE3SKzpGPrlEd3aEGaiKKxugZvaI3J3denHfnY9FacoqZY/QHzucPsOeTtw==</latexit>�!
<latexit sha1_base64="wpvZ4xmRhqe6xN2/Ia7qVmDOPUc=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix40VsV+wFtKJvtpF262YTdjVBC/4EXD4p49R9589+4aXPQ1gcDj/dmmJkXJIJr47rfzsrq2vrGZmmrvL2zu7dfOThs6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8k/vtJ1Sax/LRTBL0IzqUPOSMGis9tMr9StWtuTOQZeIVpAoFGv3KV28QszRCaZigWnc9NzF+RpXhTOC03Es1JpSN6RC7lkoaofaz2aVTcmqVAQljZUsaMlN/T2Q00noSBbYzomakF71c/M/rpia89jMuk9SgZPNFYSqIiUn+NhlwhcyIiSWUKW5vJWxEFWXGhpOH4C2+vExa5zXvsubdX1Trd0UcJTiGEzgDD66gDrfQgCYwCOEZXuHNGTsvzrvzMW9dcYqZI/gD5/MH6yaM+w==</latexit>

V



<latexit sha1_base64="V1/+TqT4ji+nib949xgeQeFHDi0="></latexit>

He↵
nm = � 1

U

X

k/2D

hn(0)|V |k(0)ihk(0)|V |m(0)i
<latexit sha1_base64="kP6lHTLeGNJ21eQiqcVyYQzq1Oo=">AAACLXicdVBdSxwxFM1YrXa1da2PfQkugj44ZNbx66EgtA/2zUJ3FXZ2l0z2zhpMMkOSEZY4f6gv/pVS6IOl9LV/o5ndLajUAxdOzrmX3HvSQnBjCbkPFl4sLr1cXnnVWF17/Wa9ufG2a/JSM+iwXOT6MqUGBFfQsdwKuCw0UJkKuEivP9T+xQ1ow3P1xU4K6Es6VjzjjFovDZsfzwYu0RJDllVDp2SF3+O9JNOUuahynSoRVI0FYDVwO2S3uu0O2vhWzh6JnnqNxrDZIuHRYbx/coxJ2CaE7JOaHMQHcYyjkEzRQnOcD5vfk1HOSgnKMkGN6UWksH1HteVMQNVISgMFZdd0DD1PFZVg+m56bYW3vTLCWa59KYun6sMJR6UxE5n6TkntlXnq1eL/vF5ps+O+46ooLSg2+ygrBbY5rqPDI66BWTHxhDLN/a6YXVEflfUB1yH8uxQ/T7rtMDoMo89x6/TTPI4V9A5toR0UoSN0is7QOeoghr6ib+ge/Qzugh/Br+D3rHUhmM9sokcI/vwFJPSndQ==</latexit>

He↵
nm = � 1

U
hn(0)|V 2|m(0)i

<latexit sha1_base64="Fi2gwGkMUvm/FNNYFEP5XtFltxo=">AAAB+3icbVDLSsNAFJ3UV42vWJduBotQNyURUZcFN7qrYB/QxjKZTtqhM5MwMxFLzK+4caGIW3/EnX/jpM1CWw9cOJxzL/feE8SMKu2631ZpZXVtfaO8aW9t7+zuOfuVtooSiUkLRyyS3QApwqggLU01I91YEsQDRjrB5Cr3Ow9EKhqJOz2Nic/RSNCQYqSNNHAq8InfpzX3JOtLJEaM2PbAqbp1dwa4TLyCVEGB5sD56g8jnHAiNGZIqZ7nxtpPkdQUM5LZ/USRGOEJGpGeoQJxovx0dnsGj40yhGEkTQkNZ+rviRRxpaY8MJ0c6bFa9HLxP6+X6PDST6mIE00Eni8KEwZ1BPMg4JBKgjWbGoKwpOZWiMdIIqxNXHkI3uLLy6R9WvfO697tWbVxU8RRBofgCNSABy5AA1yDJmgBDB7BM3gFb1ZmvVjv1se8tWQVMwfgD6zPHxm9kzU=</latexit>

|m(0)i
<latexit sha1_base64="Dx1mjzX9+ehPTGnecgAUhuSdNJU=">AAAB+3icbVBNS8NAEN3Urxq/Yj16WSxCvZRERD0WvOitgv2ANpbNdtIu3WzC7kYsMX/FiwdFvPpHvPlvTNoctPXBwOO9GWbmeRFnStv2t1FaWV1b3yhvmlvbO7t71n6lrcJYUmjRkIey6xEFnAloaaY5dCMJJPA4dLzJVe53HkAqFoo7PY3ADchIMJ9RojNpYFXwk7hPavZJ2pdEjDiY5sCq2nV7BrxMnIJUUYHmwPrqD0MaByA05USpnmNH2k2I1IxySM1+rCAidEJG0MuoIAEoN5ndnuLjTBliP5RZCY1n6u+JhARKTQMv6wyIHqtFLxf/83qx9i/dhIko1iDofJEfc6xDnAeBh0wC1XyaEUIly27FdEwkoTqLKw/BWXx5mbRP68553bk9qzZuijjK6BAdoRpy0AVqoGvURC1E0SN6Rq/ozUiNF+Pd+Ji3loxi5gD9gfH5AxtQkzY=</latexit>

|n(0)i<latexit sha1_base64="mh+ksWLFU7H8jFv1Oi9kxMXn2pU=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0lE1GPBi94q2A9oQ9lsN+nSzW7YnVRK6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzwlRwA5737ZTW1jc2t8rblZ3dvf0D9/CoZVSmKWtSJZTuhMQwwSVrAgfBOqlmJAkFa4ej25nfHjNtuJKPMElZkJBY8ohTAlbqu25PKBlrHg+BaK2eKn236tW8OfAq8QtSRQUafferN1A0S5gEKogxXd9LIciJBk4Fm1Z6mWEpoSMSs66lkiTMBPn88ik+s8oAR0rbkoDn6u+JnCTGTJLQdiYEhmbZm4n/ed0Mopsg5zLNgEm6WBRlAoPCsxjwgGtGQUwsIVRzeyumQ6IJBRvWLAR/+eVV0rqo+Vc1/+GyWr8v4iijE3SKzpGPrlEd3aEGaiKKxugZvaI3J3denHfnY9FacoqZY/QHzucPsOeTtw==</latexit>�!
<latexit sha1_base64="wpvZ4xmRhqe6xN2/Ia7qVmDOPUc=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix40VsV+wFtKJvtpF262YTdjVBC/4EXD4p49R9589+4aXPQ1gcDj/dmmJkXJIJr47rfzsrq2vrGZmmrvL2zu7dfOThs6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8k/vtJ1Sax/LRTBL0IzqUPOSMGis9tMr9StWtuTOQZeIVpAoFGv3KV28QszRCaZigWnc9NzF+RpXhTOC03Es1JpSN6RC7lkoaofaz2aVTcmqVAQljZUsaMlN/T2Q00noSBbYzomakF71c/M/rpia89jMuk9SgZPNFYSqIiUn+NhlwhcyIiSWUKW5vJWxEFWXGhpOH4C2+vExa5zXvsubdX1Trd0UcJTiGEzgDD66gDrfQgCYwCOEZXuHNGTsvzrvzMW9dcYqZI/gD5/MH6yaM+w==</latexit>

V

<latexit sha1_base64="5hQP0GlxPsng2r8WxtKCwv9DSzs=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E1DJgo10EEwPJEfY2k2TJ7t65uyeEI3/CxkIRW/+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gorq2vrG8XN0tb2zu5eef+gaeJUM2ywWMS6FVGDgitsWG4FthKNVEYCH6LR9dR/eEJteKzu7TjBUNKB4n3OqHVSq2NS2c34pFuu+FV/BrJMgpxUIEe9W/7q9GKWSlSWCWpMO/ATG2ZUW84ETkqd1GBC2YgOsO2oohJNmM3unZATp/RIP9aulCUz9fdERqUxYxm5Tknt0Cx6U/E/r53a/lWYcZWkFhWbL+qngtiYTJ8nPa6RWTF2hDLN3a2EDammzLqISi6EYPHlZdI8qwYX1eDuvFK7zeMowhEcwykEcAk1uIE6NICBgGd4hTfv0Xvx3r2PeWvBy2cO4Q+8zx96H5BI</latexit>X

i

<latexit sha1_base64="xUXbmWsA3y4AdDaemjTTLM2t7Ro=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF71VtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89hPXRsTqEScJ9yM6VCIUjKKVHjIx7ZcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVa9W9e4vK/W7PI4inMApnIMHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gCWt44G</latexit>

i

<latexit sha1_base64="OJqU1z6C32PlADlBBzTG0d7s+jQ=">AAAB+3icbVBNS8NAEJ3Urxq/Yj16WSxCvZRERD0WvOitgv2ANpbNdtMu3WzC7kYsMX/FiwdFvPpHvPlvTNoctPXBwOO9GWbmeRFnStv2t1FaWV1b3yhvmlvbO7t71n6lrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1vcpX7nQcqFQvFnZ5G1A3wSDCfEawzaWBV0NPkPqnZJ2lfYjHi1DQHVtWu2zOgZeIUpAoFmgPrqz8MSRxQoQnHSvUcO9JugqVmhNPU7MeKRphM8Ij2MipwQJWbzG5P0XGmDJEfyqyERjP190SCA6WmgZd1BliP1aKXi/95vVj7l27CRBRrKsh8kR9zpEOUB4GGTFKi+TQjmEiW3YrIGEtMdBZXHoKz+PIyaZ/WnfO6c3tWbdwUcZThEI6gBg5cQAOuoQktIPAIz/AKb0ZqvBjvxse8tWQUMwfwB8bnDxaXkzM=</latexit>

|k(0)i
<latexit sha1_base64="mh+ksWLFU7H8jFv1Oi9kxMXn2pU=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0lE1GPBi94q2A9oQ9lsN+nSzW7YnVRK6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzwlRwA5737ZTW1jc2t8rblZ3dvf0D9/CoZVSmKWtSJZTuhMQwwSVrAgfBOqlmJAkFa4ej25nfHjNtuJKPMElZkJBY8ohTAlbqu25PKBlrHg+BaK2eKn236tW8OfAq8QtSRQUafferN1A0S5gEKogxXd9LIciJBk4Fm1Z6mWEpoSMSs66lkiTMBPn88ik+s8oAR0rbkoDn6u+JnCTGTJLQdiYEhmbZm4n/ed0Mopsg5zLNgEm6WBRlAoPCsxjwgGtGQUwsIVRzeyumQ6IJBRvWLAR/+eVV0rqo+Vc1/+GyWr8v4iijE3SKzpGPrlEd3aEGaiKKxugZvaI3J3denHfnY9FacoqZY/QHzucPsOeTtw==</latexit>�!

<latexit sha1_base64="wpvZ4xmRhqe6xN2/Ia7qVmDOPUc=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix40VsV+wFtKJvtpF262YTdjVBC/4EXD4p49R9589+4aXPQ1gcDj/dmmJkXJIJr47rfzsrq2vrGZmmrvL2zu7dfOThs6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8k/vtJ1Sax/LRTBL0IzqUPOSMGis9tMr9StWtuTOQZeIVpAoFGv3KV28QszRCaZigWnc9NzF+RpXhTO C03Es1JpSN6RC7lkoaofaz2aVTcmqVAQljZUsaMlN/T2Q00noSBbYzomakF71c/M/rpia89jMuk9SgZPNFYSqIiUn+NhlwhcyIiSWUKW5vJWxEFWXGhpOH4C2+vExa5zXvsubdX1Trd0UcJTiGEzgDD66gDrfQgCYwCOEZXuHNGTsvzrvzMW9dcYqZI/gD5/MH6yaM+w==</latexit>

V

Let’s calculate the contributions
from two nearest neighbors i,j

9 1.1 Origins of quantum antiferromagnetism
!

theory, one then constructs the matrix

Heffmn =
∑

i

⟨n|Ht|i⟩⟨i|Ht|m⟩
E0 − Ei

, (1.21)

where m, n ∈ {1, . . . , 2N} refer to states only in the degenerate subspace and the summation
is over states |i⟩ outside this subspace. Since Ht|m⟩ is a state with one doubly-occupied site,
all contributing states |i⟩ also have one doubly occupied site and, thus, Ei − E0 = U. We
can therefore write (1.21) as

Heffmn = −
1
U
⟨n|H2t |m⟩. (1.22)

As the notation indicates,Heff can be interpreted as an effective hamiltonian in the subspace
of spin configurations; diagonalizing it gives the shifted energy levels to order t2/U. Now
we just need to construct the matrix elements.
We use the following notation for the states in the degenerate subspace;

|n⟩ = |σ1, . . . ,σN⟩ =
N

∏

k=1
c†kσk |vac⟩, (1.23)

where σk =↑, ↓. Since there is exactly one fermion per site, this conforms with more gen-
eral fermionic state convention (1.6). Consider a pair of nearest-neighbor sites i, j and a
state |n⟩ = |... ↑i ... ↓ j ...⟩. As illustrated in Fig. 1.4, there are four ways in which terms of
H2t can act on |n⟩ to result in a state |m⟩ within the subspace; two each of either |m⟩ = |n⟩ or
the state with the two spins flipped; |m⟩ = |... ↓i ... ↑ j ...⟩. More specifically, the contribut-
ing processes are

c†i↑c j↑c
†
j↑ci↑|... ↑i ... ↓ j ...⟩ = +|... ↑i ... ↓ j ...⟩

c†i↓c j↓c
†
j↑ci↑|... ↑i ... ↓ j ...⟩ = −|... ↓i ... ↑ j ...⟩

c†j↓ci↓c
†
i↓c j↓|... ↑i ... ↓ j ...⟩ = +|... ↑i ... ↓ j ...⟩ (1.24)

c†j↑ci↑c
†
i↓c j↓|... ↑i ... ↓ j ...⟩ = −|... ↓i ... ↑ j ...⟩

Here the signs arise from fermion anti-commutation when bringing the creation and de-
struction operators to their appropriate positions according to our convention (1.6), where
the spin0↓ creation operator for a doubly-occupied site should act before the ↓-spin creation
operator. The net sign is always positive for diagonal case and negative for the off-diagonal
(spin-flip) case.
We now have all we need to write down the effective spin hamiltonian, which acts only

on the states |σ1, . . . ,σN⟩ of the degenerate subspace. These states can now be defined
without reference to the fermion creations operations on the vacuum in (1.23). We can
express the operations in (1.24) using the standard S = 1

2 spin operators; the diagonal z-
components S zi and the raising and lowering operators (ladder operators) S

+

i and S
−
i . These

have the following effects when acting on one of the spin basis states;

S zi |... ↑i ...⟩ =
1
2 | ↑i⟩, S zi |... ↓i ...⟩ = −

1
2 |... ↓i ...⟩

S +i |... ↑i ...⟩ = 0, S +i |... ↓i ...⟩ = |... ↑i ...⟩
S −i |... ↑i ...⟩ = |... ↓i ...⟩, S −i |... ↓i ...⟩ = 0,

(1.25)

the signs will not depend
on the location of i,j
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The spin states are defined by

- virtual states with one doubly-occupied site are created
- use convention: particles created in order 1,…,N, spin ↓ before ↑
- proceeding with anticommutation rules we get

sum over i includes all states with one 
doubly-occupied states which can be reached 
by moving a particle to a neighboring site



We also get a minus sign from -1/U and a factor t2 from V
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+t2/U

-t2/U

+t2/U

-t2/U

!Fig. 1.4 Contributions to the effective spin hamiltonian acting on the pair of spins to the left. Each of the two
kinetic “jumps” contributes a factor t, and the doubly-occuied site suppresses the contributions by
1/U. The minus signs in the off-diagonal terms are due to fermion anticommutation.

with all of them coming with a prefactor of −t2/U in (1.22). Using also

S x
i =

1
2 (S

+

i + S
−
i ), S yi =

1
2 (S

+

i − S
−
i ), (1.26)

we can write down the Heisenberg spin hamiltonian

H = J
∑

⟨i, j⟩

[S zi S
z
j −

1
4 +

1
2 (S

+

i S
−
j + S

−
i S
+

j )],= J
∑

⟨i, j⟩

Si · S j, (1.27)

where the coupling J = 4t2/U. This is in exact agreement with the U → ∞ behavior we
already found for the two-site Hubbard model. This is because only two sites at a time are
involved in the second-order exchange processes. The derivation is therefore completely
independent of the underlying lattice. Note that the isotropy of the interaction in spin-space
is a consequence of the fermionic nature of the electrons. One can also deriva a similar
interaction starting from a Hubbard model with bosons, but then there are no minus signs
in front of the off-diagonal conributions in (1.24).
A potential concern is that for the Heisenberg model to provide a good approximation

to the spin physics, the spectrum of the states obtained with this hamiltonian should stay
within the charge gap of the Hubbard model. Otherwise, the separation of energy scales
that allow us consider the higher-energy states as only affecting the subspace of 2N spin
states perturbatively appears not to apply. The range of energy eigenvalues of (1.27) is
∝ JNb, where Nb is the number of iteracting bonds ⟨i, ⟩, which diverges when the system
size N → ∞. On the other hand, the Hubbard charge gap (which should be defined with
respect to the true ground state) is ∝ U for largeU, independently of N (note that the charge
excitation energies will also come down as a result of the effective spin-spin couplings in
those states, so that the gap remains ∝ U). Thus, the states of the Heisenberg model will
extend far above the charge gap. However, normally we are not interested in the states at
high energy. The elementary low-energy excitations of the Heisenberg model span a band
of width ∝ J (as we will se in the next section), which is much less than the charge gap for
large U. These states can therefore still be expected to provide a good description of the
low-energy spin excitations of the the large-U Hubbard model.
For a more detailed derivation of a spin hamiltonian, including also higher-order terms,

see Ref. [7], where one of the important high-Tc cuprate parent compounds, La2CuO4, is
considered.
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We can identify these outcomes with a spin-spin interaction.

9 1.1 Origins of quantum antiferromagnetism
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theory, one then constructs the matrix

Heffmn =
∑

i

⟨n|Ht|i⟩⟨i|Ht|m⟩
E0 − Ei

, (1.21)

where m, n ∈ {1, . . . , 2N} refer to states only in the degenerate subspace and the summation
is over states |i⟩ outside this subspace. Since Ht|m⟩ is a state with one doubly-occupied site,
all contributing states |i⟩ also have one doubly occupied site and, thus, Ei − E0 = U. We
can therefore write (1.21) as

Heffmn = −
1
U
⟨n|H2t |m⟩. (1.22)

As the notation indicates,Heff can be interpreted as an effective hamiltonian in the subspace
of spin configurations; diagonalizing it gives the shifted energy levels to order t2/U. Now
we just need to construct the matrix elements.
We use the following notation for the states in the degenerate subspace;

|n⟩ = |σ1, . . . ,σN⟩ =
N

∏

k=1
c†kσk |vac⟩, (1.23)

where σk =↑, ↓. Since there is exactly one fermion per site, this conforms with more gen-
eral fermionic state convention (1.6). Consider a pair of nearest-neighbor sites i, j and a
state |n⟩ = |... ↑i ... ↓ j ...⟩. As illustrated in Fig. 1.4, there are four ways in which terms of
H2t can act on |n⟩ to result in a state |m⟩ within the subspace; two each of either |m⟩ = |n⟩ or
the state with the two spins flipped; |m⟩ = |... ↓i ... ↑ j ...⟩. More specifically, the contribut-
ing processes are

c†i↑c j↑c
†
j↑ci↑|... ↑i ... ↓ j ...⟩ = +|... ↑i ... ↓ j ...⟩

c†i↓c j↓c
†
j↑ci↑|... ↑i ... ↓ j ...⟩ = −|... ↓i ... ↑ j ...⟩

c†j↓ci↓c
†
i↓c j↓|... ↑i ... ↓ j ...⟩ = +|... ↑i ... ↓ j ...⟩ (1.24)

c†j↑ci↑c
†
i↓c j↓|... ↑i ... ↓ j ...⟩ = −|... ↓i ... ↑ j ...⟩

Here the signs arise from fermion anti-commutation when bringing the creation and de-
struction operators to their appropriate positions according to our convention (1.6), where
the spin0↓ creation operator for a doubly-occupied site should act before the ↓-spin creation
operator. The net sign is always positive for diagonal case and negative for the off-diagonal
(spin-flip) case.
We now have all we need to write down the effective spin hamiltonian, which acts only

on the states |σ1, . . . ,σN⟩ of the degenerate subspace. These states can now be defined
without reference to the fermion creations operations on the vacuum in (1.23). We can
express the operations in (1.24) using the standard S = 1

2 spin operators; the diagonal z-
components S zi and the raising and lowering operators (ladder operators) S

+

i and S
−
i . These

have the following effects when acting on one of the spin basis states;

S zi |... ↑i ...⟩ =
1
2 | ↑i⟩, S zi |... ↓i ...⟩ = −

1
2 |... ↓i ...⟩

S +i |... ↑i ...⟩ = 0, S +i |... ↓i ...⟩ = |... ↑i ...⟩
S −i |... ↑i ...⟩ = |... ↓i ...⟩, S −i |... ↓i ...⟩ = 0,

(1.25)
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The fluctuation  process is only possible for anti-parallel spins:
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+t2/U

-t2/U

+t2/U

-t2/U

!Fig. 1.4 Contributions to the effective spin hamiltonian acting on the pair of spins to the left. Each of the two
kinetic “jumps” contributes a factor t, and the doubly-occuied site suppresses the contributions by
1/U. The minus signs in the off-diagonal terms are due to fermion anticommutation.

with all of them coming with a prefactor of −t2/U in (1.22). Using also

S x
i =

1
2 (S

+

i + S
−
i ), S yi =

1
2 (S

+

i − S
−
i ), (1.26)

we can write down the Heisenberg spin hamiltonian

H = J
∑

⟨i, j⟩

[S zi S
z
j −

1
4 +

1
2 (S

+

i S
−
j + S

−
i S
+

j )],= J
∑

⟨i, j⟩

Si · S j, (1.27)

where the coupling J = 4t2/U. This is in exact agreement with the U → ∞ behavior we
already found for the two-site Hubbard model. This is because only two sites at a time are
involved in the second-order exchange processes. The derivation is therefore completely
independent of the underlying lattice. Note that the isotropy of the interaction in spin-space
is a consequence of the fermionic nature of the electrons. One can also deriva a similar
interaction starting from a Hubbard model with bosons, but then there are no minus signs
in front of the off-diagonal conributions in (1.24).
A potential concern is that for the Heisenberg model to provide a good approximation

to the spin physics, the spectrum of the states obtained with this hamiltonian should stay
within the charge gap of the Hubbard model. Otherwise, the separation of energy scales
that allow us consider the higher-energy states as only affecting the subspace of 2N spin
states perturbatively appears not to apply. The range of energy eigenvalues of (1.27) is
∝ JNb, where Nb is the number of iteracting bonds ⟨i, ⟩, which diverges when the system
size N → ∞. On the other hand, the Hubbard charge gap (which should be defined with
respect to the true ground state) is ∝ U for largeU, independently of N (note that the charge
excitation energies will also come down as a result of the effective spin-spin couplings in
those states, so that the gap remains ∝ U). Thus, the states of the Heisenberg model will
extend far above the charge gap. However, normally we are not interested in the states at
high energy. The elementary low-energy excitations of the Heisenberg model span a band
of width ∝ J (as we will se in the next section), which is much less than the charge gap for
large U. These states can therefore still be expected to provide a good description of the
low-energy spin excitations of the the large-U Hubbard model.
For a more detailed derivation of a spin hamiltonian, including also higher-order terms,

see Ref. [7], where one of the important high-Tc cuprate parent compounds, La2CuO4, is
considered.
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J = 4t2/U exchange constant

<latexit sha1_base64="we2TA463Exyh9/etPg7cB5VxxXE="></latexit>

Sx = (1/2)(S+ + S�), Sx = (i/2)(S+ � S�)
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We can rewrite the interaction using:
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U
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z
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i S�
j + S�

i S+
j )
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i
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j
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i
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j

)� J/4

The constant is normally unimportant and we have the Heisenberg Hamiltonian
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HHeisenberg = J
X

hiji

~Si · ~Sj

Note: sign came from anti-commutation
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2
N

spin states

charge gap

!Fig. 1.3 For infinite Hubbard repulsion U, there are 2N degenerate spin states (one electron per site). For
finite but large U, the degeneracy is lifted and the gap to charge excitation is finite (proportional to U
for large U, corresponding to the energy of a doubly occupied site). An effective spin hamiltonian can
be used to describe the low-energy part of the spectrum.

1.1.3 The Heisenberg quantum spin model

An effective spin description of the low-energy states of the Hubbard model at half-filling
is valid also for a system of more than two spins, provided that a charge gap is present, i.e.,
that the system is insulating. For the one-dimensional chain, this is true for any non-zero
U (even when the number of sites N → ∞, which is the limit we eventually would like to
take), and that is believed to be the case also on the two-dimensional square lattice (and
many other lattices). In other cases, the ground state may be insulating only above some
critical value Uc (as the original description of so-called Mott insulators). Here we will
derive the Heisenberg spin hamiltonian for a generic half-filled Hubbard system, under the
implicit assumption that it is insulating.
The derivation can be carried out in many different ways. Here we will take the techni-

cally simplest route, which amounts to applying a standard result of second-order degener-
ate perturbation theory (which is nicely discussed in the classic quantum mechanics book
by Schiff [5]). The starting point is that for a system with N sites, there are 2N degenerate
zero-energy ground states (spin configurations) of the half-filled Hubbard model. At finite
U, this degeneracy is lifted, as illustrated in Fig. 1.3. We will here first assume that the
group of 2N spin states remain separated from all other states. This can always be assured
by demanding a sufficiently large U for given N (and, as we will see, this U → ∞ as
N → ∞). We will later be able to relax this condition and only demand that there remains
a gap between the lowest spin state (the ground state) and the lowest charge excitation.
Then the ground state and low-energy spin excitations of the infinite lattice are well ap-
proximated by a spin hamiltonian also at finite U, although the full spin level spectrum
including high-energy spin excitations is not.
Writing the Hubbard hamiltonian (1.5) as a sum of kinetic and potential terms, H =

Ht + HU , we consider Ht as a perturbation to HU , i.e., t/U ≪ 1. At half-filling, the set of
2N states with one electron per site are ground states of HU with energy E0 = 0, and there
is a gap U to the next set of states; those with one each of empty and dpubly-occupied
sites. We would like to know how the degenerate ground-state manifold splits into a band
of states in the presence of Ht. The degeneracy is not lifted to first order in t, because all
the matrix elements ⟨m|Ht|n⟩ = 0 when |n⟩ and |m⟩ are both in the degenerate subspace. We
thus have to go to second order. In the standard approach [5] to degenerate perturbation
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HHeisenberg = J
X

hiji

~Si · ~Sj

Now we have an effective
low-energy Hamiltonian
But we still need to ‘solve it’!

1D: Exact Bethe Ansatz solution
- “quasi-ordered state”
2D: Spin wave theory can
account for low-energy physics (but not interesting effects at energy ~ J)
- T=0 states has antiferromagnetic order
3D: Spin-wave theory
- T > 0 antiferromagnetic ordering transition 

- it’s not possible to exactly diagonalize 
the Hamiltonian for large N

Some times the effective interactions are anisotropic. XXZ model:
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Jz=0    : XY model (or XX model)
Jxy = 0 : Ising model
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Prototypical Mott insulator; high-Tc cuprates (antiferromagnets)

CuO2 planes, localized spins on Cu sites

- Lowest-order spin model: S=1/2 Heisenberg

- Super-exchange coupling, J≈1500K

Many other quasi-1D and quasi-2D cuprates

• chains, ladders, impurities and dilution, frustrated interactions, ...

Ladder systems

- even/odd effects
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- dilution-driven phase transition
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• Zn (S = 0)
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H = J
X

hiji

~Si · ~Sj

The Heisenberg model can also apply in more complicated crystals
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Doping the cuprates (e.g., La→Sr) ⇒ holes in the copper-oxygen planes
• Hubbard model; “hopping” t, doubly-occupied site costs energy U 

• t-J model; U large, exclude doubly-occupied sites ⇒ spin interaction

• Do we have to keep the O sites? ⇒ 3-band Hubbard model

• Very difficult quantum many-body problems; no consensus yet
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5%

300K pseudogap
glassy

superconducting

antiferromagnetic
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hole doped

Doping charge carriers: 

superconductivity

- Hubbard & t-J modelsVariants of cuprates that are still insulating

- Heisenberg models on other lattices

Nature of ground state  (ordered 
vs disordered), excitations, 
quantum  phase transitions…



Quantum versus classical antiferromagnets
Starting point: S=1/2 Heisenberg model 

- nearest-neighbor interactions (J>0)

- extend by longer-range or multi-spin couplings

- maintain spin-rotation invariance (or not)

H = J
�

�i,j⇥

Si · Sj + g ⇥ · · ·

Consider 2 spins: 
- classical (S=∞) ground state is any anti-parallel configuration

- S=1/2 (extreme quantum) is a singlet (singlet-triplet gap = J)


| "#i � | #"ip
2

=

Extended quantum magnets (N→∞) can have aspects of

- classical-like antiferromagnetic order

- non-classical effects can some times be understood using singlets

H = J
�

�i,j⇥

�Si · �Sj

Prototypical Mott insulator; high-Tc cuprates (antiferromagnets)

CuO2 planes, localized spins on Cu sites

- Lowest-order spin model: S=1/2 Heisenberg

- Super-exchange coupling, J≈1500K

Many other quasi-1D and quasi-2D cuprates

• chains, ladders, impurities and dilution, frustrated interactions, ...

Ladder systems

- even/odd effects
non-magnetic impurities/dilution

- dilution-driven phase transition

• Cu (S = 1/2)
• Zn (S = 0)

12



Frustrated  quantum spins
Competing antiferromagnetic interactions

- structure of ground state can be highly non-trivial

Ising spins: ", #

bipartite non-bipartite

un-frustrated frustrated

Even classical spin models (Ising, XY, 

Heisenberg) can be highly non-trivial when 

the interactions are frustrated
Be careful with classical pictures and intuition:

classical Heisenberg

9/3/19, 2:51 PMinterlayerinteraction-dependence-of-latent-heat-in-the-heisenberg-m…ngular-lattice-with-competing-interactions-4-638.jpg 638×479 pixels

Page 1 of 1http://image.slidesharecdn.com/pre-88-052138-presentation-131128051…ngular-lattice-with-competing-interactions-4-638.jpg?cb=1385616045

++

Quantum S=1/2 Heisenberg
�

valence bond description (basis)
= (⇥i⇤j � ⇤i⇥j)/

⌅
2

i j

�

 non-magnetic states dominated by short bonds

over-complete
basis for the
singlet sector



Classical (thermal) phase transition 
- Fluctuations regulated by temperature T>0 
Quantum (ground state, T=0) phase transition 
- Fluctuations regulated by parameter g in Hamiltonian

Classical and quantum phase transitions

There are many similarities between classical and quantum transitions 
- and also important differences
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FIGURE 3. Temperature (T ) or coupling (g) dependence of the order parameter (e.g., the magnetization
of a ferromagnet) at a continuous (a) and a first-order (b) phase transition. A classical, thermal transition
occurs at some temperature T = Tc, whereas a quantum phase transition occurs at some g= gc at T = 0.

where the spin correlations decay exponentially with distance [60].
While quasi-1D antiferromagnets were actively studied experimentally already in the

1960s and 70s, these efforts were further stimulated by theoretical developments in the
1980s. Haldane conjectured [55], based on a field-theory approach, that the Heisenberg
chain has completely different physical properties for integer spin (S = 1,2, . . .) and
“half-odd integer” spin (S = 1/2,3/2, . . .). It was known from Bethe’s solution that the
S = 1/2 chain has a gapless excitation spectrum (related to the power-law decaying
spin correlations). Haldane suggested the possibility of the S= 1 chain instead having a
ground state with exponentially decaying correlations and a gap to all excitations; a kind
of spin liquid state [26]. This was counter to the expectation (based on, e.g., spin wave
theory) that increasing S should increase the tendency to ordering. Haldane’s conjecture
stimulated intense research activities, theoretical as well as experimental, on the S = 1
Heisenberg chain and 1D systems more broadly. There is now completely conclusive
evidence from numerical studies that Haldane was right [61, 62, 63]. Experimentally,
there are also a number of quasi-one-dimensional S = 1/2 [64] and S = 1 [65] (and
also larger S [66]) compounds which show the predicted differences in the excitation
spectrum. A rather complete and compelling theory of spin-S Heisenberg chains has
emerged (and includes also the VBS transitions for half-odd integer S), but even to this
date various aspects of their unusual properties are still being worked out [67]. There are
also many other variants of spin chains, which are also attracting a lot of theoretical and
experimental attention (e.g., systems including various anisotropies, external fields [68],
higher-order interactions [69], couplings to phonons [70, 71], long-range interactions
[72, 73], etc.). In Sec. 4 we will use exact diagonalization methods to study the S= 1/2
Heisenberg chain, as well as the extended variant with frustrated interactions (and also
including long-range interactions). In Sec. 5 we will investigate longer chains using the
SSE QMC method. We will also study ladder-systems consisting of several coupled
chains [9], which, for an even number of chains, have properties similar to the Haldane
state (i.e., exponentially decaying spin correlations and gapped excitations).

2.4. Models with quantum phase transitions in two dimensions

The existence of different types of ground states implies that phase transitions can
occur in a system at T = 0 as some parameter in the hamiltonian is varied (which
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In both cases phase transitions can be 
- first-order (discontinuous): finite correlation length ξ as g→gc or g→gc 
- continuous: correlation length diverges, ξ~|g-gc|-ν or ξ~|T-Tc|-ν

The quantum phases (ground states) can also be highly non-trivial 
- even with rather simple lattice models



Example: Néel-paramagnetic quantum phase transition 
Dimerized S=1/2 Heisenberg models 
• every spin belongs to a dimer (strongly-coupled pair) 
• many possibilities, e.g., bilayer, dimerized single layer

⇒ 3D classical Heisenberg (O3) universality class; QMC confirmed

Singlet formation on strong bonds ➙ Néel - quantum-paramagnetic transition
  ground state (T=0) phases� = spin gaps

weak interactions

strong interactions

Experimental realization 
(3D coupled-dimer system): 
TlCuCl3



What’s so special about quantum-criticality? 
- large T>0 quantum-critical “fan” where T is the only relevant energy scale

- physical quantities show power laws governed by the T=0 critical point

Changing T changes the imaginary-time size Lτ:  
- Finite-size scaling at gc leads to power laws

⇠ ⇠ T�1

C ⇠ T 2

�(0) ⇠ T

(correlation length)

(specific heat)

(uniform magnetic susceptibility)

T = 0 Néel order non-magnetic

high-T , lattice e�ects

�
⇢s

QD: Quantum disordered (paramagnetic)

- finite correlation length at T=0

Example: 2D Neel-paramagnet “cross-over 
diagram” [Chakravarty, Halperin, Nelson 1988]

 RC: Renormalized classical

- exponentially divergent correlation length 

QC: Quantum critical

- scaling behavior in T

Experimentally important

• QC effects can extend 

to relatively high T 



Example: Shastry-Sutherland model

Corboz & Mila, PRB 2013 (tensors)
• Weak first-order Neel to PS transition 

(caveat: small tensor dimension)

PHILIPPE CORBOZ AND FRÉDÉRIC MILA PHYSICAL REVIEW B 87, 115144 (2013)

J
0

Dimer phase Plaquette phase Néel phase

0.765(15)0.675(2)

FIG. 1. (Color online) The phase diagram of the Shastry-
Sutherland model as a function of nearest-neighbor coupling J

(J ′ = 1), obtained with iPEPS. The width of a bond is proportional
to the magnitude of the bond energy, where full (dashed) lines
correspond to negative (positive) energies. The arrows in the right
panel illustrate the Néel order. In between the well-established dimer
and Néel phase we find a phase with plaquette long-range order.

The paper is organized as follows: In Sec. II we provide
a brief introduction to the iPEPS method and explain the
different simulation setups used in this work. In Sec. III
we present our simulation results, first for values of J deep
in the individual phases, followed by a detailed study of
the phase transitions. Finally, in Sec. IV we summarize our
findings. In the Appendix the scheme to treat next-nearest-
neighbor interactions in iPEPS is explained.

II. METHOD

A. Infinite projected entangled-pair states

In this section we provide a short overview of iPEPS. For
a more detailed introduction to iPEPS and tensor networks in
general we refer to Refs. 14 and 25–27.

The main idea of a tensor network ansatz is to represent
(approximate) the coefficients ci1i2...iN of a wave function,

|!⟩ =
∑

i1i2...iN

ci1i2i3...iN |i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |iN ⟩, (2)

by a trace over a product of tensors. Here each index ik
runs over the d local basis states of a lattice site. The most
famous example is matrix product states (MPS) which form
the class of variational states underlying the density-matrix
renormalization group (DMRG) method.15 In an MPS the
coefficients are given by a trace over the product of 3-index
tensors T lr

i (with 2-index tensors at the boundaries), as for
example for a 6-site system

ci1i2i3i4i5i6 ≈
∑

j1j2j3j4j5

A
j1
i1
B

j1j2
i2

C
j2j3
i3

D
j3j4
i4

E
j4j5
i5

F
j5
i6

. (3)

Thus, each coefficient ci1i2i3i4i5i6 is given by a product of
matrices (with vectors at the open boundaries), hence the name
matrix product state. Tensor networks are most conveniently
represented graphically, as shown in Fig. 2(a) for this particular
example. Each tensor is represented by a shape with lines (legs)
attached to it, which correspond to the indices of the tensor.
A connection between two tensors implies a sum over the
corresponding index, and an open leg of a tensor corresponds
to the physical index for the local Hilbert space of a site. Each
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F G

D A
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H E
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H E

B C

F G
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|Ψ
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(a) MPS

(b) iPEPS
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j1 j2 j3 j4 j5
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ci1i2i3i4i5i6 ≈

Aldru
p

Cj2j3
i3

FIG. 2. (Color online) Graphical representation of an infinite
projected entangled-pair state (iPEPS) made of a 4 × 2 unit cell
of tensors (surrounded by thick dashed lines) which is periodically
repeated. Each sphere corresponds to a rank-5 tensor and the lines
(legs) attached to the sphere represent the indices of the tensor, as
shown on the right-hand side.

auxiliary index jk runs over D elements, which is called the
bond dimension. Thus, D controls the size of the tensors (or
matrices), i.e., the number of variational parameters of the
ansatz.

A projected entangled-pair state (PEPS)13 is a natural
generalization of a matrix product state to two dimensions.
Instead of a three-index tensor, a five-index tensor T ldru

i

is introduced for each lattice site on a two-dimensional
(square) lattice, where each tensor is connected with its four
neighboring tensors via the auxiliary indices l, d, r , u, each
having a bond dimension D. Thus, the number of variational
parameters per tensor is dD4. An infinite PEPS (iPEPS) is an
ansatz for a wave function in the thermodynamic limit.14 It is
made of a unit cell of tensors which is periodically repeated on
the infinite lattice, as depicted in Fig. 2(b). If the wave function
is translational invariant, the same tensor can be used on each
lattice site. If the state breaks translational symmetry, a larger
unit cell may be required.17 In practice, different unit cell sizes
are tested to check, which size leads to the state with lowest
variational energy.

An iPEPS with D = 1 is nothing but a site-vectorized wave
function (a product state), parametrized by vectors Ti on each
site. With increasing D the iPEPS can represent more and more
entangled states, with a scaling of the entanglement with block
size which obeys the area law of the entanglement entropy.25,28

Or in other words, with increasing D the iPEPS can take
into account more of the quantum fluctuations of the true
ground state. These quantum fluctuations may select, e.g., one
of infinitely many degenerate states in the classical D = 1
case. Thus, iPEPS provides a way to systematically study a
state as a function of D, where D controls the amount of
quantum fluctuations (or entanglement) in the system.

In order to obtain an approximate representation of the
ground state for a given Hamiltonian, the tensors need to
be optimized; i.e., the best variational parameters have to be

115144-2
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Figure 1. In the SS model (a), AFM Heisenberg interactions of
strength J between nearest neighbors compete with interactions of
strength J

0 on the subset of next-nearest neighbors indicated by di-
agonal lines. In the CBJQ model (b) the J

0 interactions are replaced
by four-spin Q interactions defined in Eq. (1).

where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
study a conventional dimer order parameter

D
µ

=
1

N

X

r

(�1)rµSz(r)Sz(r+ µ̂), µ = x, y, (2)

where the sum is over all lattice coordinates r = (r
x

, r
y

). In a
columnar symmetry-broken VBS, we have hD

x

i 6= 0, hD
y

i =
0 for x-oriented bond order and the same with x $ y for y
oriented bonds. Since a singlet plaquette can be regarded as a
resonance between two horizontal and two vertical bond pairs,
a two-fold degenerate PSS should have |hD

x

i| = |hD
y

i| 6= 0,
which on the lattice in Fig. 1 would correspond to alternat-
ing higher and lower singlet density on the plaquette rows and
columns. On a finite lattice the symmetry is not broken, and
the system fluctuates between the two possible states. We
use the SSE method to generate the probability distribution
P (D

x

, D
y

). While strictly speaking not a bona fide quantum
mechanical observable, this distribution nevertheless properly
reflects the fluctuations and symmetry properties of the sys-
tem. Results on either side of the AFM–PSS transition (the
exact location of which will be discussed below) are shown in
Fig. 2. We can clearly see the two-fold symmetry expected for
a PSS, instead of a four-fold symmetry of the columnar VBS
[9, 30] that also is compatible with the lattice.

If the Q terms are included for all plaquettes we arrive back
to the original J-Q model, whose AFM–VBS transition ap-
pears to be continuous [16]. In accord with the DQCP theory,

Figure 2. Dimer order distribution P (D
x

, D

y

) in the ground state
of the L = 96 CBJQ model at g = 0.20 (in the PSS phase) and
at g = 0.24 (in the AFM phase). The different intensities in the
two maximums at g = 0.20 reflect slow migration between the two
symmetry-broken states in the QMC simulations.

an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
rameters defined solely with the Sz spin components,

m
s

=
1

N

X

r

�(r)Sz(r), m
p

=
2

N

X

q

✓(q)P z(q), (3)

where the subscripts s (spin) and p (plaquette) mark the AFM
and PSS order parameters, respectively. In m

s

, r runs over all
N sites on the lattice and �(r) = ±1 is the staggered AFM
sign. In m

p

, we have defined an operator

P z(q) = Sz(q)Sz(q+ x̂)Sz(q+ ŷ)Sz(q+ x̂+ ŷ), (4)
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HSS = J
X

hiji

Si · Sj + J 0
X

hiji0
Si · Sj

Recent work
Yang, Sandvik, Wang,  PRB 2022
Wang, Zhang, Sandvik, CPL 2022
• gaples spin liquid phase between 

PS and AFM phases; 
g ~ (0.79,0.83)

Lee, You, Sachdev, Vishwanath, PRX 2019 (DMRG)
•  deconfined quantum critical PS-AFM point

J’ dimer-singlet state is exact eigenstate
• ground state up to for J/J1 ~ 0.68

Unique
ground state

Z2 symmetry
breaking

O(3) symmetry
breaking
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Figure 1. Phases of the SS model and SrCu2(BO3)2. (a) Schematic T = 0 phase diagram of the SS model with the approximate transition
values of ↵ from Ref. [17]. (b) Experimental (P, T ) phase diagram of SrCu2(BO3)2 (crystal structure in the inset) revealed by high pressure
heat capacity measurements. Examples of C(T )/T curves are given in (c-f). The green open symbols in (b) mark the location Th of the hump
in C/T for different samples (indicted by different symbols). The purple curve shows Th for the 20-spin SS model with P -linear couplings
close to those of Ref. [10]; J 0(P ) = [75 � 8.3P/GPa] K and J(P ) = [46.7 � 3.7P/GPa] K. For P ⇡ 1.7 � 2.4 GPa a second peak at
lower T appears, exemplified in (d), which indicates the transition into the PS phase. Upon further compression, the system first enter a regime
where the experimental setups (Methods) cannot reach sufficiently low T to observe the second peak. The peak is again detectable around 3
GPa and becomes more prominent while moving to higher T with increasing P . This behavior, shown in (e,f), suggests [26] a quasi-2D AF
system ordering at T > 0 due to weak inter-layer couplings. The phase boundaries extracted from the second peak are indicated by half-filled
red squares and diamonds (PS phase) and blue filled squares and half-filled circles (AF phase). The low-T data in (c,d) are fitted (green curves)
to the form C/T = a0 + a1T

2 + (a2/T
3)e��/T [25], giving gaps � displayed in Fig. 2(a). In (e,f) fits are shown (red curves) without gap

term; C/T = a0 + a1T
2.

will argue that this peak signals the PS phase transition. Upon
further increasing P , the small peak is no longer detected at
temperatures accesible in the experiment. A different, broader
hump appears between 3 and 4 GPa, below which there is a
peak at T ⇡ 2 � 3.5 K that we interpret as an AF transition.

AF order was previously detected only at P > 4 GPa at T as
high as ⇡ 120 K [10]. This high-T AF phase is not connected
to the new low-T AF phase (see Supplemental Information),
whose significantly lower temperature scale can be more eas-
ily accomodated by quasi-2D spin models.

The C/T hump is known from previous studies at ambi-
ent pressure [25], where it is the result of the spins form-
ing the correlations that eventually lead to the dimer singlets
as T ! 0. As shown in Fig. 1(b), the hump temperature
T
h

(P ) exhibits a minimum at P ⇡ 2.1 GPa. We have com-
puted C(T ) of the SS model by exact diagonalization (ED) of
the Hamiltonian on a 20-site lattice (Methods) and extracted
T
h

(↵). As shown in Fig. 1(b), we achieve a remarkably good
match with the experiments when converting ↵ to P by using
J(P ) and J 0(P ) of the linear forms found in Ref. [10]. In

the 2D Heisenberg model the hump appears at T ⇡ J/2 [26]
where significant short-range AF correlations start to build up.
In general, the hump indicates a temperature scale where cor-
relations set in that remove significant entropy from the sys-
tem. The minimum in the hump temperature can be regarded
as the point of highest frustration, with the energy scale being
lowered due to the competing effects of the two couplings (see
also Refs. [27, 28]). The peak that we associate with PS or-
dering appears in this pressure region, suggesting singlet for-
mation driven by strong frustration.

Phys. Rev. Lett. 

124, 206602 (2020)

Shastry-Sutherland material
Quasi-2D (layered) quantum magnet SrCu2(BO3)2
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↵ increases with pressure

Recent work 
NMR experiments,

high pressure, high

magnetic field

(arXiv:2204.08133)

proximate deconfined

critical point



= ⟨S⃗i · S⃗j⟩

The “J-Q” model with two projectors (J-Q2 model)
H = �J

�

�ij⇥

Cij �Q
�

�ijkl⇥

CijCkl

• Néel-VBS transition appears to be continuous 
• Possibly very weakly first-order 
• Ongoing studies (will be discussed), also J-Q3 and ‘larger’ Qn terms

Deconfined quantum criticality
Senthil, Vishwanath, Balents, Sachdev, Fisher (Science 2004)
(+ many previous works; Read & Sachdev, Sachdev & Murthy, Motrunich & Vishwanath….)
Continuous AF - VBS transition at T=0

- would be violation of Landau rule

- first-order would normally be expected

- role of topological defects 

Cij = 1
4 � ⇤Si · ⇤Sj

Numerical (QMC) tests using J-Q models



Randomly frustrated quantum antiferromagnet: SrCuTe1-xWxO6

Te → J1 W → J2

Dominant interaction depends

on ion inside Cu plaquette
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Sr2CuTeO6 is a square-lattice Néel antiferromagnet with superexchange between first-neighbor S ¼ 1=2
Cu spins mediated by plaquette centered Te ions. Substituting Te by W, the affected impurity plaquettes
have predominantly second-neighbor interactions, thus causing local magnetic frustration. Here we report a
study of Sr2CuTe1−xWxO6 using neutron diffraction and μSR techniques, showing that the Néel order
vanishes already at x ¼ 0.025" 0.005. We explain this extreme order suppression using a two-dimensional
Heisenberg spin model, demonstrating that a W-type impurity induces a deformation of the order parameter
that decays with distance as 1=r2 at temperature T ¼ 0. The associated logarithmic singularity leads to loss
of order for any x > 0. Order for small x > 0 and T > 0 is induced by weak interplane couplings. In the
nonmagnetic phase of Sr2CuTe1−xWxO6, the μSR relaxation rate exhibits quantum critical scaling with a
large dynamic exponent, z ≈ 3, consistent with a random-singlet state.
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A central theme in modern condensed matter physics is
the evolution of two-dimensional (2D) quantum antiferro-
magnets upon doping, as epitomized by the high-Tc
cuprates with charge carriers introduced into the CuO2

layers through off-layer doping [1,2]. In-plane static
impurities have also been studied, e.g., nonmagnetic Zn
substituting the spin S ¼ 1=2 carrying Cu ions [3–5]. In
general, impurities and random frustrated couplings in a
quantum magnet will eventually destroy any order and may
induce not yet fully understood disordered states, e.g.,
quantum spin glasses [6–8], spin fluids [9], valence-bond
glasses [10,11], and random-singlet (RS) states [12–24].
We here report μSR and neutron diffraction experiments

on Sr2CuTe1−xWxO6, which at x ¼ 0 realizes the 2D
S ¼ 1=2 antiferromagnetic (AFM) Heisenberg model with
predominantly first-neighbor interactions J1 generated

through superexchange via Te ions at the centers of the
plaquettes of 2 × 2 Cu ions [25,26]; see Fig. 1(a). At x ¼ 1,

(a)
J1 J’2

(b)
J2 J’1

(c)
J’’1

FIG. 1. 2D Heisenberg couplings JijSi · Sj in Sr2CuTe1−xWxO6.
The small black circles represent the S ¼ 1=2 carrying Cu ions,
while red and blue circles correspond to Te andW ions, respectively.
The dominant couplings mediated by Te in (a) andW in (b) are first-
neighbor J1 (solid red lines) and second-neighbor J2 (solid blue
lines), with J1 ≈ J2 ≈ 8 meV [30,33]. The couplings J01 and J02
indicated by the thin dashed lines are roughly 10% of the dominant
couplings. The first-neighbor coupling J001 on links between Te and
W ions, the gray dashed line in (c), is about 4% of J1 [33].

PHYSICAL REVIEW LETTERS 126, 037201 (2021)

0031-9007=21=126(3)=037201(7) 037201-1 © 2021 American Physical Society

The temperature dependent A0 is graphed in Fig. 3(c)
for x ¼ 0, 0.05, and 0.1. A sharp change is observed at
the previously known ordering temperature Tc at x ¼ 0
[25,26]. In contrast, in the x ¼ 0.05 and 0.1 samples A0

only decreases slowly below a characteristic temperature
T". This behavior reflects gradual changes of the local
fields as a result of the onset of short-range magnetic
correlations but no ordering, which is consistent with the
neutron results in Figs. 2(b) and 2(c). It should be noted that
the value of A0 for x ¼ 0 at low temperatures is about 4=5
of that above Tc, while in the case of x ¼ 1 it is only 1=3
[27,34]. It is beyond the scope of this work to explain the
detailed form of A0; some additional analysis is provided in
the Supplemental Material [34].
Figure 3(d) shows the temperature dependence of the

relaxation rate λ for x ¼ 0.05 and 0.1. Power-law behaviors
reflect quantum-critical scaling in what is likely the RS
phase. As explained in the Supplemental Material [34],
standard scaling arguments [42,43] in combination with a
constraint imposed by the recently discovered 1=r2 form of
the spin correlations in the 2D RS phase [22–24] can be
used to derive the form λ ∝ T−γ with γ ¼ 1–2=z, where z is
the dynamic exponent. The values of γ extracted from the
fits in Fig. 3(d) correspond to z ¼ 3.0# 0.2 for x ¼ 0.05
and z ¼ 3.5# 0.3 for x ¼ 0.1. These values conform with
the expectations in the RS phase, where z equals 2 at the
Néel-RS transition and grows upon moving into the RS
phase [22]. It should be noted that the value of ABG in
Eq. (1) somewhat affects the determination of γ but we
consistently find power law behavior of λ and zðx ¼ 0.1Þ >
zðx ¼ 0.05Þ (further discussed in the Supplemental
Material [34]). We note that the low-temperature μSR
relaxation in quasi-2D spin glasses is very different [44].
Combining our μSR and neutron results with previous

works, the magnetic phase diagram of Sr2CuTe1−xWxO6 is
shown in Fig. 4(a). The columnar order at x ¼ 1 is robust
even for large Te substitution, which is indicative of only
minor effects of magnetic frustration and remaining
large connected ordered regions. The mean order parameter
may then be gradually reduced in a way similar to
diluted systems [45]. In contrast, introducing W in
the x ¼ 0 sample rapidly destroys the Néel order at
xc1 ¼ 0.025# 0.005. Short-range correlations with Néel
structure still remain at low temperatures even at x ¼ 0.2
based on our neutron-diffraction experiments and likely
persist throughout what we argue is the 2D RS phase.
Modeling.—The width of the Néel phase in Fig. 4(a) is

less than 1=3 of the previous estimates [30–32]. The Néel
phase at finite W doping being narrower than the columnar
phase at finite Te doping can be understood already at the
classical level with the dominant Heisenberg coupling
constants J1 and J2 in Fig. 1: Introducing a single Te
impurity in the J2-coupled columnar system, we simply lose
the J2 couplings in the affected plaquette and there is only
weak frustration from the much smaller J01 and J

00
1 couplings.

However, with a W impurity in the J1-dominated Néel state
the two new J2 bonds are completely frustrated. To
quantitatively understand the extremely narrow Néel phase
requires further insights.
Ideally, we would like to carry out calculations with the

full quantum mechanical Heisenberg Hamiltonian. Even
though progress has been made on some frustrated 2D
quantum magnets with density-matrix renormalization
group (DMRG) [46] and tensor-product [47] methods,
including Heisenberg systems with random couplings
[24], in practice calculations for frustrated systems are
still challenging and it would be hard to extract a reliable
phase diagram. However, we have found that already the
classical Heisenberg model can explain the extreme fra-
gility of the Néel state to W-plaquette impurities and also
gives an overall reasonable phase diagram.
The long-range Néel order at T ¼ 0 in the 2D

Heisenberg model with uniform exchange J1Si · Sj on
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FIG. 4. (a) Magnetic phase diagram of Sr2CuTe1−xWxO6. NAF
and CAF denote Néel and columnar AFM correlations, respec-
tively, either short-range (SR) or long-range (LR). The ordering
temperature Tc and characteristic short-range correlation
temperature T" were determined by μSR measurements, except
for T" of the x ¼ 0.2 sample, which was obtained (Supplemental
Material [34]) by neutron diffraction. (b) Transition temperatures
of the classical Heisenberg model of coupled layers, determined
using Monte Carlo simulations. In the notation of Fig. 1 the 2D
couplings are J1 ¼ J2 ¼ 1, J01 ¼ J02 ¼ 0.1, and J001 ¼ 0. Two
different interlayer couplings are used; J⊥ ¼ 10−2 and 10−3.
Curves are drawn through the data points as guides to the eye.
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the expectations in the RS phase, where z equals 2 at the
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phase [22]. It should be noted that the value of ABG in
Eq. (1) somewhat affects the determination of γ but we
consistently find power law behavior of λ and zðx ¼ 0.1Þ >
zðx ¼ 0.05Þ (further discussed in the Supplemental
Material [34]). We note that the low-temperature μSR
relaxation in quasi-2D spin glasses is very different [44].
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even for large Te substitution, which is indicative of only
minor effects of magnetic frustration and remaining
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may then be gradually reduced in a way similar to
diluted systems [45]. In contrast, introducing W in
the x ¼ 0 sample rapidly destroys the Néel order at
xc1 ¼ 0.025# 0.005. Short-range correlations with Néel
structure still remain at low temperatures even at x ¼ 0.2
based on our neutron-diffraction experiments and likely
persist throughout what we argue is the 2D RS phase.
Modeling.—The width of the Néel phase in Fig. 4(a) is
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phase at finite W doping being narrower than the columnar
phase at finite Te doping can be understood already at the
classical level with the dominant Heisenberg coupling
constants J1 and J2 in Fig. 1: Introducing a single Te
impurity in the J2-coupled columnar system, we simply lose
the J2 couplings in the affected plaquette and there is only
weak frustration from the much smaller J01 and J
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However, with a W impurity in the J1-dominated Néel state
the two new J2 bonds are completely frustrated. To
quantitatively understand the extremely narrow Néel phase
requires further insights.
Ideally, we would like to carry out calculations with the

full quantum mechanical Heisenberg Hamiltonian. Even
though progress has been made on some frustrated 2D
quantum magnets with density-matrix renormalization
group (DMRG) [46] and tensor-product [47] methods,
including Heisenberg systems with random couplings
[24], in practice calculations for frustrated systems are
still challenging and it would be hard to extract a reliable
phase diagram. However, we have found that already the
classical Heisenberg model can explain the extreme fra-
gility of the Néel state to W-plaquette impurities and also
gives an overall reasonable phase diagram.
The long-range Néel order at T ¼ 0 in the 2D
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FIG. 4. (a) Magnetic phase diagram of Sr2CuTe1−xWxO6. NAF
and CAF denote Néel and columnar AFM correlations, respec-
tively, either short-range (SR) or long-range (LR). The ordering
temperature Tc and characteristic short-range correlation
temperature T" were determined by μSR measurements, except
for T" of the x ¼ 0.2 sample, which was obtained (Supplemental
Material [34]) by neutron diffraction. (b) Transition temperatures
of the classical Heisenberg model of coupled layers, determined
using Monte Carlo simulations. In the notation of Fig. 1 the 2D
couplings are J1 ¼ J2 ¼ 1, J01 ¼ J02 ¼ 0.1, and J001 ¼ 0. Two
different interlayer couplings are used; J⊥ ¼ 10−2 and 10−3.
Curves are drawn through the data points as guides to the eye.
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Highly non-trivial “random singlet state” between two AF phases
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Sr2CuTeO6 is a square-lattice Néel antiferromagnet with superexchange between first-neighbor S ¼ 1=2
Cu spins mediated by plaquette centered Te ions. Substituting Te by W, the affected impurity plaquettes
have predominantly second-neighbor interactions, thus causing local magnetic frustration. Here we report a
study of Sr2CuTe1−xWxO6 using neutron diffraction and μSR techniques, showing that the Néel order
vanishes already at x ¼ 0.025" 0.005. We explain this extreme order suppression using a two-dimensional
Heisenberg spin model, demonstrating that a W-type impurity induces a deformation of the order parameter
that decays with distance as 1=r2 at temperature T ¼ 0. The associated logarithmic singularity leads to loss
of order for any x > 0. Order for small x > 0 and T > 0 is induced by weak interplane couplings. In the
nonmagnetic phase of Sr2CuTe1−xWxO6, the μSR relaxation rate exhibits quantum critical scaling with a
large dynamic exponent, z ≈ 3, consistent with a random-singlet state.
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A central theme in modern condensed matter physics is
the evolution of two-dimensional (2D) quantum antiferro-
magnets upon doping, as epitomized by the high-Tc
cuprates with charge carriers introduced into the CuO2

layers through off-layer doping [1,2]. In-plane static
impurities have also been studied, e.g., nonmagnetic Zn
substituting the spin S ¼ 1=2 carrying Cu ions [3–5]. In
general, impurities and random frustrated couplings in a
quantum magnet will eventually destroy any order and may
induce not yet fully understood disordered states, e.g.,
quantum spin glasses [6–8], spin fluids [9], valence-bond
glasses [10,11], and random-singlet (RS) states [12–24].
We here report μSR and neutron diffraction experiments

on Sr2CuTe1−xWxO6, which at x ¼ 0 realizes the 2D
S ¼ 1=2 antiferromagnetic (AFM) Heisenberg model with
predominantly first-neighbor interactions J1 generated

through superexchange via Te ions at the centers of the
plaquettes of 2 × 2 Cu ions [25,26]; see Fig. 1(a). At x ¼ 1,
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FIG. 1. 2D Heisenberg couplings JijSi · Sj in Sr2CuTe1−xWxO6.
The small black circles represent the S ¼ 1=2 carrying Cu ions,
while red and blue circles correspond to Te andW ions, respectively.
The dominant couplings mediated by Te in (a) andW in (b) are first-
neighbor J1 (solid red lines) and second-neighbor J2 (solid blue
lines), with J1 ≈ J2 ≈ 8 meV [30,33]. The couplings J01 and J02
indicated by the thin dashed lines are roughly 10% of the dominant
couplings. The first-neighbor coupling J001 on links between Te and
W ions, the gray dashed line in (c), is about 4% of J1 [33].
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Sr2CuTeO6 is a square-lattice Néel antiferromagnet with superexchange between first-neighbor S ¼ 1=2
Cu spins mediated by plaquette centered Te ions. Substituting Te by W, the affected impurity plaquettes
have predominantly second-neighbor interactions, thus causing local magnetic frustration. Here we report a
study of Sr2CuTe1−xWxO6 using neutron diffraction and μSR techniques, showing that the Néel order
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FIG. 1. 2D Heisenberg couplings JijSi · Sj in Sr2CuTe1−xWxO6.
The small black circles represent the S ¼ 1=2 carrying Cu ions,
while red and blue circles correspond to Te andW ions, respectively.
The dominant couplings mediated by Te in (a) andW in (b) are first-
neighbor J1 (solid red lines) and second-neighbor J2 (solid blue
lines), with J1 ≈ J2 ≈ 8 meV [30,33]. The couplings J01 and J02
indicated by the thin dashed lines are roughly 10% of the dominant
couplings. The first-neighbor coupling J001 on links between Te and
W ions, the gray dashed line in (c), is about 4% of J1 [33].
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Fig. 2.1: Annealing functions A(s), B(s). Annealing begins at s = 0 with A(s) � B(s) and ends at
s = 1 with A(s) ⌧ B(s). Data shown are representative of D-Wave 2X systems.

2.3 Coupled rf-SQUID Qubits
The D-Wave QPU is built with a network of tunably coupled rf superconducting quantum–
interference device (rf-SQUID) qubits; see [Har2010_2]. The physical Hamiltonian of this
set of coupled rf-SQUIDs in the qubit approximation is
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(2.7)
where Dq is the energy difference between the two eigenstates of the rf-SQUID qubit with
no external applied flux (the degeneracy point) where the eigenstates are (|0i± |1i)/p2.
This energy difference captures the contribution of coherent tunneling between the two
wells. Ip represents the magnitude of the current flowing in the body of the rf-SQUID
loop; see Fig 2.2. MAFM is the maximum mutual inductance generated by the couplers
between the qubits (typically 2 pH), Fx

i (s) is an external flux applied to the qubits, and
FCCJJ(s) is an external flux applied to all qubit compound Josephson-junction structures to
change the potential energy shape of the rf-SQUID qubit.

To map this system to the Ising spin in the transverse field Hamiltonian discussed in the
Quantum Annealing with Ising Spins in a Transverse Field section, set Fx

i (s) = MAFM|Ip(s)|.
Thus, as FCCJJ(s) changes during the anneal, Fx

i (s) changes as required to keep the relative
energy ratio between the h and J terms constant. In particular, the physical flux applied
to the qubit to implement a fixed h value increases as the anneal progresses. Then, the
mapping to the Ising Hamiltonian becomes:

A(s) = Dq(FCCJJ(s))

B(s) = 2MAFM|Ip(FCCJJ(s))|2 (2.8)

The relationship between Dq(FCCJJ) and Ip(FCCJJ) is fixed by the physical parameters of
the rf-SQUID qubit. Changing the applied FCCJJ moves the rf-SQUID qubit along the curve
shown in .
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