
Cluster algorithm for the Ising model
Define bond index corresponding to pair of interacting spins

Write the energy of the Ising ferromagnet as
Number of bonds Nb = dN for a d-dimensional cubic lattice

Write the partition function as

Define bond functions with arguments 0,1 (bond variable):

Local updates are inefficient close to Tc. More efficient way: 



Introduce bond variables

Partition function can be written as sum over spins and bonds

The functions Fb depend on the spins:

allowed only between parallel spins

If parallel spins on bond b, probabilities for the bond variable

If anti-parallel spins on bond b

Probabilities: For everything else fixed, probability for a given b



For a fixed bond configuration, spins forming clusters
(spins connected by �filled� bonds) can be flipped and then
give a configuration (term) with the same weight in Z (Fb=1
for all bonds between clusters, Fb unchanged inside cluster).

Swendsen-Wang algorithm
• Start from spin configuration
• Generate bond configuration
• Identify clusters of spins connected by bonds
• Flip each cluster with probability 1/2
• Generate new bonds with the current spins, etc

Spins not connected to any filled bonds are single-spin clusters

(unchanged after flip)







Quantum Monte Carlo simulations 
(spin-1/2 models)

Euclidean path integrals, continuous time limit

Stochastic series expansion 
- discrete representation of the continuum limit

Ground state projection with valence bond states



Path integrals on the lattice, imaginary time

⇤A⌅ =
1
Z

Tr{Ae��H}

We want to compute a thermal expectation value

where β=1/T (and possibly T→0). How to deal with the exponential operator?

Z =
�

�0

�

�1

· · ·
�

�L�1

⇥�0|e��� H |�L�1⇤ · · · ⇥�2|e��� H |�1⇤⇥�1|e��� H |�0⇤

Choose a basis and insert complete sets of states;

Z = Tr{e��H} = Tr

�
L⇤

l=1

e��� H

⇥
“Time slicing” of the partition function

�� = �/L

Z ⇤
�

{�}

⌅�0|1��⇥H|�L�1⇧ · · · ⌅�2|1��⇥H|�1⇧⌅�1|1��⇥H|�0⇧

Use approximation for imaginary time evolution operator. Simplest way

Leads to error           . Limit                 can be taken �� � 0� ��

Trotter decomposition: error   � ��
2



Example of linear approximation and !"→0: hard-core bosons
H = K = �

�

�i,j⇥

Kij = �
�

�i,j⇥

(a†jai + a†iaj) ni = a†iai � {0, 1}

Equivalent to S=1/2 XY model 
H = �2

�

⇥i,j⇤

(Sx
i Sx

j + Sy
i Sy

j ) = �
�

⇥i,j⇤

(S+
i S�

j + S�
i S+

j ), Sz = ±1
2
⇤ ni = 0, 1

simplest world line moves 
for Monte Carlo sampling

Z =
�

{�}

W ({�}), W ({�}) = �nK
⇥ nK = number of “jumps”

World line representation of
Z ⇤

�

{�}

⌅�0|1��⇥H|�L�1⇧ · · · ⌅�2|1��⇥H|�1⇧⌅�1|1��⇥H|�0⇧
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winding number = 1

Path: One term of

acts on each slice
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⇥A⇤ =
1
Z

�

{�}

⇥�0|e��� |�L�1⇤ · · · ⇥�2|e��� H |�1⇤⇥�1|e��� HA|�0⇤

Expectation values

⇧A⌃ =

�
{�} A({�})W ({�})
�

{�} W ({�}) �⇥ ⇧A⌃ = ⇧A({�})⌃W

We want to write this in a form suitable for MC importance sampling

W ({�}) = weight
A({�}) = estimator

For any quantity diagonal in the 

occupation numbers (spin z):

A({�}) = A(�n) or A({�}) =
1
L

L�1�

l=0

A(�l)

There should be of the order βN kinetic jumps

- independently of !" (when small enough)

Kinetic energy (here full energy). Multiply and divide by W, 

Ke��� K � K
1
0
1

Kij({�}) =
⇧�1|Kij |�0⌃

⇧�1|1 ���K|�0⌃
⇥ {0,

1
��

}

Average over all slices → count number of kinetic jumps

⇤K⌅ ⇥ N � ⇤nK⌅ ⇥ �N⇥Kij⇤ =
⇥nij⇤

�
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Including interactions
For any diagonal interaction V (Trotter, or split-operator, approximation)

e��� H = e��� Ke��� V + O(�2
� ) ⇥ ⌅�l+1|e��� H |�l⇧ � e��� Vl⌅�l+1|e��� K |�l⇧

Product over all times slices →

W ({�}) = �nK
� exp

�
���

L�1⇤

l=0

Vl

⇥

local updates (problem when Δτ→0?)

• consider probability of inserting/removing 

events within a time window

• non-zero integrated probabilitis for insertion 

at all times, choose random time.

The continuous time limit
Limit Δτ→0: number of kinetic jumps remains finite, store events only

Special methods (loop 
and worm updates)

developed for efficient

sampling of the paths

in the continuum

Pacc = min
⇤
�2

�exp
�
�Vnew

Vold

⇥
, 1

⌅



Series expansion representation
Start from the Taylor expansion (no approximation)

Z = Tr{e��H} =
1X

n=0

(��)n

n!

X

↵0

h↵0|Hn|↵0i

We should have (always possible):

- no branching during propagation with operator string 

- some strings not allowed (illegal operations)

Hi|↵ji / |↵ki

For hard-core bosons the (allowed) path weight is: W (Sn,↵0) =
�n

n!

Break up Hn into strings:

Z =
1X

n=0

(��)n

n!

X

↵0

X

Sn

h↵0|Han · · ·Ha2Ha1 |↵0i

Index sequence (string) referring to terms of H

Sn = (a1, a2, . . . , an), ai 2 {1, . . . ,m}H =
mX
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Hi
Sn = (a1, a2, . . . , an), ai 2 {1, . . . ,m}
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FIGURE 55. An SSE configuration for an 8-spin chain, with all the propagated states shown. Open and
solid bars indicate diagonal H1,i and off-diagonal H2,i operators respectively, while no bar between states
corresponds to a “fill-in” unit operator H0,0. The ↑ and ↓ spins of the state |α⟩ are stored as σ(i) = ±1,
and the operator string SL is encoded using even and odd integers for diagonal and off-diagonal operators,
respectively, according to s(p) = 2b(p)+a(p)−1.

the operator string. We will later introduce a different compact storage involving some
spins of the propagated states as well.

Frustrated interactions and the “sign problem”. At first sight, it appears that we
have a sign problem—a non-positive definite expansion—because of the factor (−1)n2
in (258). Actually, all the terms are positive for a bipartite lattice. This is because an
even number n2 of off-diagonal operators are required in every allowed configuration, in
order to satisfy the “time” periodicity |α(L)⟩= |α(0)⟩. We already discussed this in the
context of the world line method, where the off-diagonal matrix elements in (244) are
negative, but the continuity of the world lines require an even number of these. This is
yet another example of the close relationship between the two approaches.
For frustrated systems, the series expansion is not positive-definite (and neither is the

path integral, for exactly the same reason). This can be easily demonstrated for a system
of three spins on a triangle. As shown in Fig. 56, an allowed configuration can in this
case contain three off-diagonal operators, resulting in an over-all minus sign. This is
true for any system in which loops with an odd number of sites can be formed between
antiferromagnetically interacting spins—this can be used as the definition of frustration.
Positive-definiteness for a bipartite system can also be proved in a different way, by

carrying out a unitary transformation of the spin operators on one of the sublattices, say
B, such that S+

j →−S
+
j and S

−
j →−S

−
j (and no change in the diagonal operators S

z
j) for

j ∈ B. This does not affect the spectrum of the model (since the commutation relations
among all spin operators remain unchanged), but the sign in front of the off-diagonal
terms in the hamiltonian (257) changes to +. The factor (−1)n2 in (258) is then absent.
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We can make this look more similar to a path integral by

introducing partially propagated states: |↵pi = Hap · · ·Ha2Ha1 |↵0i

Same-looking paths, different-looking weights

- but become equivalent with time continuum in path integral

Relabel terms of n-sum: replace n+1 by n

hHi = � 1

Z

1X

n=1

(��)n

n!

n

�

X

↵0

h↵0|Hn|↵0i

we can extend the

sum to include n=0,

because that term

vanishes

Therefore the energy is: E = �hni/�

C = hn2i � hni2 � hniCan also derive specific heat: 

Follows: hni / �N, �n /
p
�N

hHi = 1

Z

1X

n=0

(��)n

n!

X

↵0

h↵0|HnH|↵0iEnergy:

|↵ni = |↵0i

Z =
1X

n=0

(��)n

n!

X

↵0

X

Sn

h↵0|H↵n |↵n�1ih↵n�1| · · · |↵1ih↵1|Ha1 |↵0i



Fixed string-length scheme 
• n fluctuating → varying size of the sampled configurations

• the expansion can be truncated at some nmax=L 

   (exponentially small error if large enough)

• cutt-off at n=L, fill in operator string with unit operators H0=I

Here n is the number of Hi, i>0  instances in the sequence of L ops

- the summation over n is now implicit

�
L

n

⇥�1

=
n!(L� n)!

L!
- conisider all possible locations in the sequence

- overcounting of original strings, correct by

Z =
X

↵0

X

SL

(��)n(L� n)!

L!
h↵0|Ham · · ·Ha2Ha1 |↵0i

L can be chosen automatically by the simulation (shown later)

=�

L=14



Stochastic Series expansion (SSE): S=1/2 Heisenberg model
Write H as a bond sum for arbitrary lattice

H = J
Nb�

b=1

Si(b) · Sj(b),

H1,b = 1
4 � Sz

i(b)S
z
j(b),

H2,b = 1
2 (S+

i(b)S
�
j(b) + S�i(b)S

+
j(b)).

Diagonal (1) and off-diagonal (2) bond operators

H = �J
Nb�

b=1

(H1,b �H2,b) +
JNb

4

⇤�i(b)⇥j(b) |H1,b| �i(b)⇥j(b)⌅ = 1
2 ⇤⇥i(b)�j(b) |H2,b| �i(b)⇥j(b)⌅ = 1

2

⇤⇥i(b)�j(b) |H1,b| ⇥i(b)�j(b)⌅ = 1
2 ⇤�i(b)⇥j(b) |H2,b| ⇥i(b)�j(b)⌅ = 1

2

Four non-zero matrix elements

2D square lattice

bond and site labels

Z =
⌅

�

⇥⌅

n=0

(�1)n2
⇥n

n!

⌅

Sn

⇥
�

�����

n�1⇧

p=0

Ha(p),b(p)

����� �

⇤Partition function

Sn = [a(0), b(0)], [a(1), b(1)], . . . , [a(n� 1), b(n� 1)]Index sequence:

n2 = number of a(i)=2

(off-diagonal operators)

in the sequence



Propagated states: |�(p)⇥ �
p�1�

i=0

Ha(i),b(i) |�⇥

For fixed-length scheme

W (�, SL) =
�

⇥

2

⇥n (L� n)!
L!

In a program:


s(p) = operator-index string

• s(p) = 2*b(p) + a(p)-1 
• diagonal; s(p) = even

• off-diagonal; s(p) = off


σ(i) = spin state, i=1,...,N

• only one has to be stored

W>0 (n2 even) for bipartite lattice 

Frustration leads to sign problem

SSE effectively provides a discrete representation of the time continuum! 

• computational advantage; only integer operations in sampling

Z =
⌅

�

⌅

SL

(�1)n2
⇥n(L� n)!

L!

⇥
�

�����

L�1⇧

p=0

Ha(p),b(p)

����� �

⇤



Monte Carlo sampling scheme

Change the configuration; (�, SL)� (��, S�
L)

Attempt at p=0,...,L-1. Need to know |α(p)>

• generate by flipping spins when off-diagonal operator

Diagonal update: [0, 0]p � [1, b]p

W (�, SL) =
�

⇥

2

⇥n (L� n)!
L!

Paccept([0, 0]⇥ [1, b]) = min
�

�Nb

2(L� n)
, 1

⇥

Paccept([1, b]⇥ [0, 0]) = min
�
2(L� n + 1)

�Nb
, 1

⇥

Acceptance probabilities

W (a = 0)
W (a = 1)

=
L� n + 1

�/2
W (a = 1)
W (a = 0)

=
�/2

L� n

n is the current power

• n → n+1 (a=0 → a=1)

• n → n-1  (a=1 → a=0)

Pselect(a = 0� a = 1) = 1/Nb, (b ⇥ {1, . . . , Nb})
Pselect(a = 1� a = 0) = 1

Paccept = min
�
W (��, SL)
W (�, SL)

Pselect(��, S�
L � �, SL)

Pselect(�, SL � ��, S�
L)

, 1
⇥



Linked vertex storage

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

The “legs” of a  vertex represents 

the spin states before (below) and 

after (above) an operator has acted

X( ) = vertex list

• operator at p→X(v)

   v=4p+l, l=0,1,2,3

• links to next and

   previous leg

Spin states between operations are redundant; represented by links

• network of linked vertices will be used for loop updates of vertices/operators



Off-diagonal updates

Operator-loop  
update
• Many spins  

and operators 
can be 
changed 
simultaneously


• can change 
winding 
numbers

Local update
Change the type

of two operators

• constraints

• inefficient

• cannot change 

winding 
numbers



Determination of the cut-off L 
• adjust during equilibration

• start with arbitrary (small) n

Keep track of number of operators n

• increase L if n is close to current L

• e.g., L=n+n/3

Example 

• 16×16 system, β=16 ⇒

•  evolution of L

•  n distribution after 
equilibration


•  truncation is no 
approximation



Does it work? 
Compare with exact results 
• 4×4 exact diagonalization

• Bethe Ansatz; long chains

⇐ Energy for long 1D chains

• SSE results for 106 sweeps

• Bethe Ansatz ground state E/N

• SSE can achieve the ground

   state limit (T→0) 

Susceptibility of the 4×4 lattice ⇒

• SSE results from 1010 sweeps

• improved estimator gives smaller

   error bars at high T (where the

   number of loops is larger)


