
C(r) = ⇤Si · Si+r⌅(�1)r

Let’s look at the (staggered) spin correlation function

Spin correlations in the Heisenberg chain

versus the distance r and at r=N/2 versus system size N
Theory (bosonization conformal field theory) predicts (for large r, N)
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Plausible based on N up to 32
• other methods for larger N

log correction caused
by marginally irrelevant
operator in CFT



Excitations of the Heisenberg chain

B. Lake et al., Nature Materials 4 329-334 (2005)

Neutron scattering experiments 

• quasi-one-dimensional KCuF3

• the ground state is a singlet (S=0)  for even N

• the first excited state is a triplet (S=1)

• can be understood as pair of “spinons”



= J2

= J1

Heisenberg chain with frustrated interactions

H =
N⇤

i=1

�
J1Si · Si+1 + J2Si · Si+2

⇥

 Singlet-product states
|�A⇥ = |(1, 2)(3, 4)(5, 6) · · · ⇥
|�B⇥ = |(1, N)(3, 2)(5, 4) · · · ⇥

(a, b) = (⇥a⇤b � ⇤a⇥b)/
⌅

2

It is not hard to show that these are eigenstates of H
The system has this kind of order (with fluctuations, no exact solution)
for all J2/J1>0.2411..... This is a quantum phase transition between
• a critical state
• a valence-bond-solid (VBS) state

Translational symmetry of the VBS state is not broken for finite N

• the ground state is a superposition of the two ordered states

|�0⇤ ⇥ |�A⇤+ |�B⇤, |�1⇤ ⇥ |�A⇤ � |�B⇤

For the special point J2/J1=0.5, this model has an exact solution
(Majumdar & Ghosh)

The system at (J2/J1)c is described by a CFT (k=1 WZW theory) 
- marginal operator goes to zero at this point
- log corrections to scaling in the critical phase, leads to VBS order above



The VBS state can be detected in finite systems using “dimer” correlations

D(r) = ⇥BiBi+r⇤ = ⇥(Si · Si+1)(Si+r · Si+1+r)⇤

It is not easy to detect the transition this way 

• much larger systems are needed for observing a sharp transition

• other properties can be used to accurately determine the critical point gc


- level crossings [K. Okamoto and K. Nomura, Phys. Lett. A 169, 443 (1992)]

Results from Lanczos diagonalization; different coupling ratios g=J2/J1



Determining the transition point using level crossings
Lowest excitation for the g=0 Heisenberg chain is a triplet
• this can be expected for all g<gc

The VBS state is 2-fold degenerate for infinite N 

• and for any N at g=1/2

• these two states are singlets

• gap between them closes exponentially as N→∞

• the lowest excitation is the second singlet

|�0⇤ ⇥ |�A⇤+ |�B⇤
|�1⇤ ⇥ |�A⇤ � |�B⇤

The two lowest excited states should cross at gc

1/N2 shift can be explained by CFT (k=1 WZW)

N = 16

- same transition in many other systems; 1D J-Q, Heisenberg chains with phonons,…
- QMC study of emergent O(4) symmetry: Patil, Katz, Sandvik, PRB (2018)

gc=0.2411674(2)
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FIGURE 47. Symmetries used for the two-dimensional square lattice. Tx and Ty translate the spins by
one lattice spacing in the positive x and y directions, respectively. The lattice is periodic; the open circles
represent sites of the opposite edges. Px and Py are reflections with respect to the x- and y-axis, and Pd
and Pe reflect with respect to the two diagonal axes. For even L (which normally should be used for an
antiferromagnet), the Px and Py axes pass between lattice sites. The reflections Pd and Pe are about the
lines connecting the far corners, which go through the sites on the diagonals (and hence leave the spins on
those sites unchanged upon reflection).

where the translated spin indices are

Tx(i) = [xi−1]Lx + yiLx,
Ty(i) = xi+([yi−1]Ly)Lx, (206)

with [γi−1]Lγ denoting the modulus of γi−1 with respect to Lγ , i.e., [−1]Lγ = Lγ −1.
Using these translations, a momentum state based on a representative |a⟩ is defined as

|a(k)⟩= |a(kx,ky)⟩=
1√
Na

Lx−1

∑
x=0

Ly−1

∑
y=0

e−i(kxx+kyy)Tyy T xx |a⟩, (207)

where the possible momenta are

kγ =
2π
Lγ
mγ , mγ = 0,1, . . . ,Lγ −1, γ ∈ {x,y}. (208)

The normalization constant Na depends on the translational properties of the representa-
tive, i.e., the number of different states Da obtained among the group of Lx×Ly transla-
tions of the representative |a⟩ (e.g., for a state with the spins in a checker-board pattern
Da = 2). A representative is incompatible with the momentum if the sum of phases Fa in
(207) over the translations bringing |a⟩ onto itself vanishes. For a compatible state, the
normalization constant Na = Da|Fa|2. The easiest way to compute this in a program is
simply to carry out all the translations and sum up Da and Fa in the process, instead of
using explicit formulas as we did for 1D systems (where one can of course also use the
more brute-force approach).
The construction of the hamiltonian matrix proceeds as in the 1D case. We again split

the hamiltonian into a diagonal piece H0 and off-diagonal bond operators Hj as in (121)
and (122), where now j = 1, . . .Nb. Acting with these operators on the representative
|a⟩, we again may have to translate the resulting state in order to obtain the new
representative |b j⟩ corresponding to Hj|a⟩, i.e.,

Hj|a⟩= h j(a)T
−lyj
y T

−lxj
x |b j⟩. (209)
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Use translation symmetry
- momentum states

At high-symmetry (kx,ky) one can also use one or more reflection symmetry
TABLE 3. Sizes M(L) of the k = (0,0) state blocks for L× L lattices
(L = 4,6) with magnetization mz = 0 and different reflection and spin-
inversion quantum numbers. For px =−py there is no quantum number pd .
For px =−1, py = 1 the block structure is the same as for px = 1, py =−1.

px py pd z M(L = 4) M(L = 6)
+1 +1 +1 +1 107 15,804,956
+1 +1 +1 −1 46 15,761,166
+1 +1 −1 +1 92 15,796,390
+1 +1 −1 −1 38 15,752,772
−1 −1 +1 +1 50 15,749,947
−1 −1 +1 −1 45 15,739,069
−1 −1 −1 +1 42 15,741,544
−1 −1 −1 −1 36 15,730,582
+1 −1 +1 75 31,481,894
+1 −1 −1 108 31,525,574

Here the inner loop is simply searching for the lowest bit position b−1, for which a set
(1) bit of a can be moved one step to the left (i.e., to a position b where the bit currently
is 0). After such a position has been found, all the previously set bits below this position
(the number of which is kept track of with the counter by c) are moved to the lowest
positions (0, . . . ,c− 1). This bit evolution corresponds exactly to how the digits of a
base-2 odometer advance from right to left. The contents of checkstate depend on what
symmetries are used, but it would be very similar to the implementations we discussed
for the 1D case, apart from the fact that the translations [defined in (205)] are more
complicated than just cyclic bit permutations and have to be implemented by hand.
The normalization constant, needed when constructing the hamiltonian matrix ele-

ments, should be delivered by checkstate (if a representative has passed the tests). The
simplest way to compute the normalization (instead of using formal expressions as we
did in the 1D case) is again just to carry out all the symmetry operations of the represen-
tative state and add up the sum Fa of factors (the complex momentum phases as well as
the plus or minus signs from the reflection quantum numbers) in (213) for each symme-
try operation bringing the representative onto itself. That number, along with the number
Da of non-equivalent transformations of |a⟩, gives the normalization Na = Da|Fa|2 (and
again Na = 0 if the representative is incompatible with the quantum numbers). We do
not discuss further details of how to implement the basis generation and the construc-
tion of the hamiltonian matrix, as these tasks are straight-forward generalizations of
the one-dimensional implementations discussed in Secs. 4.1.3 and 4.1.4. Spin-inversion
symmetry in the mz = 0 sector can be implemented as discussed in Sec. 4.1.5.

Example of block sizes. Table 3 lists block sizes for the square-lattice systems of
interest in Lanczos calculations, for one of the special momenta, k = (0,0), where the
largest number of symmetries can be exploited. The ground state of the Heisenberg
model is in this block (in the sub-block with all other quantum numbers equal to 1). For
L = 6 even the smallest blocks have more than 15 million states, and the largest blocks
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L=4, L=6
(kx,ky) = (0,0)
mz = 0

Block sizes for



Quantum rotor states (Anderson tower) in 2D Heisenberg model
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FIGURE 49. Lanczos results for the Heisenberg model on 4× 4 and 6× 6 lattices. (a) The energy
relative to the ground state of the lowest state for each total spin sector, normalized by NS(S + 1), so
that perfect quantum rotor excitations should produce S- and N-independent values. (b) Spin correlation
versus distance for all possible distances r on the periodic lattices. The known r→ ∞ value (from the
QMC results in Fig. 5) is indicated by the dashed line.

only for S≪ L, as the higher rotor states should be influenced by effects not taken into
account in the two-spin model.
In analogy with the low-energy 1D quantum numbers discussed in Secs. 4.1.6 and

4.3.1, on the 2D square lattice (where N = 4n for all even L) the quantum rotor states
correspond to momentum (π,π) and (0,0) for odd and even S, respectively. For even
S, the lowest states have reflection quantum numbers px = py = pd = 1 in (214), while
for odd S the appropriate quantum numbers are px = py =−1, pd = 1. The lowest state
for given S can be obtained in the magnetization sector mz = S (and since mz ̸= 0 we
cannot use the spin-inversion symmetry here). The (S = 0) ground state is in the fully
symmetric sector; the momentum is (0,0) and px = py = pd = z = 1.
Lanczos results for L = 4 and L = 6 are shown in Fig. 49(a). There are clearly

large corrections to (220), as there is a significant decrease in χ−1(S,N) with S and an
increase with N. For fixed N, the difference between S = 1 and S = N/2 is roughly 10%.
Considering the fact that the limit S≪ L cannot really be studied based on the small
lattices, deviations of this order are not surprising. The rotor states have been studied
using QMC calculations for much larger lattices [171, 33]. The most precise calculation
for small S and large N gives χ−1(S,N)→ 22.8 [33].
To understand the deviations from the rotor picture, one can use the analogy of a

slightly non-rigid quantum rotor, which seems natural considering that the two-spin
model is defined with fixed-length spins, while clearly in the real system the sublattice
spins fluctuate (in a way which can depend on the total spin S). It may be possible to take
these effects into account by adding higher-order terms (SA ·SB)2, etc., in the interaction
(218). Details of this extended two-spin picture have not been worked out, however.

Transverse susceptibility. For an infinite system at T = 0 the spin-rotational symme-
try is broken. One can then consider transverse and longitudinal components (with re-
spect to the Néel vector), χ⊥ and χ∥, of the susceptibility. In the two-spin model it is clear
that χ∥ = 0 and this is also true in the Heisenberg model. In a large system in which the
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FIGURE 48. Effective description of the rotationally invariant Néel vector ms in terms of two large
spins, SA, SB, corresponding to the sum of the spins on the two sublattices. There is an effective antiferro-
magnetic coupling between these spins, leading to a singlet ground state and a “tower” of quantum rotor
excitations of total spin S = 1,2, . . . at energies ∆S ∼ S(S+1)/N above the ground state.

thus allowing for the symmetry breaking that is the starting point for spin-wave theory. In
the thermodynamic limit, the direction of the ordering vector is fixed (as the time scale
associated with its rotations diverges [169]), and the quantum rotor-states are then in
practice not accessed. They are neglected in standard spin-wave calculations (discussed
in Sec. 2.1) from the outset because the order is by construction locked to the z direction.
One can still access the rotor energies in spin-wave theory, by considering systems in
an external magnetic field, tuned to give a ground state with total magnetization Sz = S
[170, 171]. The rotor states are of great significance in finite clusters.
The effective coupling Jeff in (219) for a given system can be determined if we can

relate it to some physical quantity which depends on the rotor excitations. An obvious
choice is the uniform magnetic susceptibility, χ = d⟨mz⟩/dh. Calculating it for the two-
spin model when T → 0 gives χ = 3/Jeff. For the real Heisenberg model on a finite
cluster in dimensions d ≥ 2, χ should be dominated by the quantum rotor states when
T ≪ 1/L, because the lowest spin wave energy scales as ∝ 1/L (while the quantum
rotor states scale as 1/Ld). Thus, we can write the effective quantum rotor tower for a
Heisenberg model with Néel ground state as

∆S =
S(S+1)
3χN

, (220)

where χ should be evaluated in the limitN→∞ (first) and T → 0. Note that I= (3/2)Nχ
here plays the role of a moment of inertia, giving an analogy between (220) and the
energy spectrum of a rigid rotor in quantum mechanics.
The relation (220) can also be used as a way to compute the susceptibility of a

Heisenberg models numerically; by extracting the lowest energies as a function of S (for
small S, where the quantum-rotor mapping should apply). More precisely, the small-S
energies gives an estimate for χ as the N→ ∞, S→ 0 limit of the quantity χ(S,N):

1
χ(S,N)

=
3NS(ES−E0)
S(S+1)

. (221)

Here ES denotes the lowest energy for total spin S. Note that we have to subtract the
ground state energy (S = 0) because in the two-spin effective model we only computed
the excitation energies ∆S with respect to the ground state energy (and the latter is not
given accurately by the two-spin model). One would expect an S-independent behavior
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FIGURE 48. Effective description of the rotationally invariant Néel vector ms in terms of two large
spins, SA, SB, corresponding to the sum of the spins on the two sublattices. There is an effective antiferro-
magnetic coupling between these spins, leading to a singlet ground state and a “tower” of quantum rotor
excitations of total spin S = 1,2, . . . at energies ∆S ∼ S(S+1)/N above the ground state.
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associated with its rotations diverges [169]), and the quantum rotor-states are then in
practice not accessed. They are neglected in standard spin-wave calculations (discussed
in Sec. 2.1) from the outset because the order is by construction locked to the z direction.
One can still access the rotor energies in spin-wave theory, by considering systems in
an external magnetic field, tuned to give a ground state with total magnetization Sz = S
[170, 171]. The rotor states are of great significance in finite clusters.
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choice is the uniform magnetic susceptibility, χ = d⟨mz⟩/dh. Calculating it for the two-
spin model when T → 0 gives χ = 3/Jeff. For the real Heisenberg model on a finite
cluster in dimensions d ≥ 2, χ should be dominated by the quantum rotor states when
T ≪ 1/L, because the lowest spin wave energy scales as ∝ 1/L (while the quantum
rotor states scale as 1/Ld). Thus, we can write the effective quantum rotor tower for a
Heisenberg model with Néel ground state as
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here plays the role of a moment of inertia, giving an analogy between (220) and the
energy spectrum of a rigid rotor in quantum mechanics.
The relation (220) can also be used as a way to compute the susceptibility of a

Heisenberg models numerically; by extracting the lowest energies as a function of S (for
small S, where the quantum-rotor mapping should apply). More precisely, the small-S
energies gives an estimate for χ as the N→ ∞, S→ 0 limit of the quantity χ(S,N):
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Here ES denotes the lowest energy for total spin S. Note that we have to subtract the
ground state energy (S = 0) because in the two-spin effective model we only computed
the excitation energies ∆S with respect to the ground state energy (and the latter is not
given accurately by the two-spin model). One would expect an S-independent behavior
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FIGURE 49. Lanczos results for the Heisenberg model on 4× 4 and 6× 6 lattices. (a) The energy
relative to the ground state of the lowest state for each total spin sector, normalized by NS(S + 1), so
that perfect quantum rotor excitations should produce S- and N-independent values. (b) Spin correlation
versus distance for all possible distances r on the periodic lattices. The known r→ ∞ value (from the
QMC results in Fig. 5) is indicated by the dashed line.

only for S≪ L, as the higher rotor states should be influenced by effects not taken into
account in the two-spin model.
In analogy with the low-energy 1D quantum numbers discussed in Secs. 4.1.6 and

4.3.1, on the 2D square lattice (where N = 4n for all even L) the quantum rotor states
correspond to momentum (π,π) and (0,0) for odd and even S, respectively. For even
S, the lowest states have reflection quantum numbers px = py = pd = 1 in (214), while
for odd S the appropriate quantum numbers are px = py =−1, pd = 1. The lowest state
for given S can be obtained in the magnetization sector mz = S (and since mz ̸= 0 we
cannot use the spin-inversion symmetry here). The (S = 0) ground state is in the fully
symmetric sector; the momentum is (0,0) and px = py = pd = z = 1.
Lanczos results for L = 4 and L = 6 are shown in Fig. 49(a). There are clearly

large corrections to (220), as there is a significant decrease in χ−1(S,N) with S and an
increase with N. For fixed N, the difference between S = 1 and S = N/2 is roughly 10%.
Considering the fact that the limit S≪ L cannot really be studied based on the small
lattices, deviations of this order are not surprising. The rotor states have been studied
using QMC calculations for much larger lattices [171, 33]. The most precise calculation
for small S and large N gives χ−1(S,N)→ 22.8 [33].
To understand the deviations from the rotor picture, one can use the analogy of a

slightly non-rigid quantum rotor, which seems natural considering that the two-spin
model is defined with fixed-length spins, while clearly in the real system the sublattice
spins fluctuate (in a way which can depend on the total spin S). It may be possible to take
these effects into account by adding higher-order terms (SA ·SB)2, etc., in the interaction
(218). Details of this extended two-spin picture have not been worked out, however.

Transverse susceptibility. For an infinite system at T = 0 the spin-rotational symme-
try is broken. One can then consider transverse and longitudinal components (with re-
spect to the Néel vector), χ⊥ and χ∥, of the susceptibility. In the two-spin model it is clear
that χ∥ = 0 and this is also true in the Heisenberg model. In a large system in which the
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FIGURE 48. Effective description of the rotationally invariant Néel vector ms in terms of two large
spins, SA, SB, corresponding to the sum of the spins on the two sublattices. There is an effective antiferro-
magnetic coupling between these spins, leading to a singlet ground state and a “tower” of quantum rotor
excitations of total spin S = 1,2, . . . at energies ∆S ∼ S(S+1)/N above the ground state.

thus allowing for the symmetry breaking that is the starting point for spin-wave theory. In
the thermodynamic limit, the direction of the ordering vector is fixed (as the time scale
associated with its rotations diverges [169]), and the quantum rotor-states are then in
practice not accessed. They are neglected in standard spin-wave calculations (discussed
in Sec. 2.1) from the outset because the order is by construction locked to the z direction.
One can still access the rotor energies in spin-wave theory, by considering systems in
an external magnetic field, tuned to give a ground state with total magnetization Sz = S
[170, 171]. The rotor states are of great significance in finite clusters.
The effective coupling Jeff in (219) for a given system can be determined if we can

relate it to some physical quantity which depends on the rotor excitations. An obvious
choice is the uniform magnetic susceptibility, χ = d⟨mz⟩/dh. Calculating it for the two-
spin model when T → 0 gives χ = 3/Jeff. For the real Heisenberg model on a finite
cluster in dimensions d ≥ 2, χ should be dominated by the quantum rotor states when
T ≪ 1/L, because the lowest spin wave energy scales as ∝ 1/L (while the quantum
rotor states scale as 1/Ld). Thus, we can write the effective quantum rotor tower for a
Heisenberg model with Néel ground state as

∆S =
S(S+1)
3χN

, (220)

where χ should be evaluated in the limitN→∞ (first) and T → 0. Note that I= (3/2)Nχ
here plays the role of a moment of inertia, giving an analogy between (220) and the
energy spectrum of a rigid rotor in quantum mechanics.
The relation (220) can also be used as a way to compute the susceptibility of a

Heisenberg models numerically; by extracting the lowest energies as a function of S (for
small S, where the quantum-rotor mapping should apply). More precisely, the small-S
energies gives an estimate for χ as the N→ ∞, S→ 0 limit of the quantity χ(S,N):

1
χ(S,N)

=
3NS(ES−E0)
S(S+1)

. (221)

Here ES denotes the lowest energy for total spin S. Note that we have to subtract the
ground state energy (S = 0) because in the two-spin effective model we only computed
the excitation energies ∆S with respect to the ground state energy (and the latter is not
given accurately by the two-spin model). One would expect an S-independent behavior
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Table I. Quantum numbers corresponding to the various point-group
and spin symmetries for the investigated low-energy states of clusters
with N = 16, N = 32, and N = 36. All states have quantum
number +1 (momentum zero) of the applicable translations T

x

, T
y

or
T 0
x

, T 0
y

. The spin inversion symmetry Z is used only when Sz = 0.

G
x

,G0
x

G
y

,G0
y

�1 �2 R,R
⇡/2 Sz S Z

S1 1 1 1 1 1 0 0 1
S2 -1 -1 -1 -1 1 0 0 1
T1 -1 -1 1 1 -1 0 1 -1
T2 1 1 -1 -1 -1 0 1 -1
Q1 1 1 1 1 1 2 2 /

Table II. Quantum numbers of the investigated state with respect to
the applicable rotations for N = 20, N = 24, and N = 28 clusters.
All states have momentum zero.

R
⇡/2 (N = 20) R

⇡

(N = 24, 28) Sz S Z
S1 1 1 0 0 1
S2 1 1 0 0 1
T1 -1 1 0 1 -1
T2 -1 1 0 1 -1
Q1 1 1 2 2 /

R
⇡/2. Here we have defined P 0

x

and P 0
y

as mirror operations
with respect to diagonal lines passing only through empty pla-
quettes. Imposing periodic boundary conditions corresponds
to T 02

x

= T 02
y

= 1. For this cluster, the rotation symmetry
R

⇡/2 is also useful for block diagonalization.
The N = 20 and N = 40 clusters, Fig. 2(d,e), are invariant

under T
x

and T
y

, and because of the tilting the periodicity
implies T 2

x

T
y

= 1 for N = 20 and T 3
x

T
y

= 1 for N = 40.
We also use the 90� rotation symmetry, R

⇡/2, with respect to
the center of an empty plaquette.

Finally, the N = 24 and N = 28 clusters, Fig. 2(f,g), are
similar, being symmetric with respect to a 180� rotation R

⇡

about the the center of a filled plaquette. The translational
constraints are T

x

T 2
y

= 1 and T 2
x

T
y

= 1, respectively, for
N = 24 and N = 28.

Characteristic SSM eigenstates—Upon increasing g, the
SSM undergoes a first-order quantum phase transition be-
tween the unique DS state and the two-fold degenerate PSS
state by a true level crossing at g ⇡ 0.685 [48, 49]. We here
focus solely on changes in the low-energy level spectrum for
g � 0.7, excluding the well understood DS phase and the
trivial transition out of it. We target the quantum phase tran-
sition from the PSS ground state to the putative QSL state at
g = gc1 ⇡ 0.79, followed by the transition from this state into
the AFM state at g = gc2 ⇡ 0.82 [30]. Thus, we aim to un-
derstand how the low-energy spectrum changes as a function
of g, as in Ref. [30] but with important differences because of
the cylindrical boundary conditions used previously and the
fully periodic clusters studied here.

The two-fold degenerate singlet ground state is an essential
and useful feature of the PSS phase of the SSM on the fully

�1

�2

G
x

G
y

±
↵

↵

�1

�2

G
x

G
y

� �

Figure 3. Cartoon picture of the ± superpositions of ↵ type (bold
squares in the left configuration) and � type (right configuration)
singlet plaquettes that form the two-fold degenerate ground states
(quasi-degenerate for finite N ) S1 (+) and S2 (�) of the PSS phase.
Some of the symmetry operations used to understand (as explained
in the text) the quantum numbers of the low-energy excitations T1,
T2, and Q1 are indicated with corresponding mirror lines.

periodic clusters studied here. We label these states, whose
degeneracy is lifted by finite-size effects, as S1 and S2. The
characteristic Anderson rotor tower of states [50] is a hall-
mark of AFM order, and we consider the first two of these
multiplets; the triplet excitation T1 (which we compute in the
Sz = 0 sector) and the quintuplet Q1 (for practical reasons
computed in the Sz = 2 sector). The intermediate QSL state
of the SSM argued in Ref. [30] has not yet been fully charac-
terized, and, thus, there are no rigorously known distinguish-
ing spectral features of it. However, the results of Ref. [30]
indicate that it should have gapless singlet and triplet excita-
tions. Thus, all three phases under consideration should have
gaps that vanish as the system size is increased, and we are in-
terested in potential level crossings signaling the ground state
phase transitions.

In addition to the four low-energy states S1, S2, T1, and
Q1, discussed above, we also study a triplet T2 that can be re-
garded as an excitation above S2 with the same relative quan-
tum numbers as those of T1 relative to S1. All states stud-
ied here have momentum zero, i.e., the phase factor generated
when applying the translation operators T

x

and T
y

in Eq. (4)
to these states is +1. The absolute and relative lattice quantum
numbers of interest here are therefore only the even (+1) and
odd (�1) phases associated with the point-group symmetry
operations. The absolute quantum numbers of the N = 16, 32
and N = 36 clusters are listed in Tab. I, and in Tab. II the ap-
plicable quantum numbers are similarly listed for N = 20 and
N = 24, and 28. For N = 40, we have not been able to con-
verge the target state T2 with DMRG, but for all other states
the quantum numbers are the same as those for N = 20.

The listed quantum numbers in Tabs. I and II can be under-
stood with the aid of a cartoon picture of the two lowest sin-
glet states in the PSS phase, illustrated in Fig. 3. These quasi-
degenerate ground states of a finite cluster, which do not break
the two-fold order-parameter symmetry, are even (S1) and odd
(S2) superpositions of the two different plaquette tilings (with
singlets on empty plaquettes, as is the case in the SSM [49])
that we refer to as ↵ and �. In Fig. 3, only two singlet pla-
quettes on empty squares are highlighted for each case (i.e.,
those that fit within the small 4⇥ 4 cluster). Though the SSM
Hamiltonian is not bipartite, below we will also invoke the

quasi-degenerate singlet ground state 
of the plaquette-singlet-solid (PSS)
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Figure 2. The seven clusters studied in this work. For each system
size N , a cut-out from the infinite lattice is indicated and periodic
boundary conditions are applied to these finite clusters. The clusters
are arranged according to their different symmetries and the sizes N
are (a) 16, (b) 36, (c) 32, (d) 20, (e) 40, (f) 24, and (g) 28, with
the sites included in each cluster marked by the black circles. The
lattice symmetries are illustrated as follows: Gliding reflection oper-
ators G

x

and G
y

in (a) and (b), defined in Eq. (5), involve reflection
with respect to the blue lines; analogous operations G0

x

and G0
y

are
defined for the cluster in (c). Mirror reflections �1 and �1 are de-
fined with respect to the red lines in (a)-(c). Rotation R

�

by an angle
� is defined with respect to the center of an empty or filled plaquette
as indicated by the green semi-circles in (c)-(g).

interactions |J
r

| equals 1. This model has been studied in pre-
vious works using the conventional level-crossing approach
with energies computed with the Lanczos method for N up to
32 [42] as well as with DMRG (in this case with fully periodic
boundary conditions) with N up to 48 [32].

The existence of a gapless QSL in this 1D model is not
controversial, as even the Heisenberg chain with only nearest-
neighbor interactions has a disordered ground state with al-

gebraically decaying correlations. With the long-range un-
frustrated interactions, long-range AFM order stabilizes when
↵ is below a critical value close to 2, with the exact value de-
pending on short-distance details of H [47]. The third phase
in this case is the same frustration-driven two-fold degener-
ate dimerized phase as in the J1-J2 chain. The QSL can be
expected on general grounds for some range of the model pa-
rameters to be located between the AFM and dimer phases,
and this was confirmed in Refs. [32, 45]. Here we will show
that the improved level crossing method that we developed
for the SSM produces better results for the chain Hamiltonian
Eq. (2) as well. The behavior of various gap crossing points
as the system transitions from dimerized to QSL and then to
AFM, are very similar to those observed in the SSM.

Symmetries of the SSM—The lattice symmetries ex-
ploited here are illustrated in Fig. 2 for all the SSM clusters
used in our study. These symmetries are used to block diag-
onalize the Hamiltonian along with the conserved magnetiza-
tion Sz and the spin-inversion symmetry Z (the latter only for
Sz = 0 states). We do not use the total spin S for block di-
agonalization, because of the complicated basis vectors in this
case, but we compute S of the eigenstates after the diagonal-
ization procedure.

We first discuss the point-group symmetries of the standard
4⇥ 4 (N = 16) and 6⇥ 6 (N = 36) clusters; see Figs. 2(a,b).
These clusters have translational symmetry in the x and y lat-
tice directions, which we define using the operators

T
x

= T 2
x

, T
y

= T 2
y

, (4)

where T
x

and T
y

denote the operations of translating by one
lattice spacing in the respective directions. Periodic bound-
aries for an L ⇥ L cluster with even L imply the conditions
T L/2
x

= T L/2
y

= 1.
We use the gliding reflection symmetries defined by

G
x

= T
y

P
x
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where P
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are mirror (reflection) operations with re-
spect to vertical and horizontal lines passing through lattice
sites. We also use diagonal mirror reflections �1 and �2,
defined with respect to lines drawn through intra-dimer (J 0)
bonds. The L ⇥ L clusters are also invariant under the com-
posite rotation defined as
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R
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where R
⇡/2 is the 90� rotation operation, but this composite

symmetry does not further reduce the size of the Hamiltonian
blocks after the other symmetries have been used. We nev-
ertheless compute the eigenvalue of R using that of G

x

and
�1.

The N = 32 cluster is contained in a square that is 45� ro-
tated with respect to the lattice axes; see Fig. 2(c). Defining
T 0
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and T 0
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as translations along the diagonal directions by one
step, the cluster is invariant under the following operations:
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= T 02
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, T 0
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checkerboard sublattices A and B of the square-lattice sites.
First consider operation on the S1 or S2 state by either

G
x

,G
y

,�1, or �2 on the clusters in Fig. 2. All these opera-
tions effectively exchanges the ↵ and � sets of singlet plaque-
ttes, therefore generate a phase (quantum number) +1 and �1
when acting on the S1 and S2, respectively, thus explaining
the corresponding quantum numbers listed in Tab. I.

To understand the quantum numbers of the triplet excita-
tions, T1 and T2, first note that a plaquette singlet can be
regarded as a superposition of two parallel two-spin singlet
bonds. Each singlet bond connects the A and B sublattices,
thus, are odd with respect exchange A$B of the two sublat-
tices. For a system in which the total number of singlet bonds
is even, i.e., for N being an integer multiple of four (which is
the case for all clusters studied here), the total product wave
function of these singlets is even under A$B. If one singlet
is excited to a triplet, which is even under A$B, such a state
is anti-symmetric with respect to sublattice exchange. Note
further that the operators G

x

,G
y

involve A$B site exchange
while �1 and �2 do not. Thus, the quantum number �1 of
G
x

and G
y

in the T1 state arises from swapping A$B because
there is an odd number of remaining singlets pairs. Similarly,
the quantum number +1 for �1 and �2 in T1 follows because
there is no sublattice swap. The same reasoning applies to
the state T2, i.e., the triplet excitation of S2; the relative sign
difference in the gliding and mirror quantum numbers with
respect to T1 (Tab. I) arises from the odd superposition of the
two sets ↵,� of plaquette tilings in S2.

The state Q1 can be thought of as the result of exciting two
singlet dimers of S1 into triplets, and by applying symmetry
operations as above, all reflection quantum numbers remain
the same in Q1 as in S1 because of the even number of triplets.

The quantum numbers of the rotation operators, R, R
⇡

, or
R

⇡/2, depending on the cluster, can likewise be understood in
light of Fig. 3 and how the symmetry operations correspond or
not to sublattice and plaquette swaps. As an example, for the
N = 32 cluster the rotation operator R

⇡/2 swaps the A and B
sublattices but not the ↵ and � singlet plaquettes. Therefore,
for the states S1, S2 and Q1, which contain an even number
of singlet bonds, the quantum number is +1, while for T1

and T2, which contain an odd number of singlets, the rotation
quantum number is �1.

The above arguments apply to all clusters in Fig. 2 with
their respective applicable symmetry operations. We have ex-
plained the quantum numbers by examining a simple picture
of the singlets in the PSS phase, and when moving to other
phases the energy levels for the finite systems evolve contin-
uously. The states {S1, S2, T1, T2, Q1} are still defined ac-
cording to their quantum numbers listed in Tabs. I and II and
are always those that evolve from the two lowest singlets, two
lowest triplets, and lowest quintuplet in the PSS state. The
state S1 remains the ground state for all values of g consid-
ered, and S2, T1, and Q1 also remain the lowest states with
their respective total spin. However, T2 is not always the sec-
ond lowest triplet in the QSL and AFM phases, though it is
the first triplet with its full set of quantum numbers.
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Figure 4. Energy gaps of the SSM vs the coupling for cluster sizes
(a) N = 36 (b) 32, (c) 28, (d) 24, (e) 20, (f) 16. Conventional
gaps defined relative to the ground state energy E(S1) are shown
as follows: �(S2) (open red squares), �(T1) (open green circles),
�(T2) (open blue up triangles), �(Q1) (open indigo down trian-
gles). Triplet and quintuplet gaps defined with respect to other exited
states are shown as follows: �

T

⌘ E(T2) � E(S2) (filled blue up
triangles); �

Q

= E(Q1)�E(T1) (filled indigo down triangles). The
kinks in the �(Q1) and �

Q

data between g = 0.7 and 0.75 are re-
lated to avoided level crossings close to the DS–PSS transition.

Numerical SSM results—We define the gaps �(S2),
�(T1), �(T2), and �(Q1) relative to the ground state energy
E(S1) and graph these versus g in Fig. 4 for the clusters of
size up to N = 36. As explained above, our goal is to identify
level (gap) crossings with the PSS–QSL and the QSL–AFM
ground state transitions.

In Ref. [30], the extrapolated (with leading 1/N correc-
tions) crossing point gc1 = 0.788± 0.002 between the lowest
singlet and triplet excitation was identified as the PSS–QSL
transition. Unlike the periodic clusters considered here, the
cylindrical lattices studied in Ref. [30] break the asymptotic
two-fold degeneracy of the PSS state because the boundaries
favor one of the two singlet patterns. Thus, the first excited
singlet was different from the quasi-degenerate ground state
S2 used here, and the level crossing studied previously is not
a directly analogy to the singlet-triplet crossing accompanying
the dimerization transition in the frustrated Heisenberg chain
[43, 44] (where the symmetry is not broken in periodic sys-
tems). An important aspect of the present work is that the
crossing between the S2 and T1 levels is similar to the well un-
derstood 1D case, and a confirmation of the same asymptotic
crossing point as in Ref. [30] will represent additional inde-
pendent evidence for the correct identification of the quantum
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�(T1), �(T2), and �(Q1) relative to the ground state energy
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Figure 5. (a) SSM finite-size level crossing points obtained from
the gaps �(T1), �T , �

Q

, and �(Q1), each crossing the singlet gap
�(S2). The points are graphed vs the inverse system size according
to the empirical linear scaling in 1/N [30, 32]. The underlying data
are from Lanczos calculations such as those in Fig. 4, except for the
largest cluster, N = 40, for which the DMRG method was used.
The two straight lines are fits to the �(T1) (red solid line) and �

T

(green solid line) points for N � 20 and extrapolate to g
c1 = 0.789

and g
c2 = 0.824, respectively. (b) Adjusted crossing points, g0

c2,
Eq. (9), for which all points for given N are shifted vertically by an
equal amount so that the �(T1) points (red squares) fall exactly on
the red fitted line from (a). A linear fit (green line) in 1/N is shown
for the �

T

crossing points and extrapolates to g
c2 = 0.826. The form

g0
c2(N) = g

c2 + a/N + b/N3/2 was fitted to the other two data sets
(N � 20) with gc2 constrained to the same value as above.

phase transition.
In Fig. 4, the crossing of the �(S2) and �(T1) gaps indeed

are also close to the previous gc1 value for all clusters. Inter-
polated crossing g values are graphed versus 1/N in Fig. 5(a)
(red squares), where we include also the N = 40 result ob-
tained with the DMRG method. Here the overall size de-
pendence is much weaker than in the cylindrical lattices [30],
though there is some un-smoothness as a consequence of the
different cluster shapes. A line fit to all but the N = 16 point
gives gc1 = 0.789 ± 0.004 (where the estimated error, here
and in other extrapolations reported below, was obtained from
additional fits to all data sets excluding one of the points),
in remarkable agreement with the value cited above from the
much larger cylindrical lattices (up to N = 24 ⇥ 12 spins).
The weak size dependence of the crossing points and the con-
sistency of the two calculations illustrate the advantage of
periodic boundary conditions and also confirm the quantum-
critical point with a different level crossing.

The extrapolated crossing point between the lowest singlet
and quintuplet excitations, gc2 = 0.820 ± 0.002, was iden-
tified as the QSL–AFM transition [30]. This crossing point

had a much larger size dependence on the cylindrical lattices
than the singlet-triplet crossing. The larger size dependence
is also seen with our small periodic clusters, where the cross-
ing points between �(S2) and �(Q1) are outside the range of
Fig. 4. The crossing values, graphed in Fig. 5(a) (indigo down
triangles), are consistent with the value of gc2 cited above but
are too scattered for a meaningful extrapolation.

Physically, the singlet-quintuplet crossing is motivated by
the Anderson tower of rotor states in the AFM phase. The
S = 0 ground state S1 is the lowest of these states, whose
gaps with respect to E(S1) scale as S(S + 1)/N for S > 0
[50]. Other singlets, including S2, have energies above these
rotor states (for any S > 0 and sufficiently large N ). The
triplet T1, which becomes the S = 1 rotor state in the AFM
phase, already crosses from above to below S2 at the PSS-
QSL transition point gc1, as discussed above. There is no
necessary reason why Q1 should fall below S2 in the QSL
phase, e.g., in a scenario of a deconfined phase the quintuplet
should contain four excited spinons, while S1 and T1 should
be two-spinon excitations. However, being the S = 2 rotor
state in the AFM phase, Q1 has to be below S2 there. Thus,
the g value of the crossing between �(Q1) and �(S2) in the
limit of infinite system size should coincide with the forma-
tion of AFM long-range order. The fact that the extrapolated
crossing point gc2 indeed is larger than gc1 (in Ref. [30] and
further below) supports an extended QSL phase instead of a
direct transition point between the PSS and AFM phases.

Here our aim is to identify other gap crossings associated
with the QSL–AFM transitions, in particular with the hope of
reducing the size dependence and allowing reliable extrapola-
tion of gc2 even with small clusters. We note that the lower
transition point g

c1, as obtained in Ref. [30] and confirmed
here, should not be controversial as it is close to other esti-
mates of the end of the PSS phase [27, 49]—in particular, in
Ref. [27] the size dependence of the point marking the upper
PSS bound is consistent with our gc1 value.

To construct better gc2 estimators, we first observe that the
second triplet gap �(T2) in Fig. 4 closely follows the sin-
glet gap �(S2), reflecting the fact that T2 can be regarded
as a triplet excitation of S2, in correspondence to the role of
the first triplet T1 with respect to the ground state S1. Given
that S1 and S2 are quasi-degenerate ground states in the PSS
phase, the difference

�
T

⌘ E(T2)� E(S2) ⌘ �(T2)��(E2) (7)

will also converge with increasing system size to the non-zero
gap in this phase, and �

T

must then be above the singlet split-
ting �(S2) for sufficiently large N (as is seen clearly in Fig. 4
for all clusters). As already discussed above, in the AFM
phase S2 must be above the low-lying Anderson S > 0 ro-
tor states. However, given that S2 remains the lowest singlet
excitation also in the AFM phase, it must also host long-range
order and its own associated Anderson rotor tower. As T1 is
the lowest rotor excitation of S1, the composite excitation T2

is the lowest rotor state excited from S2. Thus, in the AFM

6

0.8

1.0

1.2

g
c(

N
)

∆(T1)
δT
δQ

∆(Q1)

0.8

1.0

1.2

0.00 0.02 0.04 0.06

g
, c2

(N
)

1/N

∆(T1)
δT
δQ

∆(Q1)

(a)

(b)

Figure 5. (a) SSM finite-size level crossing points obtained from
the gaps �(T1), �T , �

Q

, and �(Q1), each crossing the singlet gap
�(S2). The points are graphed vs the inverse system size according
to the empirical linear scaling in 1/N [30, 32]. The underlying data
are from Lanczos calculations such as those in Fig. 4, except for the
largest cluster, N = 40, for which the DMRG method was used.
The two straight lines are fits to the �(T1) (red solid line) and �

T

(green solid line) points for N � 20 and extrapolate to g
c1 = 0.789

and g
c2 = 0.824, respectively. (b) Adjusted crossing points, g0

c2,
Eq. (9), for which all points for given N are shifted vertically by an
equal amount so that the �(T1) points (red squares) fall exactly on
the red fitted line from (a). A linear fit (green line) in 1/N is shown
for the �

T

crossing points and extrapolates to g
c2 = 0.826. The form

g0
c2(N) = g

c2 + a/N + b/N3/2 was fitted to the other two data sets
(N � 20) with gc2 constrained to the same value as above.

phase transition.
In Fig. 4, the crossing of the �(S2) and �(T1) gaps indeed

are also close to the previous gc1 value for all clusters. Inter-
polated crossing g values are graphed versus 1/N in Fig. 5(a)
(red squares), where we include also the N = 40 result ob-
tained with the DMRG method. Here the overall size de-
pendence is much weaker than in the cylindrical lattices [30],
though there is some un-smoothness as a consequence of the
different cluster shapes. A line fit to all but the N = 16 point
gives gc1 = 0.789 ± 0.004 (where the estimated error, here
and in other extrapolations reported below, was obtained from
additional fits to all data sets excluding one of the points),
in remarkable agreement with the value cited above from the
much larger cylindrical lattices (up to N = 24 ⇥ 12 spins).
The weak size dependence of the crossing points and the con-
sistency of the two calculations illustrate the advantage of
periodic boundary conditions and also confirm the quantum-
critical point with a different level crossing.

The extrapolated crossing point between the lowest singlet
and quintuplet excitations, gc2 = 0.820 ± 0.002, was iden-
tified as the QSL–AFM transition [30]. This crossing point

had a much larger size dependence on the cylindrical lattices
than the singlet-triplet crossing. The larger size dependence
is also seen with our small periodic clusters, where the cross-
ing points between �(S2) and �(Q1) are outside the range of
Fig. 4. The crossing values, graphed in Fig. 5(a) (indigo down
triangles), are consistent with the value of gc2 cited above but
are too scattered for a meaningful extrapolation.

Physically, the singlet-quintuplet crossing is motivated by
the Anderson tower of rotor states in the AFM phase. The
S = 0 ground state S1 is the lowest of these states, whose
gaps with respect to E(S1) scale as S(S + 1)/N for S > 0
[50]. Other singlets, including S2, have energies above these
rotor states (for any S > 0 and sufficiently large N ). The
triplet T1, which becomes the S = 1 rotor state in the AFM
phase, already crosses from above to below S2 at the PSS-
QSL transition point gc1, as discussed above. There is no
necessary reason why Q1 should fall below S2 in the QSL
phase, e.g., in a scenario of a deconfined phase the quintuplet
should contain four excited spinons, while S1 and T1 should
be two-spinon excitations. However, being the S = 2 rotor
state in the AFM phase, Q1 has to be below S2 there. Thus,
the g value of the crossing between �(Q1) and �(S2) in the
limit of infinite system size should coincide with the forma-
tion of AFM long-range order. The fact that the extrapolated
crossing point gc2 indeed is larger than gc1 (in Ref. [30] and
further below) supports an extended QSL phase instead of a
direct transition point between the PSS and AFM phases.

Here our aim is to identify other gap crossings associated
with the QSL–AFM transitions, in particular with the hope of
reducing the size dependence and allowing reliable extrapola-
tion of gc2 even with small clusters. We note that the lower
transition point g

c1, as obtained in Ref. [30] and confirmed
here, should not be controversial as it is close to other esti-
mates of the end of the PSS phase [27, 49]—in particular, in
Ref. [27] the size dependence of the point marking the upper
PSS bound is consistent with our gc1 value.

To construct better gc2 estimators, we first observe that the
second triplet gap �(T2) in Fig. 4 closely follows the sin-
glet gap �(S2), reflecting the fact that T2 can be regarded
as a triplet excitation of S2, in correspondence to the role of
the first triplet T1 with respect to the ground state S1. Given
that S1 and S2 are quasi-degenerate ground states in the PSS
phase, the difference

�
T

⌘ E(T2)� E(S2) ⌘ �(T2)��(E2) (7)

will also converge with increasing system size to the non-zero
gap in this phase, and �

T

must then be above the singlet split-
ting �(S2) for sufficiently large N (as is seen clearly in Fig. 4
for all clusters). As already discussed above, in the AFM
phase S2 must be above the low-lying Anderson S > 0 ro-
tor states. However, given that S2 remains the lowest singlet
excitation also in the AFM phase, it must also host long-range
order and its own associated Anderson rotor tower. As T1 is
the lowest rotor excitation of S1, the composite excitation T2

is the lowest rotor state excited from S2. Thus, in the AFM

Crossings points with !(S2)

6

0.8

1.0

1.2

g
c(

N
)

∆(T1)
δT
δQ

∆(Q1)

0.8

1.0

1.2

0.00 0.02 0.04 0.06

g
, c2

(N
)

1/N

∆(T1)
δT
δQ

∆(Q1)

(a)

(b)

Figure 5. (a) SSM finite-size level crossing points obtained from
the gaps �(T1), �T , �

Q

, and �(Q1), each crossing the singlet gap
�(S2). The points are graphed vs the inverse system size according
to the empirical linear scaling in 1/N [30, 32]. The underlying data
are from Lanczos calculations such as those in Fig. 4, except for the
largest cluster, N = 40, for which the DMRG method was used.
The two straight lines are fits to the �(T1) (red solid line) and �

T

(green solid line) points for N � 20 and extrapolate to g
c1 = 0.789

and g
c2 = 0.824, respectively. (b) Adjusted crossing points, g0

c2,
Eq. (9), for which all points for given N are shifted vertically by an
equal amount so that the �(T1) points (red squares) fall exactly on
the red fitted line from (a). A linear fit (green line) in 1/N is shown
for the �

T

crossing points and extrapolates to g
c2 = 0.826. The form

g0
c2(N) = g

c2 + a/N + b/N3/2 was fitted to the other two data sets
(N � 20) with gc2 constrained to the same value as above.

phase transition.
In Fig. 4, the crossing of the �(S2) and �(T1) gaps indeed

are also close to the previous gc1 value for all clusters. Inter-
polated crossing g values are graphed versus 1/N in Fig. 5(a)
(red squares), where we include also the N = 40 result ob-
tained with the DMRG method. Here the overall size de-
pendence is much weaker than in the cylindrical lattices [30],
though there is some un-smoothness as a consequence of the
different cluster shapes. A line fit to all but the N = 16 point
gives gc1 = 0.789 ± 0.004 (where the estimated error, here
and in other extrapolations reported below, was obtained from
additional fits to all data sets excluding one of the points),
in remarkable agreement with the value cited above from the
much larger cylindrical lattices (up to N = 24 ⇥ 12 spins).
The weak size dependence of the crossing points and the con-
sistency of the two calculations illustrate the advantage of
periodic boundary conditions and also confirm the quantum-
critical point with a different level crossing.

The extrapolated crossing point between the lowest singlet
and quintuplet excitations, gc2 = 0.820 ± 0.002, was iden-
tified as the QSL–AFM transition [30]. This crossing point

had a much larger size dependence on the cylindrical lattices
than the singlet-triplet crossing. The larger size dependence
is also seen with our small periodic clusters, where the cross-
ing points between �(S2) and �(Q1) are outside the range of
Fig. 4. The crossing values, graphed in Fig. 5(a) (indigo down
triangles), are consistent with the value of gc2 cited above but
are too scattered for a meaningful extrapolation.

Physically, the singlet-quintuplet crossing is motivated by
the Anderson tower of rotor states in the AFM phase. The
S = 0 ground state S1 is the lowest of these states, whose
gaps with respect to E(S1) scale as S(S + 1)/N for S > 0
[50]. Other singlets, including S2, have energies above these
rotor states (for any S > 0 and sufficiently large N ). The
triplet T1, which becomes the S = 1 rotor state in the AFM
phase, already crosses from above to below S2 at the PSS-
QSL transition point gc1, as discussed above. There is no
necessary reason why Q1 should fall below S2 in the QSL
phase, e.g., in a scenario of a deconfined phase the quintuplet
should contain four excited spinons, while S1 and T1 should
be two-spinon excitations. However, being the S = 2 rotor
state in the AFM phase, Q1 has to be below S2 there. Thus,
the g value of the crossing between �(Q1) and �(S2) in the
limit of infinite system size should coincide with the forma-
tion of AFM long-range order. The fact that the extrapolated
crossing point gc2 indeed is larger than gc1 (in Ref. [30] and
further below) supports an extended QSL phase instead of a
direct transition point between the PSS and AFM phases.

Here our aim is to identify other gap crossings associated
with the QSL–AFM transitions, in particular with the hope of
reducing the size dependence and allowing reliable extrapola-
tion of gc2 even with small clusters. We note that the lower
transition point g

c1, as obtained in Ref. [30] and confirmed
here, should not be controversial as it is close to other esti-
mates of the end of the PSS phase [27, 49]—in particular, in
Ref. [27] the size dependence of the point marking the upper
PSS bound is consistent with our gc1 value.

To construct better gc2 estimators, we first observe that the
second triplet gap �(T2) in Fig. 4 closely follows the sin-
glet gap �(S2), reflecting the fact that T2 can be regarded
as a triplet excitation of S2, in correspondence to the role of
the first triplet T1 with respect to the ground state S1. Given
that S1 and S2 are quasi-degenerate ground states in the PSS
phase, the difference

�
T

⌘ E(T2)� E(S2) ⌘ �(T2)��(E2) (7)

will also converge with increasing system size to the non-zero
gap in this phase, and �

T

must then be above the singlet split-
ting �(S2) for sufficiently large N (as is seen clearly in Fig. 4
for all clusters). As already discussed above, in the AFM
phase S2 must be above the low-lying Anderson S > 0 ro-
tor states. However, given that S2 remains the lowest singlet
excitation also in the AFM phase, it must also host long-range
order and its own associated Anderson rotor tower. As T1 is
the lowest rotor excitation of S1, the composite excitation T2

is the lowest rotor state excited from S2. Thus, in the AFM

Relative crossings + !(T1) fit 

Clusters and symmetries

Gapless spin liquid phase for g ∊ (0.79,0.83)?



Open-source program QuSpin (by Phillip Weinberg and Marin Bukov)
- Many functionalities for exact solution of small systems
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Abstract

We present a new open-source Python package for exact diagonalization and quan-
tum dynamics of spin(-photon) chains, called QuSpin, supporting the use of var-
ious symmetries in 1-dimension and (imaginary) time evolution for chains up to
32 sites in length. The package is well-suited to study, among others, quantum
quenches at finite and infinite times, the Eigenstate Thermalisation hypothesis,
many-body localisation and other dynamical phase transitions, periodically-driven
(Floquet) systems, adiabatic and counter-diabatic ramps, and spin-photon inter-
actions. Moreover, QuSpin’s user-friendly interface can easily be used in com-
bination with other Python packages which makes it amenable to a high-level
customisation. We explain how to use QuSpin using four detailed examples: (i)
Standard exact diagonalisation of XXZ chain (ii) adiabatic ramping of parameters
in the many-body localised XXZ model, (iii) heating in the periodically-driven
transverse-field Ising model in a parallel field, and (iv) quantised light-atom in-
teractions: recovering the periodically-driven atom in the semi-classical limit of a
static Hamiltonian.
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Abstract

We present a major update to QuSpin, SciPostPhys.2.1.003 – an open-source
Python package for exact diagonalization and quantum dynamics of arbitrary
boson, fermion and spin many-body systems, supporting the use of various (user-
defined) symmetries in one and higher dimension and (imaginary) time evolution
following a user-specified driving protocol. We explain how to use the new fea-
tures of QuSpin using seven detailed examples of various complexity: (i) the
transverse-field Ising chain and the Jordan-Wigner transformation, (ii) free par-
ticle systems: the Su-Schrieffer-Heeger (SSH) model, (iii) the many-body local-
ized 1D Fermi-Hubbard model, (iv) the Bose-Hubbard model in a ladder ge-
ometry, (v) nonlinear (imaginary) time evolution and the Gross-Pitaevskii equa-
tion on a 1D lattice, (vi) integrability breaking and thermalizing dynamics in
the translationally-invariant 2D transverse-field Ising model, and (vii) out-of-
equilibrium Bose-Fermi mixtures. This easily accessible and user-friendly package
can serve various purposes, including educational and cutting-edge experimental
and theoretical research. The complete package documentation is available under
http://weinbe58.github.io/QuSpin/index.html.
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Comment: Even though exact methods are limited to small 
system sizes, they are very useful for  
- learning quantum many-body concepts  
- extracting initial features for models 
- testing other methods



Monte Carlo Simulations

1) Classical Monte Carlo

2) Quantum Monte Carlo



Ising model
Two states on each lattice site

Can arise for quantum mechanical S=1/2:
Strong anisotropies; z-interactions can dominate

This is the Ising model
Ø important in the theory of phase transitions
Ø effective model for many stat mech

problems (�lattice gases�, binary alloys, 
atom adsorption on surfaces,...)

With only nearest-neighbor interactions (J), the Ising model
can be solved analytically in 1D and 2D
Ø Numerical simulations important in most other cases



Phase transition
Spontaneous ordering (symmetry breaking) at critical temperature
magnetization (ferromagnet, J<0)

sublattice (staggered) magnetization (antiferromagnet, J>0)

Tc/J = 2/ ln(1 +
�

2)



Monte Carlo simulations of the 2D Ising model
Stochastic sampling of spin configurations to estimate

Spin configurations
configurations; can sample very small fraction for large N

Trivial (uniform) sampling of S fails at low T, because the sum
is then dominated by configurations with large ordered domains,
which are very unlikely to be generated in random sampling

Extreme case: T=0. Only two configurations contribute, but
the probability to generate them is 1/2N-1

Solution: Importance sampling:
Ø Generate configurations according to Boltzmann distribution



Importance sampling
First, rewrite expectation value as

P(S) can be interpreted as the probability of configuration S

Uniform sampling of N configurations

Importance sampling: The probability to pick S is P(S)

This sampling selects exactly the important configurations, and
hence the statistical errors will be much smaller at low T.

But how do we accomplish importance sampling in practice?



Imagine ensemble of huge number of states in equilibrium
Number of states A is N0(A), proportional to P(A)
We now make some random change in each state (e.g., flip spins)

Possible transitions: 

If we want the distribution to remain P(A) after the update

Number of states A after the �update�

This is the master equation for the stochastic process

detailed-balance solution (condition): For every A, B
Many possible solutions; an obvious solution, called the



Time average of a Markov process same as ensemble average
If we make random updates on a single configuration, and
satisfy detailed balance,                                                       ,
and if the updates are such that any configuration can be 
reached in a series of updates (ergodicity). 
Then, the time distribution of configurations A will approach 
the distribution P(A) independently of the initial configuration

Alternative form of the detailed-balance condition

With

We have to construct transition probabilities satisfying this

Time evolution of a single configuration; Markov process



The transition probability can typically be written as

where the two factors have the following meaning:
- The probability of selecting B as a candidate
among a number of possible new configurations

- The probability of actually making the transition
to B after the selection of B has been done

If B has been selected but is not accepted (rejected); stay with A
For an Ising model
Ø Select a spin at random as a 

candidate to be flipped (attempt)
ØActually flip the spin with a probability 

to be determined (accept)
Ø Stay in the old configuration if the 

flip is not done (reject)



uniform, independent of A, B

constructed to satisfy detailed balance condition

Two commonly used acceptance probabilities

Metropolis:

Heat bath: 

Easy to see that these satisfy detailed balance

The ratios involve the change in energy when
a spin has been flipped (or, more generally, 
when the state has been updated in some way)



Metropolis algorithm for the Ising model
Spin update
• Select a spin at random
• Calculate the change in energy if the spin is flipped
• Use the energy change to calculate the acceptance probability P 
• Flip the spin with probability P; stay in old state with 1-P
• Repat from spin selection

Acceptance probability:

Only factors containing spin j survive in W-ratio

Current configuration: 
Configuration after flipping spin j: 













Illustration of simulation

Evolution of the magnetization, 2D Ising model, T/J=2.2 (below Tc)
• <M>=0, but time scale for M-reversal increases with L
• Symmetry-breaking occurs in practice for large L



The magnetization distribution depends on T and L
• single peak around m=0 for T>Tc
• double peak around +<m> and-<m> for T<Tc

Symmetry breaking (sampling of only m>0 or m<0 states) 
occurs in practice for large L
- Because extremely small probability to go between them 

<latexit sha1_base64="AtXIxMEvKO4bfBYytzAXXe4nckk=">AAACAXicdVDLSgMxFM34rPU16kZwEyxCXTim7fThriiIywp9QVtLJk3b0MyDJCOUoW78FTcuFHHrX7jzb8y0FVT0QOBwzr3cnOMEnEmF0IexsLi0vLKaWEuub2xubZs7u3Xph4LQGvG5L5oOlpQzj9YUU5w2A0Gx63DacEYXsd+4pUIy36uqcUA7Lh54rM8IVlrqmvuVtHsM24HwA+VDehOdXGrhtDrpmilkFQt27qwEkZVFCOVQTPJ23rZhxkJTpMAcla753u75JHSppwjHUrYyKFCdCAvFCKeTZDuUNMBkhAe0pamHXSo70TTBBB5ppQf7vtDPU3Cqft+IsCvl2HX0pIvVUP72YvEvrxWqfqkTMS8IFfXI7FA/5FCHjeuAPSYoUXysCSaC6b9CMsQCE6VLS+oSvpLC/0k9a2UKln1tp8rn8zoS4AAcgjTIgCIogytQATVAwB14AE/g2bg3Ho0X43U2umDMd/bADxhvn3LDlaM=</latexit>

P (m) / e�F (m)/T



“Measuring” physical observables
Order parameter of  ferromagnetic transition: Magnetization

Expectation vanishes for finite system; calculate
Susceptibility: Linear response of <m> to external field

Deriving Monte Carlo estimator



We can also define the susceptibility estimator as

Extrapolating to infinite size, this gives the correct result only
in the disordered phase when extrapolating N to infinity.

Gives correct infinite-size extrapolation for any T

Correlation function

Average over all spins i

Specific heat

! hM2i/N when r,N ! 1



Squared magnetization for different system sizes:
- development of phase transition (singularity)


