Spin correlations in the Heisenberg chain

N
H=JY S; S\
i=1
Let’s look at the (staggered) spin correlation function
C(r) = (Si-Sitr)(=1)"
versus the distance r and at r=N/2 versus system size N
Theory (bosonization conformal field theory) predicts (for large r, N)
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Plausible based on N up to 32

» other methods for larger N = 020/-
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Excitations of the Heisenberg chain

* the ground state is a singlet (S=0) for even N

- the first excited state is a triplet (S=1)
* can be understood as pair of “spinons”
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Neutron scattering experiments
« quasi-one-dimensional KCuF3

B. Lake et al., Nature Materials 4 329-334 (2005)
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Heisenberg chain with frustrated interactions

N
A A AT oA,
H = Z[Jlsi +Sit1 + J2S;i - Sito] — =)

=1 \VAVAVAVAVEE et

For the special point J2/J1=0.5, this model has an exact solution

Singlet-product states (a,b) = (T.ls — laT1)/V2 (Majumdar & Ghosh)
Wa)=1(1,2)(3,4)(5,6)---) — ey —<lls— <l — <> —<ll>—<ul
Up)=|(1,N)(3,2)(5,4)---) B s s a» a—

It is not hard to show that these are eigenstates of H
The system has this kind of order (with fluctuations, no exact solution)

for all J2/J1>0.2411..... This is a quantum phase transition between
e a critical state

 a valence-bond-solid (VBS) state

The system at (J2/J1)c is described by a CFT (k=1 WZW theory)
- marginal operator goes to zero at this point
- log corrections to scaling in the critical phase, leads to VBS order above

Translational symmetry of the VBS state is not broken for finite N
- the ground state is a superposition of the two ordered states

Vo) ~ [Wa) +|¥p),  [¥1) ~[Va) = [¥p)



The VBS state can be detected in finite systems using “dimer” correlations

D(r) = (BiBiyr) = {(Si - Sit1)(Sitr - Sit14+))
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Results from Lanczos diagonalization; different coupling ratios g=J2/J1
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It is not easy to detect the transition this way

* much larger systems are needed for observing a sharp transition

- other properties can be used to accurately determine the critical point gc
- level crossings [K. Okamoto and K. Nomura, Phys. Lett. A 169, 443 (1992)]



Determining the transition point using level crossings .. ]

Lowest excitation for the g=0 Heisenberg chain is a triplet |« -
* this can be expected for all g<gc

k)

The VBS state is 2-fold degenerate for infinite N N
- and for any N at g=1/2 A L
- these two states are singlets (Wo) ~ [W4) + |Up)
* gap between them closes exponentially as N— oo U) ~ [Ty — [Tp)

- the lowest excitation is the second singlet
The two lowest excited states should cross at gc
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1/N2 shift can be explained by CFT (k=1 WZW)
- same transition in many other systems; 1D J-Q, Heisenberg chains with phonons,...
- QMC study of emergent O(4) symmetry: Patil, Katz, Sandvik, PRB (2018)



2D square lattice Px
Use translation symmetry JLELI CECECIS Y
- momentum states PN P
1 Lecliy—l oo o
a(k)) = |alky, ky)) = e XTI TITY g k, = —m,, my=0,1,....L,—1
alk)) = lalkeoky)) = o= 3 3 ) k=g my y

At high-symmetry (kx,ky) one can also use one or more reflection symmetry

Block sizes for Dy Dy Dd z M(L =4) M(L=6)
_ _ +1 +1 +1 +1 107 15,804,956
L=4, L=6 +1 +1 +1 —1 46 15,761,166
(kx,ky) = (0,0) +1 0 41 1 a1 92 15.796.390
my, =0 +1 | —1 —1 38 15,752,772
—1 1 1+ 1+ 50 15,749,947

—1 —1 +1 —1 45 15,739,069

—1 —1 —1 +1 42 15,741,544

1 —1 —1 —1 36 15,730,582

+1 —1 1+ 75 31,481,894

+1 —1 —1 108 31,525,574




Quantum rotor states (Anderson tower) in 2D Heisenberg model
- see details in AIP Conf Proc. 1297, 135 (2010)

Lowest excitations (finite N): two large sublattice spins (Sa, Sg ~ N) (0,0)4

A He = JorSa - S
H=) 505 pppy
() A A Sp (7, 7)s
7(' A
Gap and susceptibility for the effective system — 0,0)0
As = Sfjv D x=d(m(h)/dh, H(h)=H(0)-hS* .
XY susceptibilty 1 _ 3Ns(Es— Eo) (0.0
of full model  x(S,N) S(S+1) (kz, ky)s
- °f o ol-6 | Long-range Néel AFM
I oo L=4 | order seems plausible
= (a) | from on spin-spin
=
Tl 1 correlation function
2 | - can be confirmed
= st with QMC
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Level crossings in the SS model  Wang, Zhang, Sandvik,
. . CPL 2022 (arXiv:2205.02476)
quasi-degenerate singlet ground state

of the plaquette-singlet-solid (PSS) t Q1
G )
v 01 Singlets S, S2
T Triplets T4, T2
Ti Quintuplet Q
52
51

Gaps: A(Sg) = E(SQ) — E(Sl) A(Tl) = E(Tl) — E(Sl)
Composite gaps: or = E(Ty) — E(S2) d6g = E(Q1) — E(TY)

Gap criteria for PSS and AFM ordered phases

PSS: A(Sz) < A(Tl) doubly-degenerate ground state, triplet gapped

ARM: A(Q)) < A(Sy), 6r < A(Sy) s SS+1D/N
S2 gapped; amplitude mode

Gap crossings vs g to detect quantum phase transitions

Lanczos calculations for N up to 36



Clusters and symmetries
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Gapless spin liquid phase for g < (0.79,0.83)?



Open-source program QuSpin (by Phillip Weinberg and Marin Bukov)
- Many functionalities for exact solution of small systems

QuSpin: a Python Package for Dynamics and Exact
Diagonalisation of Quantum Many Body Systems.

Part I: spin chains

arXiv : 1610.03042

QuSpin: a Python Package for Dynamics and Exact
Diagonalisation of Quantum Many Body Systems.

Part II: bosons, fermions and higher spins

arXiv : 1804.06782
http:/ /weinbe58.github.io/QuSpin/index.html

Comment: Even though exact methods are limited to small
system sizes, they are very useful for

- learning quantum many-body concepts

- extracting initial features for models

- testing other methods



Bootstrapping Nature: Non-perturbative Approaches to Critical Phenomena, Training Week
Galileo Galilei Institute, Florence, Italy, October 3-7, 2022

Anders Sandvik, Boston University

Monte Carlo Simulations

1) Classical Monte Carlo

2) Quantum Monte Carlo



Ising model
Two states on each lattice site Spin |, l

Can arise for quantum mechanical S=1/2: S7 = +1/2

Strong anisotropies; z-interactions can dominate

E =Y J;SiS;

i,7

This 1s the Ising model

N W - - .
~-0—0—0—0~
~-0—0—0—0~
T

» important in the theory of phase transitions

» effective model for many stat mech
problems (“lattice gases”, binary alloys,
atom adsorption on surfaces,...)

With only nearest-neighbor interactions (J), the Ising model
can be solved analytically in 1D and 2D
» Numerical simulations important in most other cases



Phase transition

Spontaneous ordering (symmetry breaking) at critical temperature

magnetization (ferromagnet, J<0) T./J =2/In(1 +V2)
N
P S T./J ~ 2.269
A[ — N - g;

sublattice (staggered) magnetization (antiferromagnet, J>0)
N
1
| — 2 _1\TiTYi .

N
Broken symmetry
only in infinite system

<M> <N >=0 for finite N
<M?*> or <IMI> can be used

Te



Monte Carlo simulations of the 2D Ising model

Stochastic sampling of spin configurations to estimate
_ 1 —E(S)/T _ —E(S)/T
<A>—E;A(S)e , Z—zs;e

Spin configurations S = (0q,09,...,0N)
oN configurations; can sample very small fraction for large N

Trivial (uniform) sampling of S fails at low T, because the sum
1s then dominated by configurations with large ordered domains,
which are very unlikely to be generated in random sampling

Extreme case: T=0. Only two configurations contribute, but
the probability to generate them is 1/2N-1

Solution: Importance sampling:
» Generate configurations according to Boltzmann distribution



Importance sampling

First, rewrite expectation value as

(4) = 3" P(S)A(S), P(S) = %G—Ew)/T

P(S) can be interpreted as the probability of configuration S

Uniform sampling of N configurations
N
1
(A) ~ N ZA(Sz')P(S?;)
1=1
Importance sampling: The probability to pick S 1s P(S)
N
1
()~ 5 3 AGS)

This sampling selects exactly the important configurations, and
hence the statistical errors will be much smaller at low T.

But how do we accomplish importance sampling in practice?



Imagine ensemble of huge number of states in equilibrium

Number of states A 1s Ny(A), proportional to P(A)

We now make some random change in each state (e.g., flip spins)
Possible transitions: A — B, C', ...

Number of states A after the “update”

N1(A) = No(A) + > No(B)P(B — A) — No(A)P(A — B)

This 1s the master equation for the stochastic process
If we want the distribution to remain P(A) after the update
> No(B)P(B — A) — No(A)P(A— B) =0
B#A
Y P(B)P(B— A)— P(A)P(A— B) =0
B#A
Many possible solutions; an obvious solution, called the
detailed-balance solution (condition): For every A, B

P(B)P(B — A) = P(A)P(A — B)



Time evolution of a single configuration; Markov process
Time average of a Markov process same as ensemble average

If we make random updates on a single configuration, and
satisfy detailed balance, P(B)P(B — A) = P(A)P(A — B),
and 1f the updates are such that any configuration can be
reached 1n a series of updates (ergodicity).

Then, the time distribution of configurations A will approach
the distribution P(A) independently of the initial configuration

Alternative form of the detailed-balance condition
With P(A) =exp|—-F(A)/T|/Z =W (A)/Z
P(B — A) W(A)

P(A— B) W(B)

We have to construct transition probabilities satisfying this



The transition probability can typically be written as

A A
P(A — B) — Pa.tt.ompt (B)Pa.ccopt(B)
where the two factors have the following meaning:
P tempt (B) - The probability of selecting B as a candidate
among a number of possible new configurations
R{ﬁmp (B) - The probability of actually making the transition

to B after the selection of B has been done

If B has been selected but 1s not accepted (rejected); stay with A

For an Ising model _‘ 6 *

» Select a spin at random as a
candidate to be flipped (attempt) —-—O <>
» Actually flip the spin with a probability
to be determined (accept) ——9
RE ¢

» Stay in the old configuration if the
flip 1s not done (reject)

-0—0
RARGRAR S



PA

a,t,t,ompt(B ) = 1/Ngpin uniform, independent of A, B

Pzﬁzccpt (B) constructed to satisfy detailed balance condition
Plicept(B) _ W(B) 4 4 ¢ 4
PB A W(A

a.ccopt.( ) ( ) -0—0© @ o

Two commonly used acceptance probabilities 6—6—0—0-

W(B
Metropolis: chcpt(B) = min !WE A§’1] —? ’ ? ?_
W(B)
Heat bath: P2 . . (B) =
cal ba acccpt( ) W(A)+W(B)

Easy to see that these satisty detailed balance

The ratios involve the change in energy when
a spin has been flipped (or, more generally,
when the state has been updated in some way)



Metropolis algorithm for the Ising model

Spin update

 Select a spin at random

e Calculate the change in energy if the spin is flipped

» Use the energy change to calculate the acceptance probability P
* Flip the spin with probability P; stay in old state with 1-P

e Repat from spin selection

Current configuration: S _
Configuration after flipping spin j: S

Acceptance probability: P(S — S;) = min (s

W(S) = e BEIT — e~ Loies — [[e~#o

Only factors contammg spin j survive in W-ratio

W (S;) 1}

~

W) ——%Z%m - 4(j) = neighbor of
W(S) 6(7)




T= 4.00 I




T= 2.30 1




T= 2.30 10







T= 2.00 10




Illustration of simulation

Evolution of the magnetization, 2D Ising model, T/J=2.2 (below Tc¢)
e <M>=0, but time scale for M-reversal increases with L
e Symmetry-breaking occurs in practice for large L

1.0

0.5 —I I“"W'" L=

0.0}
05h
q0k
1.0 W '
0.5

0.0 -

0.5k o | “H i
_1.0 LM T e . Rabadud s S .

| | |
0 5000 10000 15000
configuration number &/N

M/N

M/N




The magnetization distribution depends on T and L
e single peak around m=0 for T>Tc P(m) oc e Fm)/T
* double peak around +<m> and-<m> for T<Tc

237 L=16 \1 sor | L=64 | -
2.01 — T/J=2.20 1 40¢ \ :
=15} — T/J=2.60 ] §3.0'_ ]
10| = 20| ?
0.5 1.0} , \ :
o.o_- - au

005 0 05 1 05 0 05 1

m m

Symmetry breaking (sampling of only m>0 or m<0 states)
occurs 1n practice for large L
- Because extremely small probability to go between them



“Measuring” physical observables
Order parameter of ferromagnetic transition: Magnetization

N ,.
M=) o, m:%

EXPCCt&tiOI—l vanishes for finite system; calculate (|m/), (m?)
Susceptibility: Linear response of <m> to external field
E:E()—h]\/[, E():JZO'iO'j
d(m) i,
dh |, _,
Deriving Monte Carlo estimator

1 —(Eo—hM)/T _ —(Eo—hM)/T
(m) me A ¢
Z ’ -

X:

X - dZ/dh Zme (Eo—hM)/T %% S mMe~ (Bo=hA)/T

az 1
s M —(EO hM)/T
dh T Z e



11 , ( 11 ,
= — — ((M?*) — (M)?) = —=(M? h =
= 7 (M%) = (M)?) = == (M?), (h=0)
Extrapolating to infinite size, this gives the correct result only
in the disordered phase when extrapolating N to infinity.

We can also define the susceptibility estimator as

11 { (
x = %7 (M%) = (M])?)
Gives correct infinite-size extrapolation for any T
Specific heat
_ldb 1 d —peyr _ L1 oy o
C=Nar T Nar CE(C)e = v 2((E7) = (E)7)

Correlation function
C(7) = (0:0j7.4)) — (M?)/N when r, N = oc

Average over all spins 1
N

1
C(r) = N Z<Uigj(f',i)>

1=1



Squared magnetization for different system sizes:
- development of phase transition (singularity)
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