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Part II. Principles of key numerical methods
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Exact diagonalization, use of symmetries 
- 1D, 2D examples

Matrix- and tensor-product states 
- very brief intro, some examples of recent use

Quantum Monte Carlo methods 
- brief review of classical MC
- path integrals, stochastic series expansion
- fermion determinant QMC



Exact Diagonalization
Using basis states incorporating conservation laws (symmetries) 

• magnetization conservation, momentum states, parity, spin inversion

• 1D systems, discussion without group theory 


- only basic quantum mechanics and common sense needed

Characterization of different ground states

• critical ground state of the Heisenberg chain

• quantum phase transition to a valence-bond solid in a J1-J2 chain

• 2D Néel order, Anderson tower of rotor states

Lanczos diagonalization 

• ground state, low excitations



Computational basis states
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Using example: the Heisenberg S=1/2 chain

Most efficient way computationally; enumerate the states
• construct the hamiltonian matrix using bit-representation of integers

|0⇤ = | ⇥, ⇥, ⇥, . . . , ⇥⇤ (= 0 . . . 000)
|1⇤ = | �, ⇥, ⇥, . . . , ⇥⇤ (= 0 . . . 001)
|2⇤ = | ⇥, �, ⇥, . . . , ⇥⇤ (= 0 . . . 010)
|3⇤ = | �, �, ⇥, . . . , ⇥⇤ (= 0 . . . 011)

bit representation perfect for S=1/2 systems, integer i represents a state
• use >1 bit/spin for S>1/2, or integer vector
• construct H by examining/flipping bits

Hij = ⇥i|H|j⇤
i, j = 0, . . . , 2N � 1

Alternative: use array state(1:N) with values 0,1, along with
• function statelabel(state) to produce the index i
• function makestate(i), to create array state for given state label i



Diagonalizing the hamiltonian matrix 
• on the computer
• gives the eigenvalues and eigenvectors
If U is the matrix whose columns are the eigenvectors of H, then

�n|A|n⇥ = [UT�AU ]nn

is the expectation value of some operator A in the n:th eigenstate

Problem: Matrix size M=2N becomes too large quickly 

• maximum number of spins in practice; N≈20

• M2 matrix elements to store, time to diagonalize ∝M3

Using conservation laws (symmetries) for block-diagonalization

H

We can choose the basis in such a way that the H becomes block-diagonal

• the blocks can be diagonalized individually 
• we can reach larger N (but not much larger, N≈40 is max)



Number of states in the largest block (mz =0): N!/[(N/2)!]2

H
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Other symmetries (conserved quantum numbers)
• can be used to further split the blocks
• but more complicated

• basis states have to be constructed to obey symmetries
• e.g., momentum states (using translational invariance)

Simplest example; magnetization conservation

• blocks correspond to fixed values of mz

• no H matrix elements between states of different mz

• A block contains states with a given mz

• corresponds to ordering the states in a particular way

mz =
N�

i=1

Sz
i

Example
 N=4, m=0

s1=3     (0011)
s2=5     (0101)
s3=6     (0110)
s4=9     (1001)
s5=10   (1010)
s6=12   (1100)



Momentum states (translationally invariant systems)
A periodic chain (ring), translationally invariant
• the eigenstates have a momentum (crystal momentum ) k

The operator T translates the state by one lattice spacing
• for a spin basis state

T |Sz
1 , Sz

2 , . . . , Sz
N � = |Sz

N , Sz
1 , . . . , Sz

N�1�
[T,H]=0 → momentum blocks of H
• can use eigenstates of T with given k as basis (H blocks labeled by k)

k = m
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, m = 0, . . . , N � 1,T |n� = eik|n�

A momentum state can be constructed from any representative state
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Construct ordered list of representatives
If |a> and |b> are representatives, then

T r|a⌃ ⇤= |b⌃ r ⇥ {1, . . . , N � 1}

4-site examples
(0011)→(0110),(1100),(1001)
(0101)→(1010)

Convention: the representative is the

one corresponding to the smallest integer



1 + e�ikR + e�i2kR + . . . + e�ik(N�R)

• the total weight for this component is

• vanishes (state incompatible with k and not in k block) unless kR=n2π
• the total weight of the representative is then N/R
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Normalization of a state |a(k)> with periodicity Ra
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Basis construction: find all allowed representatives and their periodicities

(a1, a2, a3, ..., aM)
(R1, R2, R3, ..., RM)

The block size M is initially not known
• approximately 1/N of total size of fixed mz block
• depends on the periodicity constraint for given k

The sum can contain several copies of the same state
• if TR|a� = |a� for some R < N

k = m
2�

N



The Hamiltonian matrix. Write S = 1/2 chain hamiltonian as

Act with H on a momentum state
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Shift summation index r and use definition of momentum state 

➙ matrix elements
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This state has momentum k, but does it have parity p? Act with P

Reflection symmetry (parity) Define a reflection (parity) operator

Consider a hamiltonian for which [H,P]=0 and [H,T]=0; but note that [P,T]≠0

k=0,π momentum blocks are split into p=+1 and p=−1 sub-blocks
• [T,P]=0 in the k=0,π blocks
• physically clear because -k=k on the lattice for k=0,π
• we can exploit parity in a different way for other k → real basis
   (semi-momentum states, will not discuss here)
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Can we still exploit both P and T at the same time? Consider the state
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Spin-inversion symmetry
Z|Sz

1 , Sz
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N ⇥ = | � Sz
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N ⇥Spin inversion operator:

In the magnetization block mz=0 we can use eigenstates of Z
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Example: block sizes
mz=0, k=0 (largest momentum block)

N (+1,+1) (+1,�1) (�1,+1) (�1,�1)
8 7 1 0 2

12 35 15 9 21
16 257 183 158 212
20 2518 2234 2136 2364
24 28968 27854 27482 28416
28 361270 356876 355458 359256
32 4707969 4690551 4685150 4700500

(p = ±1, z = ±1)

Total spin S conservation
• difficult to exploit
• complicated basis states
• calculate S using S2=S(S+1)
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Z|↵(k, p, z)i = z|↵(k, p, z)i, z = ±1



The Lanczos method

In the Lanczos basis, H is tridiagonal, convenient to generate and use
• Normally M=50-200 basis states is enough; easy to diagonalize H

The Krylov space and “projecting out” the ground state
Start with an arbitrary state |ψ  
• it has an expansion in eigenstates of H; act with a high power Λ of H
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If we need only the ground state and a small number of excitations
• can use “Krylov space” methods, which work for much larger matrices
• basis states with 107 states or more can be easily handled (30-40 spins)

For large Λ, if the state with largest |En| dominates the sum 
• one may have to subtract a constant, using H−C, to ensure ground state
• even better to use linear combination of states generated for different Λ

• diagonalize H in this basis

|�a� =
��

m=0

�a(m)Hm|⇥�, a = 0, . . . ,�



Constructing the Lanczos basis

|f1⇥ = H|f0⇥ � a0|f0⇥

The first state |f0>  is arbitrary, e.g., random. The next one is

First: construct orthogonal but not normalized basis {fm}. Define

Nm = �fm|fm⇥, Hmm = �fm|H|fm⇥

Demand orthogonality

⇥f1|f0⇤ = ⇥f0|H|f0⇤ � a0⇥f0|f0⇤ = H00 � a0N0 � a0 = H00/N0

All subsequent states are constructed according to

|fm+1⇥ = H|fm⇥ � am|fm⇥ � bm�1|fm�1⇥

am = Hmm/Nm, bm�1 = Nm/Nm�1

Easy to prove orthogonality of all these states (<fm+1|fm>=0 is enough)



 The hamiltonian in the Lanczos basis

H|fm� = |fm+1� + am|fm� + bm�1|fm�1�
Rewrite the state generation formula

�fm�1|H|fm⇥ = bm�1Nm�1 = Nm

�fm|H|fm⇥ = amNm

�fm+1|H|fm⇥ = Nm+1

Because of the orthogonality, the only non-0 matrix elements are
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But the f-states or not normalized. The normalized states are:
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In this basis the Hamiltonian matrix is



Operator expectation values
Diagonalizing the tri-diagonal matrix → eigenstates in the Lanczos basis
• eigenvectors vn, energies En
• only some number of low-energy states (<< Λ) are correct eigenstates of H 

⇥n(a) =
��

m=0

vn(m)�m(a), a = 1, . . . ,M

To compute expectation values we go back to the original basis

Convergence properties of the Lanczos method
Example; 24-site chain
mz = 0, k = 0, p = 1, z= 1 
block size M=28416 

Ground state converges first, then successively excited states

�S2⇥ = S(S + 1)

Total spin S extracted
assuming that



Break-down of orthogonality
- will eventually happen for large m
- causes artificial degeneracies
- cured by re-orthogonalization
- all states have to be stored

where |γm⟩ is the generated state before normalization as in Eq. (184) above. The
hamiltonian matrix elements are

⟨φm−1|H|φm⟩ =
√
Nm,

⟨φm|H|φm⟩ = am, (186)
⟨φm+1|H|φm⟩ =

√

Nm+1.

In this formulation all the stored numbers are well behaved.

Degenerate states. It should be noted that the Lanczos method cannot produce more
than one member of a multiplet; out of a degenerate set of states, only a particular linear
combination of them will be obtained (which depends on the initial state | f0⟩). To see
the reason for this, we again look at the expansion (170) of a state HΛ|Ψ⟩, in which we
assume that there are two degenerate states |ψi⟩ and |ψ j⟩, Ei = Ej. In the expansion we
can isolate these states from the rest of the terms;

HΛ|Ψ⟩= Emi (ci|ψi⟩+ c j|ψ j⟩)+ ∑
m ̸=i, j

cmEΛm|ψm⟩. (187)

For any Λ, the expansion contains the same linear combination of the states |ψ j⟩ and
|ψ j⟩. Hence, in the subspace spanned by the set of states Hm|Ψ⟩, m= 0, . . . ,Λ−1, there
is no freedom for obtaining different linear combinations of the two degenerate states.
This of course generalizes also to degenerate multiplets with more than two states.

Loss and restoration of orthogonality. When the basis size Λ becomes large, the
Lanczos procedure typically suffers from numerical instabilities. Round-off errors ac-
cumulated in the course of constructing the basis set will eventually introduce some
non-orthogonality among the states. Such numerical errors can escalate and lead to suc-
cessive sudden appearances (within some narrow ranges of Λ) of several identical eigen-
values (recall that the Lanczos scheme should never produce degenerate states). We will
see an example of this further below.
Loss of orthogonality and the appearance of multiple copies of the same states is nor-

mally not a problem when the aim is to obtain only the ground state. It can complicate
calculations of excited states, however. To remedy this, one can add to the basis con-
struction a step where each new Lanczos vector constructed is explicitly orthogonalized
with respect to all previous basis vectors. In the simplest implementation of such a stabi-
lization procedure, all the Lanczos vectors are stored (in primary memory or secondary
storage). This can become problematic when dealing with very large basis sets, but the
scheme is very simple. Working with the normalized states, each |φm+1⟩ constructed
according to (184) is orthogonalized with respect to all previous states, according to

|φm+1⟩ →
|φm+1⟩−q|φi⟩

1−q2
, q= ⟨φi|φm+1⟩, (188)

successively for i = 0, . . . ,m. This makes it possible to study a much larger number of
excited states (in principle only limited by computer memory).
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Explicit re-orthogonalization
- at each Lanczos step
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FIGURE 31. (a) The four lowest energies as a function of the Lanczos basis size for a 16-site Heisen-
berg chain with quantum numbers (k = 0, p = 1,z = 1). Multiple copies of the same state appear suc-
cessively due to loss of orthogonality. (b) The five lowest states of the same system obtained with re-
orthogonalization of the basis set.

states have converged to eigenstates of the operator). The energies are seen to converge
monotonically, whereas this is not necessarily the case for other quantities, as seen
clearly for the S= 2 states in this case. The details of the convergence of course depend
on the initial state from which the Lanczos basis is constructed (which in this case was
a random state). In this case all the four levels shown (E as well as S) were converged to
better than 10 decimal places at Λ = 60, with the ground state having converged at that
level already at Λ = 30. Going to larger system sizes, the convergence becomes a little
slower, but for this particular model there are no difficulties in converging several levels
up to the largest system sizes that can feasibly be studied.
One can accelerate the convergence of a Lanczos calculation by starting from a

state which is already close to the ground state. Such states may be constructed in a
number of ways, e.g., based on some approximate analytical method. But if there are no
convergence problems this may not be worth the additional effort. However, if a series
of calculations are carried out as a function of some parameter in the hamiltonian, then
subsequent calculations can be started from the ground state of the preceding parameter
value, which is likely to have a significant overlap with the next ground state. However,
it should be noted that if the initial state is a good approximation to the ground state,
it will have very small overlaps with the first few excited states, and hence only the
ground state is likely to converge rapidly in such a calculation. If excited states are also
needed, this problem can be circumvented by starting the next calculations using a linear
combination of eigenstates from prior calculations.

Loss and recovery of orthogonality. The Lanczos basis vectors should all be com-
pletely orthogonal to each other, but numerical truncation errors build up and eventually
lead to escalating loss of orthogonality for some Λ. This manifests itself as artificial de-
generacies, with excited states “falling down” onto lower states. An example of this is
shown in Fig. 31(a), where the four lowest energies of a 16-site chain in the ground-state
symmetry sector are graphed versus Λ. The higher energies are seen to successively col-
lapse onto the immediately lower energies, with only a few iterations taken for the levels
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with orthogonalizationno orthogonalization

N = 16, k = 0, p = 1, z = 1


