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Part Il. Principles of key numerical methods

Exact diagonalization, use of symmetries
- 1D, 2D examples

Matrix- and tensor-product states
- very brief intro, some examples of recent use

Quantum Monte Carlo methods

- brief review of classical MC

- path integrals, stochastic series expansion
- fermion determinant QMC



Exact Diagonalization

Using basis states incorporating conservation laws (symmetries)
* magnetization conservation, momentum states, parity, spin inversion
* 1D systems, discussion without group theory
- only basic quantum mechanics and common sense needed

Lanczos diagonalization
 ground state, low excitations

Characterization of different ground states
- critical ground state of the Heisenberg chain
« quantum phase transition to a valence-bond solid in a J1-J2 chain
- 2D Néel order, Anderson tower of rotor states



Computational basis states
Using example: the Heisenberg S=1/2 chain

H = JZ S; - Sit1 = JZ (ST S + 87 S + 57 SHAl

=1 —

N
= J» [S7S7 1 + 5(SF S5, + 575
1=1
Most efficient way computationally; enumerate the states

 construct the hamiltonian matrix using bit-representation of integers
0)=11,1,1,...,1) (=0...000)

D=I1T4LL...1) (=0...001)  H;; = (i|H|j)
2)=1L,11...,1) (=0...010) i,7=0,...,28 -1
H=IT1,1,1,...,1) (=0...011)

bit representation perfect for S=1/2 systems, integer i represents a state
e use >1 bit/spin for S>1/2, or integer vector
e construct H by examining/flipping bits

Alternative: use array state(1:N) with values 0,1, along with
e function statelabel(state) to produce the index i
« function makestate(i), to create array state for given state label |



Diagonalizing the hamiltonian matrix
* on the computer
e gives the eigenvalues and eigenvectors

If U is the matrix whose columns are the eigenvectors of H, then
(n|Aln) = [UT* AU
IS the expectation value of some operator A in the n:th eigenstate

Problem: Matrix size M=2N becomes too large quickly
* maximum number of spins in practice; N=20
- M? matrix elements to store, time to diagonalize «M3

Using conservation laws (symmetries) for block-diagonalization
We can choose the basis in such a way that the H becomes block-diagonal

H

* the blocks can be diagonalized individually
« we can reach larger N (but not much larger, N=40 is max)



Simplest example; magnetization conservation

N
. Example
m. =) S N=4, m=0
1=1
* blocks correspond to fixed values of m; S1fg (8?2)11)
* no H matrix elements between states of different m; 82:6 (011 O)
* A block contains states with a given m; Se= ( )

. corresponds to ordering the states in a particular way ~ 54=9 (1001)
s5=10 (1010)
Number of states in the largest block (m;=0): N!/[(N/2)!]2 se=12 (1100)

H

Other symmetries (conserved quantum numbers)

 can be used to further split the blocks

* but more complicated
* basis states have to be constructed to obey symmetries
* e.9g., momentum states (using translational invariance)



Momentum states (translationally invariant systems)

A periodic chain (ring), translationally invariant
e the eigenstates have a momentum (crystal momentum ) k

Tn) =e*n)  k=m%, m=0.. N-1

The operator T translates the state by one lattice spacing
* for a spin basis state

T157,95,...,5%) =|Sx,57,-- -, Sxa_1)

[T,H]=0 - momentum blocks of H
* can use eigenstates of T with given k as basis (H blocks labeled by k)

A momentum state can be constructed from any representative state

N—1

1 —1kror Z Z

ak) = 5= Do), ) =185 ... S5
¢ r=0

(4-site examples
Construct ordered list of representatives (0011)—(0110),(1100),(1001)

If la> and |b> are representatives, then (0101)—(1010)
g

N

J
TT’(JJ> # ’b> rc {1, ., N — 1} Convention: the representative is the
one corresponding to the smallest integer




N—-1
1 —ikrpr z z
(k) = = ST a) a) = 1S SR) k=m
@ r=0

N
The sum can contain several copies of the same state
«if T%|a) = |a) for some R < N
* the total weight for this component is
1 4+ e kR 4 o—i2kR | 4 e ih(N=R)

* vanishes (state incompatible with k and not in k block) unless kR=n2rmt
* the total weight of the representative is then N/R

R N
kR:nZWH%:n%m:nﬁﬁmod(m,N/R):O

Normalization of a state la(k)> with periodicity Ra

1 N*?

alal) = o xR () 1y =

Basis construction: find all allowed representatives and their periodicities

(a1, a2, a aw) The block size M is initially not known
(R; R, I?{, o Ruw) - approximately 1/N of total size of fixed m; block
T T « depends on the periodicity constraint for given k



The Hamiltonian matrix. Write S = 1/2 chain hamiltonian as

Act with H on a momentum state

. N-l AR
. —ikrmr —ikrpr Iy
Hla(k)) = N ;e T"H|a) = Na;rZe T" Hjla),
Hjla> is related to some representatlve' ila) = é lj’bj>

H‘CL Z Z —'LkrT(r l>‘b >

Shift summatlon mdex r and use definition of momentum state

Hla(k)) = h etk \b -> matrix elements

7=0

(a(k)|[Hola(k)) = SZSZ

—’ik}ljl Ra'
2\| Ry,

J

(bj (k)| Hj>ola(k)) = e bj) o< T~ Hjla).




Reflection symmetry (parity) Define a reflection (parity) operator
P|S5,585,...,58%) =|Sx,...,55,57)

Consider a hamiltonian for which [H,P]=0 and [H, T]=0; but note that [P, T]=0
Can we still exploit both P and T at the same time? Consider the state

a(k.p)) = }Z T (14 pP)la), p= 1

This state has momentum k, but does it have parity p? Act with P

Pla(k, p)) = \/L Z et T (P4 p)la)  PTT =T TP

N-1
1 1o
=D _E e™“"T" (1 4+ pP)la) = pla(k, it k=0ork=m

k=0,m momentum blocks are split into p=+1 and p=-1 sub-blocks

 [T,P]=0 in the k=0, blocks

 physically clear because -k=k on the lattice for k=0,

« we can exploit parity in a different way for other k — real basis
(semi-momentum states, will not discuss here)



Spin-inversion symmetry
Spin inversion operator: Z|S7,55,....5%) =|— S7,—=55,...,—=5%)

In the magnetization block mz=0 we can use eigenstates of Z

a(k, p, 2)) = }Z =R (1 4 pP)(1 + 27)|a)

Zlalk,p,z)) = z|lalk,p,z)), z==+1

. - ' . )
Example: block sizes Total spin S conservation
mz=0, k=0 (largest momentum block) « difficult to exploit

(p=+1,2 = +1) e complicated basis states
N LD LD L3 (L-D e calculate S usmg S$2=§(S+1)
8 7 1 0 2
12 35 15 9 21 g2 — S..S.
16 257 183 158 212 ; ; B
20 2518 92234 2136 2364 T ;
24 28968 27854 27482 28416 _ 9 S..8. +°N
28 361270 356876 355458 359256 Z ‘ + 4
32 4707969 4690551 4685150 4700500 v<J




The Lanczos method

If we need only the ground state and a small number of excitations
 can use “Krylov space” methods, which work for much larger matrices
 basis states with 107 states or more can be easily handled (30-40 spins)

The Krylov space and “projecting out” the ground state

Start with an arbitrary state ()
* it has an expansion in eigenstates of H; act with a high power A of H

A
HAMW) = chET/L\]m = E) <CO|O> + ¢ (%) 1) +>

n

For large A, if the state with largest |IEnl dominates the sum
* one may have to subtract a constant, using H-C, to ensure ground state
* even better to use linear combination of states generated for different A

!% Z% Hm‘\If> a:O,...,A

. diagonallze H in this basis

In the Lanczos basis, H is tridiagonal, convenient to generate and use
* Normally M=50-200 basis states is enough; easy to diagonalize H



Constructing the Lanczos basis

First: construct orthogonal but not normalized basis {fn}. Define

N = <fm‘fm>a Hpm = <fm‘H’fm>

The first state Ifo> is arbitrary, e.g., random. The next one is

f1) = H|fo) — ao|fo)

Demand orthogonality

(J1lfo) = (folH|fo) — ao(folfo) = Hoo — aoNo — ao = Hoo/Ng

All subsequent states are constructed according to

‘fm—|—1> — H‘fm> — am‘fm> — bm—l’fm—1>
Ay = mm/Nma bm—l — Nm/Nm—l

Easy to prove orthogonality of all these states (<fm+1lfm>=0 is enough)



The hamiltonian in the Lanczos basis
Rewrite the state generation formula

H‘fm> — ’fm—|—1> + am‘fm> + bm—l’fm—1>

Because of the orthogonality, the only non-0 matrix elements are

<fm—1 H fm> — bm—le—l — Nm
<fm H fm> = an Ny
<fm+1 H fm> — Nm—H
But the f-states or not normalized. The normalized states are:
1
|Pm) = ——=—=|fm)

VN,

In this basis the Hamiltonian matrix is
<¢m—1 H gbm> —  V brm—1
<¢m H ¢m> — Um
<¢m—|-1 H ¢m> — 'V bin




Operator expectation values

Diagonalizing the tri-diagonal matrix = eigenstates in the Lanczos basis
* eigenvectors vy, energies Ep
« only some number of low-energy states (<< A) are correct eigenstates of H

To compute expectation values we go back to the original basis
A

Vn(a) = Un(Mm)opm(a), a=1,.... M

m=0

Convergence properties of the Lanczos method

|||||||||||||||||

. | Example; 24-site chain
1m:=0,k=0,p=1,z=1

1 block size M=28416

| Total spin S extracted
] assuming that

1(8%) =5(5+1)

W~
W

|

1

|
SIS

i

Ground state converges first, then successively excited states



Break-down of orthogonality

- will eventually happen for large m
- causes artificial degeneracies
- cured by re-orthogonalization

- all states have to be stored

N=16, k=0, p=1, z2=1

no orthogonalization with orthogonalization

(a)

Explicit re-orthogonalization
- at each Lanczos step

|¢m—|—1> > ‘¢m+1> T Q\¢i>

1 — g2
q = (Pi|Pm+1)




