
(-H)n projects out the ground state from an arbitrary state

H =
�

�i,j⇥

⌅Si · ⌅Sj = �
�

�i,j⇥

Hij , Hij = (1
4 � ⌅Si · ⌅Sj)

S=1/2 Heisenberg model

Project with string of bond operators
�

{Hij}

n⇥

p=1

Hi(p)j(p)|�⇥ � r|0⇥

Simple reconfiguration of bonds (or no change; diagonal)

• no minus signs for A→B bond ‘direction’ convention 

• sign problem does appear for frustrated systems

Action of bond operators
Hab|...(a, b)...(c, d)...� = |...(a, b)...(c, d)...�

Hbc|...(a, b)...(c, d)...� =
1
2

|...(c, b)...(a, d)...�
A BAB

(a,b)

(a,d)

(c,d)(c,b)

(i, j) = (| ⇥i⇤j⌅ � | ⇤i⇥j⌅)/
⌃

2

(�H)n|�⇤ = (�H)n
�

i

ci|i⇤ ⇥ c0(�E0)n|0⇤

Projector Monte Carlo in the valence-bond basis



Loop updates in the valence-bond basis

(ai, bi) = (↑i↓j − ↓i↑j)/
√

2
Put the spins back in a way compatible with the valence bonds

and sample in a combined space of spins and bonds

T → 0 limit can be taken with SSE

- but VB projection can be faster; only singlet sector, k=0

• sample spins (and possibly also the edge bonds)

    - but measure “in the middle” using the propagated valence bonds

    - spin-rotationally invariant loop-based estimators

Loop updates similar to those in finite-T SSE method

• good valence-bond trial wave functions can be used

    - faster convergence vs number of operators in string



L⨉L lattices up to 256⨉256, T→0

AWS & HG Evertz, PRE 2010
- Valence-bond projector

ms = 0.30743(1)

H = J
�

�i,j⇥

Si · Sj

Long-range order: <ms2> > 0 for N→∞
 Quantum Monte Carlo 

- finite-size calculations
- statistical errors
- no other approximations
- extrapolation to infinite size

Reger & Young (world-line) 1988
ms = 0.30(2)
� 60 % of classical value

Results for 2D Heisenberg model
Sublattice magnetization

~m
s

=
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SSE and projector methods can be easily generalized for J-Q models

J J Q Q Q Q

FIGURE 81. Examples of vertices in the J-Q model. Only some of the allowed spin states of the
vertex legs (open and solid circles) corresponding to the operators are shown. Open and solid bars
indicate diagonal and off-diagonal bond operators, respectively. The J-vertices are identical to those in the
Heisenberg model. The Q-terms in Eq. (294) are products of two bond operators, which when expanded
out include all combinations of diagonal and off diagonal factors. Allowed loops pass only through one of
the operator factors in the case of Q-vertices, as illustrated here with loop segments at all the permissible
leg pairs. Flipping loops can lead to any combination of allowed operators and spin states.

as well as vertical bond orientations. The scheme is, however, independent on how the
singlet projectors are arranged, and also the generalization to an arbitrary number of
bonds in the Q term is trivial. The only constraint is that we have to avoid sign problems,
which we do if both J > 0 and Q> 0 [with the minus signs in (294), which corresponds
to energetically favoring singlets on the bonds included in both the J and Q terms]. The
absence of sign problems was discussed based on a sublattice rotation in [238], and it
can also be demonstrated using the simple operator counting arguments used for bipartite
Heisenberg models in Sec. 5.2.
We now have J-vertices with four legs as well as Q-vertices with eight legs, as

illustrated in Fig. 81. The Q-vertices can be considered as two J-vertices joined together,
in all possible combinations of diagonal and off-diagonal parts arising from the four
operators in the Q term of (294). It is then clear that we can proceed in the same way as
we did for the Heisenberg model, updating the operator string and a stored state using a
combination of diagonal and loop updates. The key is here again that the matrix elements
are the same for all J- and Q-vertices (the values being J/2 andQ/4), which means that a
loop update in which the type of vertex (J or Q) is not changed can always be accepted.
In the case of the Q-vertices, the loops satisfying this constraint enter and exit at the
same operator factor, as illustrated with loop segments in Fig. 81.
Both J and Q diagonal operators are inserted and removed in the diagonal update. The

simplest way to insert diagonal operators is to choose completely randomly among all
the possible single-bond [b] and double-bond [bc] instances in (294). There are N each
of horizontal and vertical bonds [b] and also N each of horizontal and vertical bond pairs
[bc], for a total of 4N cases to choose from. The spins in the current state have to be
antiparallel on the bond or bonds acted on by the chosen operator, and if that is the case
the acceptance probability is a simple modification of Eq. (265), with either βJ = J/(2T)
or βQ = Q/(4T) replacing β , depending on the type of operator inserted. The number
of bonds Nb is replaced by the total number of bonds and bond pairs, i.e., 4N. The same
modifications apply to the removal probability (265) as well. If the ratio Q/J is much
different from 1, which is the case in the VBS state and at the phase transition, it is better
to take this ratio into account already when generating the bonds or bond pairs (but even
the trivial random operator generation actually works very well). Note that Q is much
larger than J in the parameter regime we are interested in, and it is therefore best to
define the temperature in units of Q, i.e., setting Q= 1 in the program.
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J- and Q-vertices, loops enter and exit at

the individual 2-spin diagonal and off-diagonal parts

2D J-Q models with first-order and continuous (or almost continuous)

transitions (deconfined quantum criticality) can be constructed
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FIGURE 8. Graphical representation of possible arrangements of products of singlet-projector oper-
ators Si j in the J-Q model and its generalizations. (a) is the Heisenberg exchange, (b) the four-spin
interaction of the original J-Q model, and (c) a six-spin interaction which leads to more robust VBS order.
These operators, and their 90◦-rotated analogues, are summed over all positions on the square lattice.

sonable microscopic hamiltonian. Answering this question requires large-scale compu-
tational studies of models exhibiting Néel-VBS transitions.
Since the QMC sign problem prohibits large-scale studies of the J1-J2 Heisenberg

model and other similar frustrated systems, we have to try something else. In the “J-
Q” class of models [17, 108, 109], the Néel order is destroyed by an interaction (Q)
which is not frustrated, in the standard sense, but still competes with the Heisenberg (J)
interaction. To understand these J-Q models, note first that the Heisenberg interaction is,
up to a constant, equal to a singlet projector operator: Hi j =−Si j + 1

4 , where

Si j = 1
4 −Si ·S j. (21)

The pair-singlet, Eq. (19), is an eigenstate of this operator with eigenvalue 1, whereas a
triplet state is destroyed by it;

Si j|φ si j⟩= |φ si j⟩, Si j|φ t,mi j ⟩= 0, (m= 0,±1). (22)

Thus, when Si j acts on a singlet-triplet superposition, only the singlet component sur-
vives (is “projected out”—note that the property S2i j = Si j required of a projection op-
erator is satisfied). The standard Heisenberg interaction thus favors the formation of
singlets on pairs of nearest-neighbor sites, but, as we discussed in Sec. 2.2, the fluctua-
tions of these singlets among many different pairings of the spins leads to Néel order in
the ground state. The idea behind the J-Q models is to project singlets on two or more
bonds in a correlated fashion, using products of several Si j operators on a suitable set of
different bonds. This favors a higher density of short valence bonds, thereby reducing or
completely destroying the antiferromagnetic order.
The original J-Q hamiltonian [17] on the square lattice can be written as

H =−J∑
⟨i j⟩

Si j−Q ∑
⟨i jkl⟩

Si jSkl, (23)

where both the J and Q terms are illustrated in Fig. 8. The Q interaction involves four
spins on a 2× 2 plaquette. An interaction with three singlet projectors in a columnar
arrangement is also shown, and operators with even more projectors, or with the projec-
tors arranged on the lattice in different (non-columnar) patterns, can also be considered
[109]. With J> 0 andQ> 0 [and the minus signs in front of the interactions in Eq. (23)],
correlated singlets are favored on the lattice units formed by the product of singlet pro-
jectors. It is still not clear just from the hamiltonian whether a VBS state is realized for
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FIGURE 8. Graphical representation of possible arrangements of products of singlet-projector oper-
ators Si j in the J-Q model and its generalizations. (a) is the Heisenberg exchange, (b) the four-spin
interaction of the original J-Q model, and (c) a six-spin interaction which leads to more robust VBS order.
These operators, and their 90◦-rotated analogues, are summed over all positions on the square lattice.
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Since the QMC sign problem prohibits large-scale studies of the J1-J2 Heisenberg

model and other similar frustrated systems, we have to try something else. In the “J-
Q” class of models [17, 108, 109], the Néel order is destroyed by an interaction (Q)
which is not frustrated, in the standard sense, but still competes with the Heisenberg (J)
interaction. To understand these J-Q models, note first that the Heisenberg interaction is,
up to a constant, equal to a singlet projector operator: Hi j =−Si j + 1

4 , where

Si j = 1
4 −Si ·S j. (21)

The pair-singlet, Eq. (19), is an eigenstate of this operator with eigenvalue 1, whereas a
triplet state is destroyed by it;

Si j|φ si j⟩= |φ si j⟩, Si j|φ t,mi j ⟩= 0, (m= 0,±1). (22)

Thus, when Si j acts on a singlet-triplet superposition, only the singlet component sur-
vives (is “projected out”—note that the property S2i j = Si j required of a projection op-
erator is satisfied). The standard Heisenberg interaction thus favors the formation of
singlets on pairs of nearest-neighbor sites, but, as we discussed in Sec. 2.2, the fluctua-
tions of these singlets among many different pairings of the spins leads to Néel order in
the ground state. The idea behind the J-Q models is to project singlets on two or more
bonds in a correlated fashion, using products of several Si j operators on a suitable set of
different bonds. This favors a higher density of short valence bonds, thereby reducing or
completely destroying the antiferromagnetic order.
The original J-Q hamiltonian [17] on the square lattice can be written as

H =−J∑
⟨i j⟩

Si j−Q ∑
⟨i jkl⟩

Si jSkl, (23)

where both the J and Q terms are illustrated in Fig. 8. The Q interaction involves four
spins on a 2× 2 plaquette. An interaction with three singlet projectors in a columnar
arrangement is also shown, and operators with even more projectors, or with the projec-
tors arranged on the lattice in different (non-columnar) patterns, can also be considered
[109]. With J> 0 andQ> 0 [and the minus signs in front of the interactions in Eq. (23)],
correlated singlets are favored on the lattice units formed by the product of singlet pro-
jectors. It is still not clear just from the hamiltonian whether a VBS state is realized for
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FIGURE 88. In the J-Q3 model studied here, three singlet projectors are arranged in a staggered pattern.
All distinct orientations (as shown) and translations of the projector products are included.

using analytical many-body techniques, even ones that can rather accurately locate the
Néel–VBS transition in the 2D frustrated J1-J2 Heisenberg model. A mean-field treat-
ment starting from a columnar dimer state gives a critical J/Q very far from the QMC
result [256]. This approach can be improved to better take into account some of the local
fluctuations on plaquettes, which improves the value of the critical point but seems to
results in a strongly first-order transition [256]. Cluster mean-field calculations converge
very poorely with the cluster size [257]. These results point to unusually strong non-local
quantum fluctuations [256], which cannot be easily captured with local approaches start-
ing from small clusters or conventional fluctuations around a fixed dimer pattern. The
reason for these difficulties to capture the VBS state may be the emergent U(1) sym-
metry, which makes it difficult to obtain both the correct long-distance behavior (likely
columnar order) as well as the strong fluctuations between columnar and plaquette order
on shorter length scales.

First-order transition in a staggered J-Q model. One way to test the link between
emergent U(1) symmetry and a continuous Néel–VBS transition is to construct a model
in which the local fluctuations responsible for rotating the VBS angle are suppressed.
Intuition for how to accomplish this comes from the Rokhsar-Kivelson (RK) quantum
dimer model [258, 259], which can be regarded as an effective model for an extreme
nonmagnetic system dominated by short valence bonds (for which the internal singlet
structure is also neglected—the bond configurations are regarded as orthogonal states).
The RK hamiltonian on the square lattice can be written as HRK = vV − kK, where
V is the diagonal (potential-energy) operator, which counts the number of flippable
plaquettes [parallel bond pairs, exactly as in Fig. 86(b,c)], and K is an off-diagonal
(kinetic) term which flips such a pair. This model has a critical point at k = v which
separates a plaquette VBS state [similar to the one in Fig. 86(d)] for v< k and a staggered
VBS state [with the bond pattern exactly as in Fig. 4(c)]. While the plaquette state is
destroyed continuously by quantum fluctuations as v→ k−, the staggered state (of which
there are four symmetry-related equivalent ones) has no fluctuations, because it has no
flippable plaquettes. The transition upon v→ k+ is therefore first-order.
This simple picture of the RK model suggests that an actual staggered VBS in a spin

model also should have strongly suppressed local fluctuations, and therefore should
not be associated with an emergent U(1) symmetry. Due to the suppression of local
fluctuations (and therefore also of large-scale fluctuations), the transition between it
and the Néel state should be first-order. The picture is not complete, however, because
clearly there must be some fluctuations in the staggered VBS state, considering that
a reasonable spin hamiltonian will be quite far from a dimer model and the valence
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first-order transitions

Combine different

Q terms to tune 
from weak 1st-order 
(continuous?) to 
strongly 1st-order

The 1D J-Q model has critical-dimerized transition of exactly the same SU(2)

WZW class as in the J1-J2 Heisenberg chain [Patil, Katz, Sandvik, PRB (2018)]



Parts III & IV combined

Finite-size scaling (“phenomenological RG”) 
extracting critical exponents (scaling dimensions)

Deconfined quantum criticality in J-Q models



Phase transition in the J-Q2 model
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Crossing-point analysis 
- simultaneous, continuous(?) transition
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Phase transitions - Finite-size scaling 

⇠ / |�|�⌫ , � = T � TcCorrelation length divergent for T → Tc

Other singular quantity: A(L ! 1) / |�| / ⇠�/⌫

For L-dependence at Tc just let ξ→L: A(T ⇡ Tc, L) / L�/⌫

2D Ising universality class
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known, treat as fitting parameters
- or extract in other way

Close to critical point: A(L, T ) = L�/⌫g(⇠/L) = L�/⌫f(�L1/⌫)

Consider classical transitions first
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FIGURE 14. Monte Carlo results for the susceptibility (55) of the Ising model on several different L×L
lattices. (a) shows the temperature dependence, with the vertical line indicating Tc. Note the vertical log
scale. In (b) the data has been scaled using the exact values of the Ising exponents, γ = 7/4 and ν = 1,
and the exact value of Tc in t = (T −Tc)/Tc.

which, using ξ ∼ |t|−1/ν , we can also write as

Q(t,L) = Lσg(tL1/ν). (65)

This scaling law should hold both above (t > 0) and below (t < 0) the critical point.
Exactly at Tc, we recover the size-scaling Q(0,L) ∼ Lσ . To relate σ to the standard
critical exponents, we can use the fact that, for fixed t close to 0, as the system grows the
behavior for any t ̸= 0 eventually has to be given by Eq. (59);Q(t,L→∞)∼ |t|−κ (where
κ is negative for a singular non-divergent quantity, e.g., the for the order parameter we
have κ =−β ). To obtain this form, the scaling function g(x) in (65) must asymptotically
behave as g(x)∼ x−κ for x→ ∞. In order for the size-dependence in (65) to cancel out,
we therefore conclude that σ = κ/ν , i.e.,

Q(t,L) = Lκ/νg(tL1/ν). (66)

To extract the scaling function g(x) using numerical data, one can define

yL = Q(t,L)L−κ/ν , xL = tL1/ν , (67)

and plot yL versus xL for different system sizes. If the scaling hypothesis is correct,
data for different (large) system sizes should fall onto the same curve, which then is
the scaling function (this is referred to as curves collapsing onto each other); g(x) =
yL→∞(x). Fig. 14 illustrates this using Monte Carlo data for the magnetic susceptibility
of the 2D Ising model. The peak location in panel (a) clearly moves toward the known
Tc with increasing L. After scaling the data according to the above procedures, as shown
in panel (b), the curves indeed collapse almost onto each other close to t = 0, but further
away from the critical point deviations are seen for the smaller systems. These are due to
corrections to scaling, which in principle can be described with subleading exponents.
We can apply the scaling form (66) to the correlation length itself, for which κ = ν and

the L-scaling is independent of model-specific exponents. In cases where the universality
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which, using ξ ∼ |t|−1/ν , we can also write as

Q(t,L) = Lσg(tL1/ν). (65)

This scaling law should hold both above (t > 0) and below (t < 0) the critical point.
Exactly at Tc, we recover the size-scaling Q(0,L) ∼ Lσ . To relate σ to the standard
critical exponents, we can use the fact that, for fixed t close to 0, as the system grows the
behavior for any t ̸= 0 eventually has to be given by Eq. (59);Q(t,L→∞)∼ |t|−κ (where
κ is negative for a singular non-divergent quantity, e.g., the for the order parameter we
have κ =−β ). To obtain this form, the scaling function g(x) in (65) must asymptotically
behave as g(x)∼ x−κ for x→ ∞. In order for the size-dependence in (65) to cancel out,
we therefore conclude that σ = κ/ν , i.e.,

Q(t,L) = Lκ/νg(tL1/ν). (66)

To extract the scaling function g(x) using numerical data, one can define

yL = Q(t,L)L−κ/ν , xL = tL1/ν , (67)

and plot yL versus xL for different system sizes. If the scaling hypothesis is correct,
data for different (large) system sizes should fall onto the same curve, which then is
the scaling function (this is referred to as curves collapsing onto each other); g(x) =
yL→∞(x). Fig. 14 illustrates this using Monte Carlo data for the magnetic susceptibility
of the 2D Ising model. The peak location in panel (a) clearly moves toward the known
Tc with increasing L. After scaling the data according to the above procedures, as shown
in panel (b), the curves indeed collapse almost onto each other close to t = 0, but further
away from the critical point deviations are seen for the smaller systems. These are due to
corrections to scaling, which in principle can be described with subleading exponents.
We can apply the scaling form (66) to the correlation length itself, for which κ = ν and

the L-scaling is independent of model-specific exponents. In cases where the universality
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Binder ratios and cumulants
Consider the dimensionless ratio

We know R2 exactly for N→∞
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       m*=|peak m-value|.  R2→1 • for T>Tc: P(m)→exp[-m2/a(N)]
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Systematic crossing-point analysis (2D Ising)

⇒ scaling corrections in crossings

  ~L-(1/ν+ω)    for T* → Tc


   ~L-ω          for U* → U(Tc)

Fit with Lmin=12: Tc=2.2691855(5). Correct: Tc=2.2691853...
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Figure 3: Binder cumulant for the 2D Ising model with L = 16, 32, 64 in the neighborhood of
the points at which the curves cross each other. The vertical and horizontal dashed lines indicate
the critical temperature Tc and the value of the cumulant at Tc, respectively. The solid curves
are cubic polynomial fits to the data sets. Error bars are much smaller than the plot symbols.

Fig. 3 shows examples of data for three different system sizes, where cubic polynomials
have been fitted to the data. The crossing points are extracted numerically to machine precision
using bisection. In order to analyze Tc and Uc in the thermodynamic limit, it suffices to consider
a small number of points very close to each crossing point to be analyzed. To obtain ⌫ from the
slopes according to Eq. (17), where the derivative in Eq. (13) is taken of the fitted polynomials,
it is better to have a more extended range of points. However, for a very large range a high order
of the polynomial has to be used in order to obtain a good fit, and it is then better in practice
to adapt the window size so that a relatively low order polynomial can be used. In the tests
reported here, cubic polynomials were used and all fits were statistically sound.

In order to compute error bars of the crossing points T ⇤(L) and the corresponding values
U⇤(L), a bootstrap method is used, i.e., with a large number of random samples of the binned
MC data, with each sample computed using B(L, T ) randomly chosen bins for each system
size and temperature, where B(L, T ) is the total number of data bins available for (L, T ). The
standard deviations of the values computed for these bootstrap samples correspond to the error
bars of the crossing points and values. Note that in the evaluation of the cumulant (19), for
the full data set or a bootstrap sample, the individual expectation values hm2

i i and hm4

i i are
computed first based on all the bins, after which the ratio is evaluated. If one instead uses ratios
computed for each bin separately, a statistically significant systematical error can be introduced
due to the nonlinear contributions to the statistical error propagated from the denominator.
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Figure 4: (a) Crossing temperature of the Binder cumulant for system-size pairs (L, 2L) versus
the inverse of the smaller size, along with a fit to the form (10) to the data points with L � 12.
(b) The value of the cumulant at the crossing points, along with a fit to the form (11) for L � 14.
In both (a) and (b), error bars are much too small to be visible. The insets shows the data minus
the fitted functions including the error bars.

Clearly this criterion is sensitive to the quality of the data—if the elements of the covariance ma-
trix are very small, even fits including only relatively large system sizes can detect the presence
of higher-order corrections and not pass our test, while with noisy data also small system sizes
can be included. If a fit satisfies the �2 criterion it can still not be completely guaranteed that no
effects of the higher-order corrections are present in the final result, but in general one would
expect any remaining systematical errors to be small relative to the statistical error. In principle
one can estimate the magnitude of the systematical error using the parameters obtained from the
fit and some knowledge or estimate of the nature of the higher-order corrections. We will not
attempt to do that here because in general such knowledge will be very limited. To minimize
any remaining systematical errors one can continue to exclude more system sizes even after
the soundness criterion (23) is satisfied, at the price of increasing the statistical errors of the
parameters extracted from the fits.
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Correlation-length exponent
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The Binder cumulant is dimensionless
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Figure S3: Estimates of the inverse of the correlation-length exponent ⌫ of the 2D Ising model
based on the slope expression (S11) applied to the Binder cumulant. The curve is a fit to the
form (S4) including all points (L � 6).

we obtain Tc = 2.2691831(11), two error bars away from the correct value (still a statisti-
cally acceptable match), and Uc = 0.916054(11), also about two error bars from the previous
(Blöte’s) value. From the Tc fit we obtain 1/⌫ + ! = 2.70(4) in this case and from the U fit
! = 1.73(5). These exponents are now correct to within statistical errors, but the error bars are
about 10 times larger than before, while the error bars on Tc and U only doubled. The average
value of h�2i/N

dof

is very close to 1 for both these fits and the deviations from the fitted func-
tion look completely random. Upon excluding even more points, the error bars increase rapidly
but the extracted parameters remain statistically in good agreement with their correct values.

Next, we extract the exponent ⌫ using the log-slope formula (S11). Fig. S3 shows the results
along with a fit including all the system sizes (L � 6). Remarkably, the fit is statistically perfect,
with h�2i/N

dof

⇡ 1.0, already at this small minimum size and the inverse exponent extrapolates
to 1/⌫ = 1.0001(7), in excellent agreement with the exact result 1. The slope data are much
more noisy than the underlying U values and the error bars grow very rapidly with L for the
largest sizes. The fit is therefore dominated by the smaller sizes. Naturally, the large error bars
mask the effects of higher-order corrections, as discussed above. It is nevertheless remarkable
that the extracted exponent 1/⌫ does not show any effects of the neglected corrections at all,
even though, again, the leading correction exponent, which comes out to ! = 1.57(7), is not
very close to the correct value 1.75 and its error bar is large. Again, the flexibility of the leading
finite-size term allows it to mimic the effects of the correction terms without significant effects
in the extrapolation of the fit.
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small scaling corrections (ω=2)
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Relevant and irrelevant perturbations of a critical point
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We present a way to visualize and quantify renormalization group flows in a space of observables
computed using Monte Carlo simulations. We apply the method to classical three-dimensional clock
models, i.e., the planar (XY) spin model perturbed by a Zq symmetric anisotropy field. The method
performs significantly better than standard techniques for determining the scaling dimension yq of
the Zq field at the critical point if it is irrelevant (q � 4). Furthermore, we analyze all stages of the
complex renormalization flow, including the cross-over from the U(1) Nambu-Goldstone fixed point
to the ultimate Zq symmetry-breaking fixed point due to the relevance of the Zq field inside the
ordered phase. We expect our method to be particularly useful in the context of quantum-critical
points with inherent dangerously irrelevant operators that cannot be tuned away microscopically
but whose renormalization flows can be analyzed exactly as we do here for the clock models.

The renormalization group (RG) provides a powerful
framework both for conceptual understanding of phase
transitions and for calculations [1–3]. A key concept is
that a universal critical point can be stable or unstable
in the presence of perturbations that exist at the micro-
scopic level in real physical systems or models. Whether
or not a perturbation is relevant and destabilizes the crit-
ical point depends on its scaling dimension. Similarly, an
ordered state can also be stable or unstable under the
influence of perturbations. Under an RG process, a sys-
tem flows in a space of couplings which change as the
length scale is increased under coarse graining of the mi-
croscopic interactions, until finally reaching a fixed point
corresponding to a phase or phase transition. At this
point, all the initially present irrelevant couplings have
decayed to zero.

RG flows can also be defined of physical observables
in finite-size calculations, e.g., Monte Carlo (MC) simu-
lations. The RG framework leads to scaling forms that
are very useful for analyzing numerical data—a proce-
dure some times called phenomenological renormaliza-
tion [3–5]. Here we build on these ideas and extend the
standard finite-size scaling of an observable to an entire
flow in a space of two or more observables directly as-
sociated with relevant or irrelevant couplings of inter-
est. The method is particularly useful for visualizing
and quantifying so-called dangerously irrelevant pertur-
bations (DIPs)—those that are irrelevant at a critical
point but become relevant upon coarse graining at any
point inside an adjacent ordered phase [6].

Scaling and RG flows.—Consider a d-dimensional lat-
tice model of length L which can be tuned to a critical
point by a relevant field t; for definiteness we use the

temperature (t = T
c

� T ). With a local operator m
i

and its conjugate field h, we add a term hM = h
P

i

m
i

to the Hamiltonian H; for simplicity we will just write
M = Ldm. We ask whether this perturbation is relevant
or irrelevant, and we would like to find the corresponding
scaling dimension � of m.
In a conventional RG calculation, a flowing field h0 is

computed under a scale transformation. Here we will in-
stead vary the system size, which e↵ectively lowers the
energy scale, and calculate the response hmi using MC
simulations. Together with some quantity Q character-
izing the critical point and phases of the system, we can
trace out curves (MC RG flows) (Q, hmi)

L

as L increases
for fixed values of h and T . These flows are very similar
to conventional RG flows in the space (t, h0).

To relate the flows to exponents, the singular part of
the free-energy density can be expressed in the finite-size
scaling form f

s

(t, h, L) = L�dF
s

(tL1/⌫ , hLy). At t = 0,
the h dependent part is f

s

/ hLy�d to leading order,
and from the Hamiltonian we have f

s

= hhmi / hL��;
thus, the standard relationship y = d � � holds. The
perturbation is irrelevant at the critical point if y < 0,
but, in the case of a DIP, it eventually becomes relevant
as L increases in the ordered phase. The cross-over length
scale ⇠0 / t�⌫

0
(only for t > 0, i.e., T < T

c

) diverges faster
than the conventional correlation length ⇠ / |t|�⌫ .

To take both divergent length scales properly into ac-
count, i.e., to reach the regime where tL1/⌫0

is large, we
adopt the two-length scaling hypothesis [7] and write the
free energy as

f
s

(t, h, L) = L�dF
s

(tL1/⌫ , tL1/⌫0
, hLy,�L�!), (1)

where we have also included a generic scaling correction
with exponent ! > 0. The exponents ⌫0 and y arise
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We present a way to visualize and quantify renormalization group flows in a space of observables
computed using Monte Carlo simulations. We apply the method to classical three-dimensional clock
models, i.e., the planar (XY) spin model perturbed by a Zq symmetric anisotropy field. The method
performs significantly better than standard techniques for determining the scaling dimension yq of
the Zq field at the critical point if it is irrelevant (q � 4). Furthermore, we analyze all stages of the
complex renormalization flow, including the cross-over from the U(1) Nambu-Goldstone fixed point
to the ultimate Zq symmetry-breaking fixed point due to the relevance of the Zq field inside the
ordered phase. We expect our method to be particularly useful in the context of quantum-critical
points with inherent dangerously irrelevant operators that cannot be tuned away microscopically
but whose renormalization flows can be analyzed exactly as we do here for the clock models.

The renormalization group (RG) provides a powerful
framework both for conceptual understanding of phase
transitions and for calculations [1–3]. A key concept is
that a universal critical point can be stable or unstable
in the presence of perturbations that exist at the micro-
scopic level in real physical systems or models. Whether
or not a perturbation is relevant and destabilizes the crit-
ical point depends on its scaling dimension. Similarly, an
ordered state can also be stable or unstable under the
influence of perturbations. Under an RG process, a sys-
tem flows in a space of couplings which change as the
length scale is increased under coarse graining of the mi-
croscopic interactions, until finally reaching a fixed point
corresponding to a phase or phase transition. At this
point, all the initially present irrelevant couplings have
decayed to zero.

RG flows can also be defined of physical observables
in finite-size calculations, e.g., Monte Carlo (MC) simu-
lations. The RG framework leads to scaling forms that
are very useful for analyzing numerical data—a proce-
dure some times called phenomenological renormaliza-
tion [3–5]. Here we build on these ideas and extend the
standard finite-size scaling of an observable to an entire
flow in a space of two or more observables directly as-
sociated with relevant or irrelevant couplings of inter-
est. The method is particularly useful for visualizing
and quantifying so-called dangerously irrelevant pertur-
bations (DIPs)—those that are irrelevant at a critical
point but become relevant upon coarse graining at any
point inside an adjacent ordered phase [6].

Scaling and RG flows.—Consider a d-dimensional lat-
tice model of length L which can be tuned to a critical
point by a relevant field t; for definiteness we use the

temperature (t = T
c

� T ). With a local operator m
i

and its conjugate field h, we add a term hM = h
P

i

m
i

to the Hamiltonian H; for simplicity we will just write
M = Ldm. We ask whether this perturbation is relevant
or irrelevant, and we would like to find the corresponding
scaling dimension � of m.
In a conventional RG calculation, a flowing field h0 is

computed under a scale transformation. Here we will in-
stead vary the system size, which e↵ectively lowers the
energy scale, and calculate the response hmi using MC
simulations. Together with some quantity Q character-
izing the critical point and phases of the system, we can
trace out curves (MC RG flows) (Q, hmi)

L

as L increases
for fixed values of h and T . These flows are very similar
to conventional RG flows in the space (t, h0).

To relate the flows to exponents, the singular part of
the free-energy density can be expressed in the finite-size
scaling form f

s

(t, h, L) = L�dF
s

(tL1/⌫ , hLy). At t = 0,
the h dependent part is f

s

/ hLy�d to leading order,
and from the Hamiltonian we have f

s

= hhmi / hL��;
thus, the standard relationship y = d � � holds. The
perturbation is irrelevant at the critical point if y < 0,
but, in the case of a DIP, it eventually becomes relevant
as L increases in the ordered phase. The cross-over length
scale ⇠0 / t�⌫

0
(only for t > 0, i.e., T < T

c

) diverges faster
than the conventional correlation length ⇠ / |t|�⌫ .

To take both divergent length scales properly into ac-
count, i.e., to reach the regime where tL1/⌫0

is large, we
adopt the two-length scaling hypothesis [7] and write the
free energy as

f
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(t, h, L) = L�dF
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(tL1/⌫ , tL1/⌫0
, hLy,�L�!), (1)

where we have also included a generic scaling correction
with exponent ! > 0. The exponents ⌫0 and y arise
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We present a way to visualize and quantify renormalization group flows in a space of observables
computed using Monte Carlo simulations. We apply the method to classical three-dimensional clock
models, i.e., the planar (XY) spin model perturbed by a Zq symmetric anisotropy field. The method
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points with inherent dangerously irrelevant operators that cannot be tuned away microscopically
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The renormalization group (RG) provides a powerful
framework both for conceptual understanding of phase
transitions and for calculations [1–3]. A key concept is
that a universal critical point can be stable or unstable
in the presence of perturbations that exist at the micro-
scopic level in real physical systems or models. Whether
or not a perturbation is relevant and destabilizes the crit-
ical point depends on its scaling dimension. Similarly, an
ordered state can also be stable or unstable under the
influence of perturbations. Under an RG process, a sys-
tem flows in a space of couplings which change as the
length scale is increased under coarse graining of the mi-
croscopic interactions, until finally reaching a fixed point
corresponding to a phase or phase transition. At this
point, all the initially present irrelevant couplings have
decayed to zero.

RG flows can also be defined of physical observables
in finite-size calculations, e.g., Monte Carlo (MC) simu-
lations. The RG framework leads to scaling forms that
are very useful for analyzing numerical data—a proce-
dure some times called phenomenological renormaliza-
tion [3–5]. Here we build on these ideas and extend the
standard finite-size scaling of an observable to an entire
flow in a space of two or more observables directly as-
sociated with relevant or irrelevant couplings of inter-
est. The method is particularly useful for visualizing
and quantifying so-called dangerously irrelevant pertur-
bations (DIPs)—those that are irrelevant at a critical
point but become relevant upon coarse graining at any
point inside an adjacent ordered phase [6].

Scaling and RG flows.—Consider a d-dimensional lat-
tice model of length L which can be tuned to a critical
point by a relevant field t; for definiteness we use the

temperature (t = T
c

� T ). With a local operator m
i

and its conjugate field h, we add a term hM = h
P

i

m
i

to the Hamiltonian H; for simplicity we will just write
M = Ldm. We ask whether this perturbation is relevant
or irrelevant, and we would like to find the corresponding
scaling dimension � of m.
In a conventional RG calculation, a flowing field h0 is

computed under a scale transformation. Here we will in-
stead vary the system size, which e↵ectively lowers the
energy scale, and calculate the response hmi using MC
simulations. Together with some quantity Q character-
izing the critical point and phases of the system, we can
trace out curves (MC RG flows) (Q, hmi)

L

as L increases
for fixed values of h and T . These flows are very similar
to conventional RG flows in the space (t, h0).

To relate the flows to exponents, the singular part of
the free-energy density can be expressed in the finite-size
scaling form f

s

(t, h, L) = L�dF
s

(tL1/⌫ , hLy). At t = 0,
the h dependent part is f

s

/ hLy�d to leading order,
and from the Hamiltonian we have f

s

= hhmi / hL��;
thus, the standard relationship y = d � � holds. The
perturbation is irrelevant at the critical point if y < 0,
but, in the case of a DIP, it eventually becomes relevant
as L increases in the ordered phase. The cross-over length
scale ⇠0 / t�⌫
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(only for t > 0, i.e., T < T

c

) diverges faster
than the conventional correlation length ⇠ / |t|�⌫ .

To take both divergent length scales properly into ac-
count, i.e., to reach the regime where tL1/⌫0

is large, we
adopt the two-length scaling hypothesis [7] and write the
free energy as

f
s

(t, h, L) = L�dF
s

(tL1/⌫ , tL1/⌫0
, hLy,�L�!), (1)

where we have also included a generic scaling correction
with exponent ! > 0. The exponents ⌫0 and y arise
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f(h) = �TL�d ln[Z(h)]
h

H = H0 + h
P

i mi = hM (⌘ hNm = hLdm)

Consider a critical Hamiltonian H0 and add some perturbation hM

- The effect of the perturbation grows with L (it is relevant) only if y>0
- Irrelevant perturbation if y<0 (the critical point stays the same)
- A relevant perturbation causes the system to flow to a different fix point
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computed using Monte Carlo simulations. We apply the method to classical three-dimensional clock
models, i.e., the planar (XY) spin model perturbed by a Zq symmetric anisotropy field. The method
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the Zq field at the critical point if it is irrelevant (q � 4). Furthermore, we analyze all stages of the
complex renormalization flow, including the cross-over from the U(1) Nambu-Goldstone fixed point
to the ultimate Zq symmetry-breaking fixed point due to the relevance of the Zq field inside the
ordered phase. We expect our method to be particularly useful in the context of quantum-critical
points with inherent dangerously irrelevant operators that cannot be tuned away microscopically
but whose renormalization flows can be analyzed exactly as we do here for the clock models.

The renormalization group (RG) provides a powerful
framework both for conceptual understanding of phase
transitions and for calculations [1–3]. A key concept is
that a universal critical point can be stable or unstable
in the presence of perturbations that exist at the micro-
scopic level in real physical systems or models. Whether
or not a perturbation is relevant and destabilizes the crit-
ical point depends on its scaling dimension. Similarly, an
ordered state can also be stable or unstable under the
influence of perturbations. Under an RG process, a sys-
tem flows in a space of couplings which change as the
length scale is increased under coarse graining of the mi-
croscopic interactions, until finally reaching a fixed point
corresponding to a phase or phase transition. At this
point, all the initially present irrelevant couplings have
decayed to zero.

RG flows can also be defined of physical observables
in finite-size calculations, e.g., Monte Carlo (MC) simu-
lations. The RG framework leads to scaling forms that
are very useful for analyzing numerical data—a proce-
dure some times called phenomenological renormaliza-
tion [3–5]. Here we build on these ideas and extend the
standard finite-size scaling of an observable to an entire
flow in a space of two or more observables directly as-
sociated with relevant or irrelevant couplings of inter-
est. The method is particularly useful for visualizing
and quantifying so-called dangerously irrelevant pertur-
bations (DIPs)—those that are irrelevant at a critical
point but become relevant upon coarse graining at any
point inside an adjacent ordered phase [6].

Scaling and RG flows.—Consider a d-dimensional lat-
tice model of length L which can be tuned to a critical
point by a relevant field t; for definiteness we use the

temperature (t = T
c

� T ). With a local operator m
i

and its conjugate field h, we add a term hM = h
P

i

m
i

to the Hamiltonian H; for simplicity we will just write
M = Ldm. We ask whether this perturbation is relevant
or irrelevant, and we would like to find the corresponding
scaling dimension � of m.
In a conventional RG calculation, a flowing field h0 is

computed under a scale transformation. Here we will in-
stead vary the system size, which e↵ectively lowers the
energy scale, and calculate the response hmi using MC
simulations. Together with some quantity Q character-
izing the critical point and phases of the system, we can
trace out curves (MC RG flows) (Q, hmi)

L

as L increases
for fixed values of h and T . These flows are very similar
to conventional RG flows in the space (t, h0).

To relate the flows to exponents, the singular part of
the free-energy density can be expressed in the finite-size
scaling form f

s

(t, h, L) = L�dF
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(tL1/⌫ , hLy). At t = 0,
the h dependent part is f

s

/ hLy�d to leading order,
and from the Hamiltonian we have f
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= hhmi / hL��;
thus, the standard relationship y = d � � holds. The
perturbation is irrelevant at the critical point if y < 0,
but, in the case of a DIP, it eventually becomes relevant
as L increases in the ordered phase. The cross-over length
scale ⇠0 / t�⌫
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) diverges faster
than the conventional correlation length ⇠ / |t|�⌫ .

To take both divergent length scales properly into ac-
count, i.e., to reach the regime where tL1/⌫0

is large, we
adopt the two-length scaling hypothesis [7] and write the
free energy as
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where we have also included a generic scaling correction
with exponent ! > 0. The exponents ⌫0 and y arise

!
y = scaling dimension of h



Symmetric and symmetry-breaking fields

h

T
critical point

Example: classical Ising model
- competition between energy and entropy
At h=0, T tunes to the critical point
- the ‘thermal field’ is t=T-Tc

Changing T changes the prefactor of E in

- E is the operator conjugate to T
e�E(�)/T

Set t=0, tune the magnetic field; E → E+hM
- h ≠ 0 breaks the Z2 symmetry of the model; relevant but not symmetric

hE(r)E(0) ⇠ r�2�0 , �0 = d� 1/⌫

hM(r)M(0) ⇠ r�2�M , �M = d� 1/⌫M

The exponent 𝛥M is related to the exponent we call 𝜂

hM(r)M(0) ⇠ r�(d�2+⌘) �M = (d� 2 + ⌘)/2

Normally critical points have one relevant symmetric field
- multi-critical points have more than one



Gas-liquid transition
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"#

Maps to Ising model even though no apparent Ising (Z2) symmetry
Order parameter is density (m ~ deviation from mean density at transition)

Tuning the relevant field corresponds to moving tangentially to
the coexistence curve from the critical point (not so easy)
Tuning the symmetry-breaking field corresponds to moving perpendicularly
to the coexistence curve
Moving along some generic path gives a mix of the two scaling dimensions
in correlation functions; one eventually dominates
In spin models we often have an explicit symmetry (e.g., zero field, like Ising)
Quantum system: d → d + z (dynamic exponent), z=1 for CFT



Example: O(3) transition in 2+1 dimensions (2D quantum, d=3) 
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mension of the relevant field of the model. The corre-
sponding correlation function exhibits only small scal-
ing corrections and delivers an exponent compatible
with results based on Binder cumulants; ⌫ = 0.455(2).
Given the well behaved estimators of ⌫, a continuous
transition is the most likely scenario.

To set the stage, we briefly summarize some stan-
dard facts on critical scaling. Consider a Hamiltonian
H

c

tuned to a quantum critical point to which a per-
turbation is added that maintains all the symmetries
of H

c

;
H = H

c

+ �
X

r

D(r), (1)

where r denotes the lattice coordinates and D(r) are
local operators. Normally H is written in a form with
some tunable parameter g such that, for some critical
value g = g

c

, H(g
c

) = H
c

and � = g � g
c

. We as-
sume that the system develops long-range order when
� > 0, with an order parameter m(r) such that hmi =
hm(r)i / �� for small � > 0 and m = 0 for � < 0.
The critical exponent � depends on the universality
class of H

c

in the thermodynamic limit. On either
side of the phase transition, the exponential decay of
the correlation function C

m

(r) = hm(0)m(r)i � hmi2
defines the divergent correlation length, ⇠ / |�|�⌫ . At
� = 0, the correlation function takes the critical form
C

m

(r) / r�2�

m , where �
m

= �/⌫ is the scaling di-
mension of the operator m.

In QMC calculations ⌫ is typically extracted us-
ing finite-size scaling of some dimensionless quantity,
such as the Binder ratio R = hM4i/hM2i2, where
M =

P
r m(r). Neglecting scaling corrections, in the

neighborhood of the critical point we have R(�, L) =
R(�L1/⌫

), by which ⌫ (and the critical point g
c

if it
is not known) can be obtained from data for different
values of � and L. A less common method is to use
the relation 1/⌫ = d��

D

, where d is the space-time
dimensionality (here d = 3) and �

D

is the scaling di-
mension of the perturbing operator D in Eq. (1). The
scaling dimension can be obtained from the power-
law decay C

D

(r) / r�2�

D of the correlation function
C

D

(r) = hD(0)D(r)i � hDi2 at g
c

.
It is not clear to us why ⌫ is not commonly ex-

tracted from C
D

(r), but there are two potential draw-
backs: (i) Often �

D

is rather large, e.g., in the case
of the O(3) universality class (of which we will show
an example below) �

D

⇡ 1.6, so that the correlation
function decays rapidly and is difficult to compute pre-
cisely (with small relative statistical errors) at large
r. (ii) The operator D is often off-diagonal and may
appear to be technically difficult to compute. How-
ever, although the latter issue is absent in simulations
of classical systems, the scaling dimension �

D

is still
normally not computed.

Here we will take advantage of the fact that exist-
ing estimates of ⌫ at the DQCP (⌫ ⇡ 0.45 in both the

J–Q[26] and loop[32] models) correspond to a rather
small value of the scaling dimension, �

D

⇡ 0.8, and
therefore it may be possible to compute it reliably
in this case (as was done recently for the transverse-
field Ising chain, where, in the notation used here,
�

D

= 1

[44]). Furthermore, we point out that off-
diagonal correlation functions of operators that are
terms of the Hamiltonian have very simple estimators
within the Stochastic Series Expansion (SSE) QMC
method.[29,30,45,46] The quantum fluctuations are here
represented by a string of length n of terms H

i

of H,
with mean length hni = |hHi|/T , where T is the tem-
perature. A connected correlation function of any two
terms is given by[46]

C
ab

⌘hH
a

H
b

i � hH
a

ihH
b

i
=T 2

�
hn

ab

(n� 1)i � hn
a

ihn
b

i
�
, (2)

where n
a

is the number of operators H
a

in the string
and n

ab

is the number of times that H
a

and H
b

ap-
pear adjacent to each other. This expression can be
easily applied to all location pairs (a, b) in a single
scan of the operator string, and translational invari-
ance can be exploited at no additional cost to improve
the statistics.

As a demonstration of the method, we first con-
sider the S = 1/2 bilayer Heisenberg Hamiltonian

H = J
1

X

a=1,2

X

hiji

S
a,i

· S
a,j

+ J
2

NX

i=1

S
1,i

· S
2,i

, (3)

where hiji denotes nearest neighbors on a square pe-
riodic lattice with N = L2 sites and a is the layer
index. This system has an AFM ground state for
g ⌘ J

2

/J
1

< g
c

and is a quantum paramagnet domi-
nated by inter-layer singlet formation for g > g

c

. The
O(3) quantum phase transition has been investigated
in many previous works. Here we take g

c

= 2.52205 for
the critical point[47,48] and study a correlation func-
tion corresponding to the perturbation D in Eq. (1).
Since both the J

1

and J
2

interactions drive the system
away from the critical point, we can study correlations
between either type of terms (i.e., they have the same
scaling dimension). We use the J

2

terms, which form
a simple square lattice, and define

C
2

(r
ij

) ⌘ h(S
1,i

·S
2,i

)(S
1,j

·S
2,j

)i�hS
1,i

·S
2,i

i2, (4)

where r
ij

denotes the separation of the sites i and j.
Investigating the decay of the correlations, we can

either study large lattices and focus on r ⌧ L to
eliminate finite-size effects or take r of order L and
study the size dependence. Here we opt for the lat-
ter method with r = (L/2 � 1, 0), for which there
are more equivalent points for averaging than for the
high-symmetry points (L/2, 0) and (L/2, L/2). For
the expected O(3) universality class in 2+1 dimen-
sions ⌫ ⇡ 0.711,[49] corresponding to a scaling dimen-
sion �

2

⇡ 1.594 of the J
2

interaction. As shown in
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Critical at J2/J1 ≈ 2.5202
The J1 and J2 terms are both relevant (no entropy at T=0)
- changing one of them takes us away from the critical point 
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We present a way to visualize and quantify renormalization group flows in a space of observables
computed using Monte Carlo simulations. We apply the method to classical three-dimensional clock
models, i.e., the planar (XY) spin model perturbed by a Zq symmetric anisotropy field. The method
performs significantly better than standard techniques for determining the scaling dimension yq of
the Zq field at the critical point if it is irrelevant (q � 4). Furthermore, we analyze all stages of the
complex renormalization flow, including the cross-over from the U(1) Nambu-Goldstone fixed point
to the ultimate Zq symmetry-breaking fixed point due to the relevance of the Zq field inside the
ordered phase. We expect our method to be particularly useful in the context of quantum-critical
points with inherent dangerously irrelevant operators that cannot be tuned away microscopically
but whose renormalization flows can be analyzed exactly as we do here for the clock models.

The renormalization group (RG) provides a powerful
framework both for conceptual understanding of phase
transitions and for calculations [1–3]. A key concept is
that a universal critical point can be stable or unstable
in the presence of perturbations that exist at the micro-
scopic level in real physical systems or models. Whether
or not a perturbation is relevant and destabilizes the crit-
ical point depends on its scaling dimension. Similarly, an
ordered state can also be stable or unstable under the
influence of perturbations. Under an RG process, a sys-
tem flows in a space of couplings which change as the
length scale is increased under coarse graining of the mi-
croscopic interactions, until finally reaching a fixed point
corresponding to a phase or phase transition. At this
point, all the initially present irrelevant couplings have
decayed to zero.

RG flows can also be defined of physical observables
in finite-size calculations, e.g., Monte Carlo (MC) simu-
lations. The RG framework leads to scaling forms that
are very useful for analyzing numerical data—a proce-
dure some times called phenomenological renormaliza-
tion [3–5]. Here we build on these ideas and extend the
standard finite-size scaling of an observable to an entire
flow in a space of two or more observables directly as-
sociated with relevant or irrelevant couplings of inter-
est. The method is particularly useful for visualizing
and quantifying so-called dangerously irrelevant pertur-
bations (DIPs)—those that are irrelevant at a critical
point but become relevant upon coarse graining at any
point inside an adjacent ordered phase [6].

Scaling and RG flows.—Consider a d-dimensional lat-
tice model of length L which can be tuned to a critical
point by a relevant field t; for definiteness we use the

temperature (t = T
c

� T ). With a local operator m
i

and its conjugate field h, we add a term hM = h
P

i

m
i

to the Hamiltonian H; for simplicity we will just write
M = Ldm. We ask whether this perturbation is relevant
or irrelevant, and we would like to find the corresponding
scaling dimension � of m.
In a conventional RG calculation, a flowing field h0 is

computed under a scale transformation. Here we will in-
stead vary the system size, which e↵ectively lowers the
energy scale, and calculate the response hmi using MC
simulations. Together with some quantity Q character-
izing the critical point and phases of the system, we can
trace out curves (MC RG flows) (Q, hmi)

L

as L increases
for fixed values of h and T . These flows are very similar
to conventional RG flows in the space (t, h0).

To relate the flows to exponents, the singular part of
the free-energy density can be expressed in the finite-size
scaling form f

s

(t, h, L) = L�dF
s

(tL1/⌫ , hLy). At t = 0,
the h dependent part is f

s

/ hLy�d to leading order,
and from the Hamiltonian we have f

s

= hhmi / hL��;
thus, the standard relationship y = d � � holds. The
perturbation is irrelevant at the critical point if y < 0,
but, in the case of a DIP, it eventually becomes relevant
as L increases in the ordered phase. The cross-over length
scale ⇠0 / t�⌫

0
(only for t > 0, i.e., T < T

c

) diverges faster
than the conventional correlation length ⇠ / |t|�⌫ .

To take both divergent length scales properly into ac-
count, i.e., to reach the regime where tL1/⌫0

is large, we
adopt the two-length scaling hypothesis [7] and write the
free energy as

f
s

(t, h, L) = L�dF
s

(tL1/⌫ , tL1/⌫0
, hLy,�L�!), (1)

where we have also included a generic scaling correction
with exponent ! > 0. The exponents ⌫0 and y arise

!

2𝛥 ≈ 3.188 → y≈1.406
- consistent with known 1/𝜈

This is the only relevant
symmetric operator at this
transition
Corresponds to the
classical ‘thermal field’

T=0 Néel-paramagnetic quantum phase transition 
Example: Dimerized S=1/2 Heisenberg models 
• every spin belongs to a dimer (strongly-coupled pair) 
• many possibilities, e.g., bilayer, dimerized single layer

⇒ 3D classical Heisenberg (O3) universality class; QMC confirmed

Singlet formation on strong bonds ➙ Néel - disordered transition
  Ground state (T=0) phases

� = spin gaps

weak interactions
strong interactions

Experimental realization (3D coupled-dimer system): TlCuCl3
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dimer (inter-plane, J2) correlations at gc



J-Q model (J-Q2)

1

ln(2)
ln

✓
U 0(2L)

U 0(L)

◆
! 1

⌫

We can also calculate correlations
of the relevant J and Q terms in H

CHIN. PHYS. LETT. Vol. 37, No. 5 (2020) 057502 Express Letter

5 10 20 30 40 60
x

10-4

10-3

r= (x,   0),   x=L/2-1 

r= (x,  0),   L=256 

0 5 10 15 20
-0.04

-0.02

0.00

0.02

0.04

C
Q
(r
)

C
Q
(r
)

 r = (x,  0)

 r= (x,  x) 

(a)

(b)

Fig. 3. Correlation function, Eq. (9), of the Q terms in
the critical J–Q model (g = 0.0451). In (a) results at
r = (x, 0) and (x, x) are shown for L = 48. In (b) results
at r = (x, 0) are shown only for odd values of x, with blue
points at x = L/2 � 1 for different system sizes L and
red points for fixed L = 256. The lines in (b) have slope
�2�Q = �1.60.

We here examine the correlation function of the
Q-terms in the Hamiltonian (5),

C
Q

(r
ij

) = hQ
i

Q
j

i � hQ
i

i2, (9)

which is less noisy than the J-energy correlator. As
shown in Fig. 3(a), the correlations exhibit strong
even-odd oscillations, with amplitude decaying with
the distance. The reason for the oscillating behav-
ior is that the columnar VBS correlations are also
detected by the plaquette correlation function C

Q

(r)
(for a detailed general discussion of this, see Ref. [35]).
In a columnar state with x-oriented dimers, C

Q

(0, y)
will be small while C

Q

(x, 0) will have signs (�1)

x

due to the dimerization. In an ergodic QMC simula-
tion, C

Q

(x, y) will reflect averaging over states with
x- and y-oriented dimers. The contributions from
the VBS order parameter then cancel in C

Q

(x, 0)
for odd x, while C

Q

(x, x) retains the VBS contribu-
tions with (�1)

x signs. These behaviors are seen in
Fig. 3(a), where the amplitude decay is due to the
system being a critical VBS. Since the system has
emergent U(1) symmetry of the order parameter,[14,16]
we should consider C

Q

(r) as averaged over an angle
� 2 [0, 2⇡) corresponding to a circular-symmetric dis-
tribution P (d

x

, d
y

). The above-mentioned behaviors
of C

Q

(r) along the lines r = (x, 0) and r = (x, x) will
also hold in this case.

In addition to the large contributions to C
Q

(r)
from the VBS order parameter, there should be a uni-
form component reflecting the scaling dimension of the
full Q operator. Since the VBS contributions are ab-

sent at (x, 0) with odd x, examining the correlations
at these distances is a good way to access the uni-
form component. In Fig. 3(a), small rapidly decaying
values are indeed seen, and in Fig. 3(b) the functional
form is analyzed on a log–log plot. We use a large
system, L = 256, with x ⌧ L, as well as x = L/2� 1

for smaller sizes. In both cases we observe the same
algebraic asymptotic decay, and a power-law fit to the
x = L/2 � 1 data for x > 12 gives �

Q

= 0.800(4).
This scaling dimension corresponds to 1/⌫ = 2.200(4),
in good agreement with the previous (less precise) re-
sults for the J–Q[26] and loop[32] models.

Next we consider the cumulant slopes S
x

⌘
dU

x

/dQ, x = d, z, computed with direct SSE estima-
tors as previously carried out for S

z

with L  160

in Ref. [26]. Here we present the results for L up
to L = 448 (our L = 512 results are too noisy).
The slopes should scale asymptotically as L1/⌫ . In
order to account for the leading correction we also
include a second power-law term with smaller expo-
nent, and exclude small systems until good fits are
obtained. The results are shown in Fig. 4. The in-
set shows the same data sets and fits converted into
1/⌫⇤ ⌘ ln[S(L)/S(L/2)] ln�1

(2), which flows to 1/⌫
as L ! 1. We note that: (i) 1/⌫ = 2.23(2) is
fully consistent with the previous result from smaller
systems,[26] and (ii) the value also agrees with the
above result from the scaling dimension of the Q terms
(with a difference less than 1.5 standard deviations).
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Fig. 4. Critical cumulant slopes vs the system size.
The curves are fits of the L � 64 data to the form
aL1/⌫(1 + bL�!), with 1/⌫ = 2.23(2) (constrained to be
the same for both data sets) and ! = 1.1(1) (for both data
sets, not constrained to be the same). The inset shows
1/⌫⇤ ⌘ ln[S(L)/S(L/2)] ln�1(2) vs 1/L. The purple circle
indicates the extrapolated exponent 1/⌫ = 2.23(2) and the
dashed lines show the values 1/⌫ = 3��Q = 2.200±0.004
determined in Fig. 3.

While the finite-size corrections in 1/⌫ obtained
from the cumulant slopes in Fig. 4 are substantial,
the corrections to the r�2�

Q form of the correlation
function in Fig. 3 are very small. The good agree-
ment of the extracted exponents with the relationship
1/⌫ = 3 � �

Q

should alleviate any concerns of 1/⌫
eventually flowing to the value 3 (= d) expected at a
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Fig. 1. Dimer correlation function, Eq. (4), in the crit-
ical Heisenberg bilayer at separation r = (x, 0) with
x = L/2� 1. Results are shown for two different values of
LT . The lines have slope �2�2 = �3.188, corresponding
to the O(3) value of ⌫.

Fig. 1, because of the rapid decay we can access only
rather modest distances, but the results still show a
remarkably good agreement with the expected form
C

2

(r) / r�2�2 starting from r = 4 (L = 10). In
the SSE simulations we have used T = c/L (in units
with J

1

= 1), reflecting the emergent Lorentz invari-
ance of the system (i.e., the dynamic exponent z = 1),
with two different proportionality factors; c = 2 and
1/8. Apart from the different amplitudes of the cor-
relations, both data sets exhibit the same decay.

Turning now to the J–Q model, we express the
AFM Heisenberg interaction as a singlet projector,
�P

ij

, on S = 1/2 spins; P
ij

= 1/4� S
i

· S
j

. To sim-
plify the notation, we use a bond index b to implicitly
refer to two nearest-neighbor spins hi, ji

b

; P
b

⌘ P
ij

.
We also use an index p to refer to a 2 ⇥ 2 plaque-
tte with sites in the arrangement (

i j

k l

)

p

and define
Q

p

⌘ P
ij

P
kl

+P
ik

P
jl

. With these definitions the J–Q
Hamiltonian is[14]

H = �J
X

b

P
b

�Q
X

p

Q
p

. (5)

We define the coupling ratio g ⌘ J/Q and use the SSE
method to compute the z component of the staggered
magnetization (the AFM order parameter)

m
z

=

1

N

X

r

Sz

r(�1)

r
x

+r
y , (6)

and the two-component dimer (VBS) order parame-
ter, also defined with the z spin components,

d
↵

=

1

N

X

r

Sz

rS
z

r+↵̂

(�1)

r
↵ , (7)

where ↵ stands for the x or y lattice direction. We
scale the temperature in units of Q as T = c/L,
with c = 2.38 being the estimated critical velocity of
excitations[25] (i.e., the system is in the “cubic” scaling
regime,[48,50] as in the case 1/T = L/2 for the bilayer
model in Fig. 1).

Early QMC studies placed the VBS–AFM tran-
sition at g

c

⇡ 0.040,[14�16] while more recent works
show a somewhat larger value, g

c

⇡ 0.045,[18,25,26,30]
as a consequence of significant finite-size corrections.
We now have data for system sizes up to L = 512 and
present the Binder cumulants U

z

and U
d

defined in
the standard way such that U

x

! 1 with increasing
system sizes if there is order of type x and U

x

! 0

otherwise;

U
z

=

5

2

� 5

6

hm4

z

i
hm2

z

i2 , U
d

= 2�
h(d2

x

+ d2
y

)

2i
hd2

x

+ d2
y

i2 . (8)

Results for several system sizes are shown in Fig. 2(a).

(a)

(b)

0.000 0.005 0.010 0.015
1/L

0.042

0.043

0.044

0.045

0.046

0.047

g
*

Uz (L),  Ud(L)

Ud (L/2),  Ud(L)

Uz (L/2),  Uz(L)

0.03 0.04 0.05 0.06
0.0

0.2

0.4

0.6

0.8

1.0

U
z ,
    U

d

g

Fig. 2. (a) Binder cumulants of the AFM (red points) and
VBS (blue points) order parameters vs the coupling ratio
for system sizes L = 64, 128, 256, and 512. The slopes
increase with L and the L = 512 data are shown with
solid symbols. (b) Inverse-size dependence of interpolated
crossing points between the two cumulants for given L and
for the same cumulant on L and L/2 lattices. The curves
show fits to two power laws for each data set with a com-
mon gc = g⇤(L ! 1) value, resulting in the critical point
estimate gc = 0.04510(2).

To improve the g
c

estimate, we analyze crossing
points g = g⇤, where U

z

(g⇤, L) = U
d

(g⇤, L) and also
where (for different g⇤) U

x

(g⇤, L/2) = U
x

(g⇤, L) with
x = z or x = d. As shown in Fig. 2(b), these cross-
ing points flow to g

c

= 0.04510(2) as L ! 1. The
extrapolation is based on a fit to two power laws for
each data set, with a common g

c

. Unconstrained fits
also result in consistent g

c

values. We have excluded
small systems until a statistically sound fit is obtained,
with L � 64 included in the final analysis. From now
on we fix the coupling ratio to g = 0.0451 ⇡ g

c

.
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- at the very least, the model is extremely close to a critical point
- but violates a CFT bound: 𝜈 > 0.52… 



renormalization-group (RG) relevant at the DQCP. First,
we study a four-spin term Z of staggered bond operators;
Fig. 1(c). We recently showed that strong staggered inter-
actions lead to a first-order transition [26], likely by
suppressing the emergent U(1) symmetry associated with
the DQCP [38]. UsingQMC simulations, we here show that
an infinitesimal Z perturbation is relevant and invalidates
the bootstrap ν bound, which is conditional on a single
symmetry-preserving relevant field. The second deforma-
tion is a staircase J modulation, Fig. 1(d), which is also
relevant and evolves the DQCP into a HVB phase.
Model.—We consider the J-Q2 and J-Q3 models with

exchange Jb on links b connecting nearest-neighbor sites
ib, jb. Using singlet projectors Pb ¼ Pij ¼ 1=4 − Sj · Sj,
we write the Hamiltonian on periodic lattices with N ¼ L2

spins as

H ¼ −
X2N

b¼1

JbPb −Q
X2N

p¼1

Y

fbpg
Pbp; ð1Þ

where the products have either two or three singlet projectors
in the sets fbpg, arranged as in Figs. 1(a) and 1(b).
Defining g ¼ J=ðJ þQÞ, the J-Q2 and J-Q3 models

with uniform Jb ¼ J have AFM-VBS transitions at gc ≈
0.0432 [36] and gc ≈ 0.400 [14], respectively. The DQCP
has been better characterized in the J-Q2 model [24,36],
and we use it to study the relevance of the infinitesimal
staggered bond interactions, Fig. 1(c), and staircase J
modulation, Fig. 1(d). The J-Q3 model is a more robust
VBS for large g [19] and we use it to study finite staircase
modulation. By universality, our results should apply also
to other DQCP systems.
Scaling dimensions.—To characterize the Z and W

deformations, we compute corresponding correlation func-
tions in the critical J-Q2 model. With Hc ¼ Hðg ¼ gcÞ in
Eq. (1), we write the perturbed Hamiltonian as

H ¼ Hc þ δV; V ¼
X

a

VðraÞ; ð2Þ

whereVðraÞ is a subset of terms ofV in a suitable lattice cell.
Following standard quantum criticality and RG notation, the
correlation function CVðrÞ ¼ hVðrÞVð0Þi − hVð0Þi2 at δ ¼
0 should decay as CVðrÞ ∝ r−2ΔV , where ΔV is the scaling
dimension of V. We have used a projector QMC method in
the valance-bond basis [39] to calculate CVðrÞ, using
operator cells that will be described below for the two
different perturbations. Technical details and additional
results are presented in the Supplemental Material [40].
Results for the staggered bonds, V ¼ Z, are shown in

Fig. 2(a). Here a sum of eight local terms defines the
symmetric operator ZðrÞ. The observed power-law decay
corresponds to the scaling dimension ΔZ ≈ 1.40ð2Þ, con-
siderably larger than the dimension Δ0 ≈ 0.800ð4Þ of the
previously known primary symmetric scalar operator O0

[36]. All correlations are positive and clearly represent the
spatially uniform perturbation in Eq. (2). While we can not
rigorously prove that Z contains a second primary operator
O0

0, its scaling dimension matches neither the dimensions
Δ0 þ n (n ¼ 1; 2;…) of the descendants of O0 nor those of
the order parameters OVBS and OAFM, both of which have
scaling dimensions of approximately 0.63 [19,28] (see also
the Supplemental Material [40]). Thus, we conjecture that a
second symmetric primary operator exists. In the
Supplemental Material [40] we provide further results
supporting this conclusion and show examples of other bond
products that exhibit the conventional scaling dimensionΔ0.
It is surprising that an interaction with the symmetries of

the unperturbed Hamiltonian can introduce a primary
operator not already present in the J-Q model. The most
likely scenario is that Z generates topological defects
(monopoles). The Q terms in Figs. 1(a) and 1(b) are
conducive to the emergent U(1) symmetry that is required
within the DQCP scenario and which can be traced to the
irrelevance of the quadrupled monopoles associated with
the Z4 symmetric VBS order parameter. Staggered singlets
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C Z(x)
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|C W(r)
|
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r=(x,-x), L=128

(a)

(b)

FIG. 2. Correlation functions at r ∝ L=2 and r ≪ L=2 of the
operators illustrated in the insets. (a) Staggered product operators
[Fig. 1(c)], where ZðrÞ is a sum of eight terms (indicated with
different colors). The blue curve is a fit to the r ¼ ðx; 0Þ data for
x ¼ L=2 ≥ 6 of the form ax−2Δ

0
0ð1þ cx−ωÞ giving Δ0

0 ¼ 1.40ð2Þ
and ω ≈ 2.0. The L ¼ 256 data (black symbols) have been
divided by 4 for visibility. The dashed lines show the leading
power law x−2Δ

0
0. (b) Staircase J modulation [Fig. 1(d)] withWðrÞ

defined on a 5 × 5-site cell with þSi · Sj and −Si · Sj on the blue
and orange links, respectively. The dashed edge links indicate
prefactors 1=2 needed for the cell summation in Eq. (2). The
correlations being negative, absolute values are shown. A fit (red
line) of the form ax−2ΔW to the r ¼ ðx;−xÞ data for x ¼ L=2 ≥ 8
gives ΔW ¼ 1.90ð2Þ. The other lines have the same slope.
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The deconfined quantum-critical point (DQCP) is a
paradigmatic “beyond Landau” quantum phase transition
in two dimensions [1]. Building on field theories for
quantum magnets [2–6] and stimulated by intriguing
numerical simulations [7,8], the DQCP proposal posits
that the transition between an antiferromagnetic (AFM)
ground state and a valence-bond solid (VBS, where singlets
condense on groups of two or more spins) is continuous
and described by spinons coupled to a U(1) gauge field
without topological defects. With the symmetry of the
spinons extended from SU(2) to SUðNÞ, the proposed
CPN−1 field theory can be solved for N → ∞. In violation
of the Landau rules, which prescribe a first-order transition,
the critical exponents including 1=N corrections agree
remarkably well [9] with simulations [10,11] of lattice
models with AFM-VBS transitions for moderately large N.
A contentious aspect of the DQCP scenario is the

suggestion that the continuous transition persists down to
N ¼ 2. This conjecture [1,12] found early support in
quantumMonte Carlo (QMC) simulations of the J-Qmodel,
in which the S ¼ 1=2Heisenberg model with exchange J on
the square lattice is supplemented by four-spin [13] or six-
spin [14] terms Q, illustrated in Figs. 1(a) and 1(b), that
induce correlated singlets and lead to VBS order for large
Q=J. Many QMC studies of these and other variants of the
J-Q model [15–26], as well as related 3D classical loop
models [27,28], have characterized the signatures of the
DQCP, including an emergent U(1) symmetry of the VBS
fluctuations [13,16,19,27]. However, anomalous scaling
behaviors have been interpreted by some as precursors to

a first-order transition [16,21,29]. Attempts to explain the
observations as a weakly first-order “walking” transition
invoke a nonunitary conformal field theory (CFT) with a
DQCP slightly outside the accessible model space, e.g., in
dimensionality different from two [30–35]. In this scenario,
the transition reflects the properties of the inaccessible fixed
point but eventually, for large lattices, flows away from it. No
concrete predictions have been put forward, however, and
concurrently further QMC studies have provided compelling
evidence of a continuous transition [36].
A puzzling issue is that the critical correlation-length

exponent ν ≈ 0.45 [24,28,36] violates a bound ν > 0.51
from the CFT bootstrap [37].We here identify a loophole in
this bound and also discover a previously unknown helical
valence-bond (HVB) phase. We consider two deforma-
tions of the J-Q model and demonstrate that they are

(a) (b) (c) (d)

FIG. 1. The multispin columnar Q interactions are products of
two (Q2) in (a) or three (Q3) in (b) singlet projectors. (c) The Z
perturbation consists of all four-spin interactions ðSi · SjÞðSk · SlÞ
with the site pairs ij and kl forming two staggered bonds, as
shown, as well as the π=2 rotated cases. (d) Staircase exchange
pattern W, with thick blue and thin black links representing
Jð1$ hÞSi · Sj.
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Q

Compute scaling dimension of the Z perturbation in the critical J-Q model

summed over all
lattice positions
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The deconfined quantum-critical point (DQCP) is a
paradigmatic “beyond Landau” quantum phase transition
in two dimensions [1]. Building on field theories for
quantum magnets [2–6] and stimulated by intriguing
numerical simulations [7,8], the DQCP proposal posits
that the transition between an antiferromagnetic (AFM)
ground state and a valence-bond solid (VBS, where singlets
condense on groups of two or more spins) is continuous
and described by spinons coupled to a U(1) gauge field
without topological defects. With the symmetry of the
spinons extended from SU(2) to SUðNÞ, the proposed
CPN−1 field theory can be solved for N → ∞. In violation
of the Landau rules, which prescribe a first-order transition,
the critical exponents including 1=N corrections agree
remarkably well [9] with simulations [10,11] of lattice
models with AFM-VBS transitions for moderately large N.
A contentious aspect of the DQCP scenario is the

suggestion that the continuous transition persists down to
N ¼ 2. This conjecture [1,12] found early support in
quantumMonte Carlo (QMC) simulations of the J-Qmodel,
in which the S ¼ 1=2Heisenberg model with exchange J on
the square lattice is supplemented by four-spin [13] or six-
spin [14] terms Q, illustrated in Figs. 1(a) and 1(b), that
induce correlated singlets and lead to VBS order for large
Q=J. Many QMC studies of these and other variants of the
J-Q model [15–26], as well as related 3D classical loop
models [27,28], have characterized the signatures of the
DQCP, including an emergent U(1) symmetry of the VBS
fluctuations [13,16,19,27]. However, anomalous scaling
behaviors have been interpreted by some as precursors to

a first-order transition [16,21,29]. Attempts to explain the
observations as a weakly first-order “walking” transition
invoke a nonunitary conformal field theory (CFT) with a
DQCP slightly outside the accessible model space, e.g., in
dimensionality different from two [30–35]. In this scenario,
the transition reflects the properties of the inaccessible fixed
point but eventually, for large lattices, flows away from it. No
concrete predictions have been put forward, however, and
concurrently further QMC studies have provided compelling
evidence of a continuous transition [36].
A puzzling issue is that the critical correlation-length

exponent ν ≈ 0.45 [24,28,36] violates a bound ν > 0.51
from the CFT bootstrap [37].We here identify a loophole in
this bound and also discover a previously unknown helical
valence-bond (HVB) phase. We consider two deforma-
tions of the J-Q model and demonstrate that they are

(a) (b) (c) (d)

FIG. 1. The multispin columnar Q interactions are products of
two (Q2) in (a) or three (Q3) in (b) singlet projectors. (c) The Z
perturbation consists of all four-spin interactions ðSi · SjÞðSk · SlÞ
with the site pairs ij and kl forming two staggered bonds, as
shown, as well as the π=2 rotated cases. (d) Staircase exchange
pattern W, with thick blue and thin black links representing
Jð1$ hÞSi · Sj.
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Multicritical Deconfined Quantum Criticality and Lifshitz Point
of a Helical Valence-Bond Phase
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The S ¼ 1=2 square-lattice J-Q model hosts a deconfined quantum phase transition between
antiferromagnetic and dimerized (valence-bond solid) ground states. We here study two deformations
of this model—a term projecting staggered singlets, as well as a modulation of the J terms forming
alternating “staircases” of strong and weak couplings. The first deformation preserves all lattice
symmetries. Using quantum Monte Carlo simulations, we show that it nevertheless introduces a second
relevant field, likely by producing topological defects. The second deformation induces helical valence-
bond order. Thus, we identify the deconfined quantum critical point as a multicritical Lifshitz point—the
end point of the helical phase and also the end point of a line of first-order transitions. The helical-
antiferromagnetic transitions form a line of generic deconfined quantum-critical points. These findings
extend the scope of deconfined quantum criticality and resolve a previously inconsistent critical-exponent
bound from the conformal-bootstrap method.

DOI: 10.1103/PhysRevLett.125.257204

The deconfined quantum-critical point (DQCP) is a
paradigmatic “beyond Landau” quantum phase transition
in two dimensions [1]. Building on field theories for
quantum magnets [2–6] and stimulated by intriguing
numerical simulations [7,8], the DQCP proposal posits
that the transition between an antiferromagnetic (AFM)
ground state and a valence-bond solid (VBS, where singlets
condense on groups of two or more spins) is continuous
and described by spinons coupled to a U(1) gauge field
without topological defects. With the symmetry of the
spinons extended from SU(2) to SUðNÞ, the proposed
CPN−1 field theory can be solved for N → ∞. In violation
of the Landau rules, which prescribe a first-order transition,
the critical exponents including 1=N corrections agree
remarkably well [9] with simulations [10,11] of lattice
models with AFM-VBS transitions for moderately large N.
A contentious aspect of the DQCP scenario is the

suggestion that the continuous transition persists down to
N ¼ 2. This conjecture [1,12] found early support in
quantumMonte Carlo (QMC) simulations of the J-Qmodel,
in which the S ¼ 1=2Heisenberg model with exchange J on
the square lattice is supplemented by four-spin [13] or six-
spin [14] terms Q, illustrated in Figs. 1(a) and 1(b), that
induce correlated singlets and lead to VBS order for large
Q=J. Many QMC studies of these and other variants of the
J-Q model [15–26], as well as related 3D classical loop
models [27,28], have characterized the signatures of the
DQCP, including an emergent U(1) symmetry of the VBS
fluctuations [13,16,19,27]. However, anomalous scaling
behaviors have been interpreted by some as precursors to

a first-order transition [16,21,29]. Attempts to explain the
observations as a weakly first-order “walking” transition
invoke a nonunitary conformal field theory (CFT) with a
DQCP slightly outside the accessible model space, e.g., in
dimensionality different from two [30–35]. In this scenario,
the transition reflects the properties of the inaccessible fixed
point but eventually, for large lattices, flows away from it. No
concrete predictions have been put forward, however, and
concurrently further QMC studies have provided compelling
evidence of a continuous transition [36].
A puzzling issue is that the critical correlation-length

exponent ν ≈ 0.45 [24,28,36] violates a bound ν > 0.51
from the CFT bootstrap [37].We here identify a loophole in
this bound and also discover a previously unknown helical
valence-bond (HVB) phase. We consider two deforma-
tions of the J-Q model and demonstrate that they are

(a) (b) (c) (d)

FIG. 1. The multispin columnar Q interactions are products of
two (Q2) in (a) or three (Q3) in (b) singlet projectors. (c) The Z
perturbation consists of all four-spin interactions ðSi · SjÞðSk · SlÞ
with the site pairs ij and kl forming two staggered bonds, as
shown, as well as the π=2 rotated cases. (d) Staircase exchange
pattern W, with thick blue and thin black links representing
Jð1$ hÞSi · Sj.

PHYSICAL REVIEW LETTERS 125, 257204 (2020)
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ZZ Correlations
decay with a power
corresponding to
𝛥Z ≈ 1.40
different from
𝛥Q ≈ 0.8
Bootstrap bound assumed
a single relevant symmetric
operator
Multi-critical scenario goes beyond original DQC proposal



VBS order parameter: emergent U(1) symmetry

7

zation

m =
1

N

NX

i=1

S
i

, (4)

and we evaluate the expectation of its square; hm2i. The
VBS order can form with horizontal or vertical bonds,
and these are captured by the bond order parameters

D
x

=
1

N

X

x,y

(�1)xS
x,y

· S
x+1,y, (5a)

D
y

=
1

N

X

x,y

(�1)yS
x,y

· S
x,y+1, (5b)

where for convenience we have switched to a notation
where the double subscripts on S

x,y

refer to the integer
coordinates on the square lattice. In this case as well
we need the squared order parameter, hD2i = hD2

x

i =
hD2

y

i, which has a reasonably simple direct transition-
graph loop estimator [? ].

With the above order parameters we can also define
the corresponding Binder cumulants. In the case of the
O(3) symmetric AFM order the proper definition of the
cumulant is

U
m

=
3

2

✓
1� 1

3

hm4i
hm2i2

◆
, (6)

where the coe�cients are chosen such that with increas-
ing system size U

m

! 1 in the AFM phase and U
m

! 0
if there is no AFM order. For hm4i rangle as well there is
a simple direct loop expression [? ]. In the case of VBS
order, the coe�cients of the cumulant should be chosen
as those for a 2-component vector order parameter, thus

U
D

= 2� hD4i
hD2i2 . (7)

Here hD4i involves eight-spin correlation functions that
in practice are too di�cult to compute e�ciently [? ]. We
therefore invoke an approximation that does not impact
the scaling properties; we simply evaluate (D

x

, D
y

) using
the loop estimator for the two-point operators (5a) and
(5b), and then use this vector of c-numbers to D2 and
D4. While the expectation values entering (7) are then
not strictly the correct quantum-mechanical expectation
values, they still reflect perfectly the absence or presence
of VBS order in the system.

In addition to the squared order parameters hm2i and
hD2i evaluated on the full lattice, we will also consider
the distance dependent spin and dimer correlation func-
tions,

C
s

(r) = hS
x,y

· S
x+r

x

,y+r

y

i, (8a)

C
d

(r) = h(S
x,y

· S
x+1,y)(Sx+r

x

,y+r

y

· S
x+1+r

x

,y+r

y

)i
� hS

x,y

· S
x+1,yi2 (8b)

where we spaitially average over the reference coordinates
x, y for each disorder sample. The spin correlations have
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1/L
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0.05

0.1

0.15

M
2

Q=0.1

Q=0.5

Q=0.7

Q=0.9

Q=2

J/Q=0

FIG. 5. Sublattice magnetization versus inverse system size
for di↵erent values of the coupling ratio of the random-Q
model. The curves show fits to the expected forms; low-order
polynomials (here third-order) including linear terms in the
AFM phase and excluding linear terms in the RS phase.

a staggered sign (�1)rx+r

y , while the sign of the dimer
correlator with x oriented bond as above is (�1)rx (and
we take the proper average with the y-oriented ones).

B. Site Diluted J1-J2 static-dimer model

C. Site Diluted J-Q model

In the site-diluted model spins are removed (vacancies
are introduced) at random locations at some fixed con-
centration p. Any J or Q term in Eq. (1) that acting on
one or more vanacies are excluded from the sums. In the
AFM phase, as long as p is below the percolation thresh-
old p

c

above which the system (in the thermodynamic
limit) breaks up into finite decoupled clusters, the va-
cancies do not destroy the long-range AFM order, only
weaken it. If Q = 0 (the pure Heisenberg model), the
percolation point is the standard percolation point of the
square lattice, p

c

⇡ 0.407, while with Q > 0 the perco-
lation point will clearly increase further. Here we will
be interested in low concentrations, far below the perco-
lation point. In the gapped VBS host, when Q > Q

c

,
wth Q

c

/J ⇡ 0.667, the vacancies are expected to lo-
calize magnetic spin-1/2 moments around them. These
moments interact weakly with each other through the
gapped host, and since these interactions are, by sim-
ple arguments for a bipartite lattice, not frustrated, they
will develop a subsystem with AFM long-range-order at
T = 0. Thus, one would expect the sharp AFM–VBS
transition to be ruined.

Dimer order parameter

Dx

Dy

Collect histograms P(Dx,Dy) with
valence-bond basis QMC

= +

Two possible types of order patterns
distinguished by histograms

columnar

plaquette

Finite-size fluctuations
- amplitude
- angular



Emergent U(1) symmetry of columnar VBS order

ANDERS W. SANDVIK PHYSICAL REVIEW B 85, 134407 (2012)

L = 64 L = 128

0

max

FIG. 27. (Color online) VBS order parameter distribution
P (Dx,Dy) in the Q2 model on periodic L × L lattices with L = 64
(left) and L = 128 (right). The size of both squares corresponds to
10% of the maximum value Dmax/10 of the components, Dx,Dy ∈
[−Dmax,Dmax], where Dmax = 3/8 (for a perfect columnar VBS).

“instanton” events between the peaks (i.e., the simulations “get
stuck” in one quarter of the configuration space). It should be
noted that this very slow simulation dynamics of the VBS order
parameter does not affect the estimate of the total squared order
parameter ⟨D2⟩ and most other physical quantities of interest.

The degree of Z4 symmetry of the order parameter can be
quantified by the function

W4 =
∑

Dx

∑

Dy

P (Dx,Dy) cos(4φxy), (A1)

where φxy is the angle corresponding to the point (Dx,Dy).
While this function (and the underlying probability distri-
bution) is not a physical observable, in the sense that it
is not a bona fide quantum mechanical expectation value,
it, nevertheless, reflects the fluctuations of the VBS order
parameter and can be used to characterize the the U(1)-Z4
crossover.

Results as a function of L for the Q3 model are shown
in Fig. 26. Here, the convergence W4 → 1 when L → ∞ is
apparent, as would be expected for a columnar VBS in the
thermodynamic limit. In principle, the curve W4(L) could be
used to define the length ", e.g., using W4(") = 1/2, but there
is clearly an arbitrariness in choosing the particular number.
For studying the scaling of " when some parameter of the
Hamiltonian is changed (e.g., J/Q3) this ambiguity does not
matter. In Ref. 40, curves W4(L) for different coupling rations
were analyzed using standard finite-size scaling techniques,
with the results that " grows slightly faster than the correlation
length " ∼ ξ 1+a with a ≈ 0.2.

Comparing with the behavior of the squared order parame-
ters in Fig. 4, it can be noted that ⟨D2

x⟩ approaches 0 (and ⟨D2
y⟩

tends to a nonzero value) very quickly above L ≈ 20, which
is approximately where W4(L) = 1/2 in Fig. 26. On the other
hand, the decay of the edge-induced y component of the order

0 0.2 0.4 0.6 0.8 1
φ/2π

0.154

0.156

0.158

0.160

0.162

0.164

0.166

P
(φ

)

L=128
L=64
L=32

FIG. 28. (Color online) Angular distribution of the VBS order
parameter of the Q2 model for system sizes L = 32, 64, and 128. To
improve the statistics, these results were obtained by symmetrizing
the distributions using the expected 90◦ rotational symmetry. The
jaggedness of the curves (especially for L = 32) is due to the
discreteness of the allowed (Dx,Dy) values (with N possible values
for each component).

parameter in Figs. 17 and 18 (where the system far from
theedge has only x order) gives a length ≈6.5, which could also
be taken as a practical definition of ". This length corresponds
to W4 ≈ 0.1 in Fig. 26.

In contrast to the Q3 model, in the Q2 model no clear
Z4 symmetry is visible in P (Dx,Dy) up to systems as large
as L = 64 and 128, as shown in Fig. 27. These histograms
are ring-shaped, although for L = 128 the weight is not
evenly distributed because of lack of sufficient QMC statistics.
The VBS angle fluctuates very slowly in simulations of
large systems and very long runs are required in order to
obtain symmetric distributions. The data shown are based
on ≈3.5 × 108 Monte Carlo sweeps for L = 64 and 8 × 107

for L = 128 (which required more than 104 CPU hours in
both cases). By symmetrizing the distributions using 90◦

rotations, one can still detect small deviations from perfect
U(1) symmetry, as shown in Fig. 28. The peak positions again
correspond to a columnar state.

Note that in Fig. 27 the ring for L = 128 is considerably
thinner than for L = 64, with the radius (the location of the
maximum or average weight) remaining almost unchanged.
This reflects an expected reduction of the fluctuations of the
magnitude of the VBS order parameter with increasing system
size. Based on these results, the crossover length scale " for the
Q2 model should be ≫128, which explains why both order-
parameter components are essentially equal for the largest
systems in Fig. 8.
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may work, but some interaction similar to the multispin Q
terms discussed here could be even better suited for inducing
the desired type of VBS.

Spin liquid states have recently also been claimed to exist
in electronic Hubbard models and frustrated spin models on
the honeycomb lattice.105–107 For the Hubbard model, 2D
lattices with up to hundreds of sites were used.105 The VBS
correlations in this case decay very rapidly with distance, and
the system does not seem to exhibit the kind of problematic
scaling issues pointed out in this paper. On the other hand, work
on effective spin models constructed to capture the putative
spin-liquid state have not so far been conclusive.62,107–109 Also
here it would be useful to extend the models in such a way that
a VBS phase transition can be studied. The VBS should then
be the one to which the “bare” honeycomb model is the most
susceptible (which may in itself not be easy to determine in
this case).

D. Bench-mark challenge

Finally, as a challenge to DMRG, tensor-product, and
MERA techniques, it would be very interesting and useful to
see these methods applied to J -Q models as well. Comparing
with the known phase diagram and critical behavior extracted
on the basis of unbiased QMC simulations would be a very
good test of the capabilities of these methods to capture
nontrivial ground states and quantum phase transitions. If the
outcome is positive, it may be very useful to systematically
investigate the behavior when frustration is added to this
model, as was recently done in an exact diagonalization study
of a 2D model combining the Q2 interaction with the frustrated
J1-J2 Heisenberg model.110
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APPENDIX: U(1)-Z4 CROSSOVER OF THE VBS
SYMMETRY IN PERIODIC SYSTEMS

The emergent U(1) symmetry of a columnar VBS in the
neighborhood of a critical point can be characterized by
the probability distribution P (Dx,Dy) generated in QMC
simulations on periodic L × L lattices. A systematic study
aimed at extracting the scaling of the U(1)-Z4 crossover length
! was presented in Ref. 40. Here, additional results for the
pure Q2 and Q3 models will be presented in order to facilitate
comparisons with the boundary effects discussed in the main
text. Specifically, it will be shown that the lack of Dx-Dy

symmetry on 2L × L lattices, as seen in Fig. 4 for the Q3 model
for all system sizes, is matched by a clear Z4 symmetric order
parameter on all L × L lattices. Conversely, the symmetry
seen for the Q2 model on large lattices in Fig. 4 is consistent
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FIG. 25. (Color online) VBS order parameter distribution
P (Dx,Dy) in the Q3 model on periodic L × L lattices with L = 12
(left) and L = 24 (right). The size of both squares corresponds
to the full space of possible values of the components Dx,Dy ∈
[−Dmax,Dmax], where Dmax = 3/8 (for a perfect columnar VBS).

with only very small deviations (barely detectable) from U(1)
symmetry on L × L lattices with L as large as 128.

In the projector QMC simulations, each generated config-
uration is associated with a pair of order parameters (Dx,Dy),
which are matrix elements of the corresponding operators
defined in Eqs. (12) and (13) computed in the valence bond
basis. These matrix elements are of the form 3n/4N , where
n is an integer in the range [−N/2,N/2], with the extremal
values corresponding to both the bra and ket state (making up
the transition graph) having the same perfect columnar pattern
of valence bonds of length one lattice constant. The histogram
P (Dx,Dy) is constructed based on these matrix elements.

Figure 25 shows results for the Q3 model for L = 12
and 24. In this model, the histogram P (Dx,Dy) exhibits a
distinct fourfold symmetry even for the smallest systems (also
smaller than L = 12, not shown here, where the discreteness
of the distribution function also becomes apparent). The four
peaks sharpen with increasing lattice size, and above some
size the suppression of the weight between the peaks severely
impedes QMC fluctuations between the peaks. In Fig. 25, the
visibly different weight in the four peaks (with the right peak
having the smallest weight) is a consequence of this rarity of
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FIG. 26. (Color online) Size dependence of the columnar
anisotropy weight, defined in Eq. (A1), of the VBS order parameter
distribution in the Q3 model.
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FIG. 27. (Color online) VBS order parameter distribution
P (Dx,Dy) in the Q2 model on periodic L × L lattices with L = 64
(left) and L = 128 (right). The size of both squares corresponds to
10% of the maximum value Dmax/10 of the components, Dx,Dy ∈
[−Dmax,Dmax], where Dmax = 3/8 (for a perfect columnar VBS).

“instanton” events between the peaks (i.e., the simulations “get
stuck” in one quarter of the configuration space). It should be
noted that this very slow simulation dynamics of the VBS order
parameter does not affect the estimate of the total squared order
parameter ⟨D2⟩ and most other physical quantities of interest.

The degree of Z4 symmetry of the order parameter can be
quantified by the function

W4 =
∑

Dx

∑

Dy

P (Dx,Dy) cos(4φxy), (A1)

where φxy is the angle corresponding to the point (Dx,Dy).
While this function (and the underlying probability distri-
bution) is not a physical observable, in the sense that it
is not a bona fide quantum mechanical expectation value,
it, nevertheless, reflects the fluctuations of the VBS order
parameter and can be used to characterize the the U(1)-Z4
crossover.

Results as a function of L for the Q3 model are shown
in Fig. 26. Here, the convergence W4 → 1 when L → ∞ is
apparent, as would be expected for a columnar VBS in the
thermodynamic limit. In principle, the curve W4(L) could be
used to define the length ", e.g., using W4(") = 1/2, but there
is clearly an arbitrariness in choosing the particular number.
For studying the scaling of " when some parameter of the
Hamiltonian is changed (e.g., J/Q3) this ambiguity does not
matter. In Ref. 40, curves W4(L) for different coupling rations
were analyzed using standard finite-size scaling techniques,
with the results that " grows slightly faster than the correlation
length " ∼ ξ 1+a with a ≈ 0.2.

Comparing with the behavior of the squared order parame-
ters in Fig. 4, it can be noted that ⟨D2

x⟩ approaches 0 (and ⟨D2
y⟩

tends to a nonzero value) very quickly above L ≈ 20, which
is approximately where W4(L) = 1/2 in Fig. 26. On the other
hand, the decay of the edge-induced y component of the order
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FIG. 28. (Color online) Angular distribution of the VBS order
parameter of the Q2 model for system sizes L = 32, 64, and 128. To
improve the statistics, these results were obtained by symmetrizing
the distributions using the expected 90◦ rotational symmetry. The
jaggedness of the curves (especially for L = 32) is due to the
discreteness of the allowed (Dx,Dy) values (with N possible values
for each component).

parameter in Figs. 17 and 18 (where the system far from
theedge has only x order) gives a length ≈6.5, which could also
be taken as a practical definition of ". This length corresponds
to W4 ≈ 0.1 in Fig. 26.

In contrast to the Q3 model, in the Q2 model no clear
Z4 symmetry is visible in P (Dx,Dy) up to systems as large
as L = 64 and 128, as shown in Fig. 27. These histograms
are ring-shaped, although for L = 128 the weight is not
evenly distributed because of lack of sufficient QMC statistics.
The VBS angle fluctuates very slowly in simulations of
large systems and very long runs are required in order to
obtain symmetric distributions. The data shown are based
on ≈3.5 × 108 Monte Carlo sweeps for L = 64 and 8 × 107

for L = 128 (which required more than 104 CPU hours in
both cases). By symmetrizing the distributions using 90◦

rotations, one can still detect small deviations from perfect
U(1) symmetry, as shown in Fig. 28. The peak positions again
correspond to a columnar state.

Note that in Fig. 27 the ring for L = 128 is considerably
thinner than for L = 64, with the radius (the location of the
maximum or average weight) remaining almost unchanged.
This reflects an expected reduction of the fluctuations of the
magnitude of the VBS order parameter with increasing system
size. Based on these results, the crossover length scale " for the
Q2 model should be ≫128, which explains why both order-
parameter components are essentially equal for the largest
systems in Fig. 8.
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FIG. 1. Illustration of the terms of the J-Q model used in
this work. The circles are sites on the square lattice, labeled
in accordance with the Hamiltonian, Eq. (1). The red bars
connecting two sites are the singlet projectors, with connected
bars in the Q terms indicating products.

associated with an IRFP fixed point.

B. Random singlet state in the 2D J-Q model

In this paper we report an unambiguous identifica-
tion and characterization of a 2D RS state with finite
dynamic exponent in a system without geometric frus-
tration. We study a square-lattice Heisenberg antifer-
romagnet with nearest-neighbor exchange J augmented
with certain multi-spin interactions of strength Q (the
J-Q model). The unadulterated translationally invari-
ant model is defined by the Hamiltonian [41, 42]

H = �J
X

hiji

P
ij

�Q
X

hijklmni

P
ij

P
kl

P
mn

, (1)

where P
ij

is the singlet projector for two S = 1/2 spins,

P
ij

=
1

4
� S

i

· S
j

, (2)

hiji indicates nearest-neighbor sites, and the index pairs
ij, kl, and mn in hijklmni are neighbors forming a
horizontal or vertical column, as illustrated in Fig. 1.
The summations are over all pairs and and columns,
and the Hamiltonian respects all the symmetries of the
square lattice, including the 90� rotation symmetry when
J
x

= J
y

= J and Q
x

= Q
y

= Q as we have assumed in
Eq. (1). We will introduce various forms of disorder in
the model, including site dilution and random J and Q
couplings drawn from suitable distributions; detailed def-
initions of the di↵erent cases are presented in Sec. IV.

In the uniform system the Q interactions compete
against the exchange terms J , disfavoring the strong an-
tiferromagnetic (AFM) order present for Q = 0 (the stan-
dard 2D Heisenberg model [46]) by producing correlated
local singlets. The interactions are not frustrated in the
standard (geometric) sense, however, and the model is
amenable to large-scale QMC simulations for all positive
values of the ratio g = Q/J (with J � 0, Q � 0 being
of primary interest) [45]. The ground state has AFM or-
der for g < g

c

, with g
c

⇡ 0.666, and is a spontaneously
dimerized valence-bond solid (VBS) for g > g

c

. In the
VBS phase the Z4 symmetry of four degenerate columnar
dimer patterns is broken.

A columnar VBS state and an AFM–VBS transition is
also realized if the Q-interaction in Eq. (1) is replaced by

a simpler one with only two singlet projectors [43]. How-
ever, the critical coupling ratio g

c

is then much larger,
g ⇡ 22, and the VBS order is much weaker throughout
the phase. Disorder e↵ects on the VBS state are easier to
study with the more extended Q term in Eq. (1), and we
will here demonstrate RS behavior for a significant range
of coupling mean coupling ratios g when either the J or
the Q interactions are random. We expect these disorder
e↵ects to be generic for VBS phases on bipartite lattices.

Before the advent of the J-Q model, VBS physics was
normally associated with geometric frustration, in mod-
els such as the J-J 0 Heisenberg model with nearest- (J)
and next-nearest-neighbor (J 0) couplings. These systems
are not amenable to large-scale QMC studies because of
mixed-sign sampling weigths (the sign problem), except
at the variational level in sampling and optimizing wave
functions [49, 50]. While great progress has been made
in the last several years on density matrix renormaliza-
tion group (DMRG) and Tensor Product State (TNS)
techniques for studying frustrated models (see e.g., the
recent papers [51–53] for applications to the J-J 0 Heisen-
berg model), various convergence issues or limited system
sizes still make it impossible to carry out calculations as
reliable as QMC simulations of sign-problem free models.

The J-Q models exhibit many of the phenomena of
long-standing interest in the context of frustrated quan-
tum magnetism, in particular the AFM-VBS transi-
tion [48], which appears to realize the exotic deconfined
quantum-critical point (DQC) scenario [47]. While it is
presently not clear whether exactly this transition is also
realized in the J-J 0 Heisenberg model [51–53], the phe-
nomenon has attracted a great deal of interest as it is
a prominent example of a quantum phase transition be-
yond the standard Landau-Ginzburg-Wilson framework.
The J-Q models o↵er opportunities to study the emer-
gent degrees of freedom—spinons and gauge fields—that
are the ingredients of the field-theory description of the
DQC point. A very interesting question is how these de-
grees of freedom respond to to quenched disorder, and
this is the topic of the present paper.

By the Imry-Ma argument [57], in the presence of even
an infinitesimal degree of randomness in the local interac-
tions, the VBS can no longer exist as a long-range ordered
state, due to di↵erent columnar dimerization patterns be-
ing energetically favored in di↵erent parts of the lattice.
Thus, the uniform VBS breaks up into domains of dif-
ferent VBS patterns. One such disordered dimer state
has been termed a valence-bond glass (VBG) [58]. It
essentially consists of a random arrangement of short va-
lence bonds and it has been discussed in the experimental
context of the kagome-lattice material herbertshmithites
[8, 9], and also in 3D frustrated spin systems [59, 60]. The
kagome spin S = 1/2 lattice of the herbertshmithites is to
some degree diluted with non-magnetic impurities, and
these also liberate spinons from the singlet ground state
[12]. It was argued that these spinons interact and form a
gapless critical RS state. In this case the spinons can be
regarded as a byproduct of the dilution, and in the orig-

J-Q3 model
Jx=Jy, Qx=Qy

Realize stronger VBS order with J-Q3 model

U(1) symmetry emerges on a length scale 
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Finite-size scaling: 𝜈’/𝜈 ~ 1.4 (H. Shao, W. Guo, AWS, Science 2016)



Critical VBS fluctuations
L=64, J/Q=0.042 L=64 J/Q=0.043J-Q2 model

What happens in a columnar J-Qn model with large n?
- will nucleation of VBS order (first-order transition) happen?

VALENCE-BOND SOLIDS, VESTIGIAL ORDER, AND … PHYSICAL REVIEW RESEARCH 2, 033459 (2020)

FIG. 22. Probability distribution of the dimer order parame-
ter P(Dx, Dy ) of the columnar J-Q6 model at (a) Q = 0.1961,
(b) 0.1962, (c) 0.1963, and (d) 0.1964, computed in SSE simulations
on lattices of size L = 48.

which speaks against the standard nucleation scenario. The
continuous nature of the PVBS-AVBS transition we observe
also shows that nucleation does not necessarily follow from a
large number of interacting spins. Nevertheless, in this case,
a plaquette consisting of four spins becomes one degree of
freedom in the effective Ising model, so the Q term may be
considered as an effectively three-body term.

In any case, the emergent symmetry is clearly not uni-
versal at general first-order AFM-VBS transitions (see also
Ref. [81]), and the possibility also remains that the emergent
symmetry at the AFM-PVBS transition in the present case
only holds up to some length scale larger than the systems
studied here. If so, the transitions in the two different J-Q6
models may be qualitatively the same but differ in the length
scale at which conventional coexistence is apparent—in which
case it still is remarkable and unexpected to have SO(5)
symmetry up to such large length scales in the plaquette
case. It is interesting to note that the two J-Q models where
emergent symmetry of the coexistence state has been ob-
served both have PVBS states; the twofold degenerate one
in Ref. [65] and the fourfold degenerate case studied in the
present paper. This may be an indication of a symmetry-
breaking perturbation that exists (or is strong) at first-order
AFM-CVBS but vanishes (or is very weak) at AFM-PVBS
transitions.

C. SO(5) theory of high-Tc superconductivity

The possible emergence of SO(5) symmetry in condensed
matter systems has received significant attention due to the
fact that phases with O(3) AFM order often exist adjacent
to superconducting phases, which break U(1) symmetry. One
may then speculate that the two types of orders share a

common origin in a unified degree of freedom that collec-
tively can rotate between the two phases [22]. The SO(5)
scenario for high-Tc superconductivity [21] postulates that
doping away from the half-filled-band, where the cuprate ma-
terials are AFM insulators, eventually leads to a “flop” on an
SO(5) sphere from the a direction spanned by the three AFM
components into the plane spanned by the superconducting
order parameter. This mechanism is very similar to what we
have discussed here for the transition of the AFM into the
PVBS state.

In the case of the cuprates, to study the SO(5) scenario
with numerical simulations, the underlying Hubbard or t-J
model first has to be projected down to an effective model
(because the electronic models are too difficult to study on
sufficiently large length scales), which is bosonic and can
be simulated with QMC methods. Such studies were carried
out with the SSE method in Ref. [122]. Though a first-order
transition was identified at a critical doping fraction, the
coexistence state did not exhibit SO(5) symmetry, but instead
conventional phase coexistence was found. It was argued that
long-range Coulomb interactions might eventually act against
phase separation and lead to a quantum-critical point. This
scenario thus differs from the first-order coexistence state with
SO(5) symmetry of the J-Q6 model at the AFM-PVBS transi-
tion, where there is neither phase separation nor conventional
criticality.

Experimentally, the existence of an excitation mode at
41 meV, detected in inelastic neutron scattering experiments,
was taken as support of the SO(5) scenario [21,123], but
arguments to the contrary have also been voiced [124]. Since
the J-Q6 model has a different, more exotic kind of coex-
istence state than what was found in the projected SO(5)
model, it would be interesting to study also the dynamical
spectral functions of the J-Q6 model (which can be done
with SSE simulations in combination with numerical analytic
continuation methods [76]) in and close to the coexistence
state. It is tempting to speculate that the SO(5) predictions
for the cuprates would come out differently with the exotic
coexistence state, and further studies of the J-Q6 model may
serve as an analogy where reliable results can be obtained.

D. Future prospects

Our work presented here illustrates the power of the
J-Q designer Hamiltonian approach in engineering sign-free
Hamiltonians with exotic quantum states and quantum phase
transitions. The results and remaining open issues prompt sev-
eral possible follow-up studies, some of which we summarize
here.

It would clearly be interesting to design a J-Q model with a
continuous AFM-PVBS transition, which was our initial goal.
This may not be so easy however, as we have so far not even
succeeded in creating a PVBS state with less than six singlet
projectors (with Q4 terms similar to our Q6 terms in Fig. 2
leading to CVBS states). If nucleation due to a large number
of coupled spins is indeed the root cause of the first-order
transition (which is not clear, as discussed in Sec. VIII B),
an even larger number of singlet projectors will likely take
us even further away from the DQC scenario. It would still
be worth trying, e.g., Q8 interactions defined on 4 × 4 lattice
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FIG. 22. Probability distribution of the dimer order parame-
ter P(Dx, Dy ) of the columnar J-Q6 model at (a) Q = 0.1961,
(b) 0.1962, (c) 0.1963, and (d) 0.1964, computed in SSE simulations
on lattices of size L = 48.

which speaks against the standard nucleation scenario. The
continuous nature of the PVBS-AVBS transition we observe
also shows that nucleation does not necessarily follow from a
large number of interacting spins. Nevertheless, in this case,
a plaquette consisting of four spins becomes one degree of
freedom in the effective Ising model, so the Q term may be
considered as an effectively three-body term.

In any case, the emergent symmetry is clearly not uni-
versal at general first-order AFM-VBS transitions (see also
Ref. [81]), and the possibility also remains that the emergent
symmetry at the AFM-PVBS transition in the present case
only holds up to some length scale larger than the systems
studied here. If so, the transitions in the two different J-Q6
models may be qualitatively the same but differ in the length
scale at which conventional coexistence is apparent—in which
case it still is remarkable and unexpected to have SO(5)
symmetry up to such large length scales in the plaquette
case. It is interesting to note that the two J-Q models where
emergent symmetry of the coexistence state has been ob-
served both have PVBS states; the twofold degenerate one
in Ref. [65] and the fourfold degenerate case studied in the
present paper. This may be an indication of a symmetry-
breaking perturbation that exists (or is strong) at first-order
AFM-CVBS but vanishes (or is very weak) at AFM-PVBS
transitions.

C. SO(5) theory of high-Tc superconductivity

The possible emergence of SO(5) symmetry in condensed
matter systems has received significant attention due to the
fact that phases with O(3) AFM order often exist adjacent
to superconducting phases, which break U(1) symmetry. One
may then speculate that the two types of orders share a

common origin in a unified degree of freedom that collec-
tively can rotate between the two phases [22]. The SO(5)
scenario for high-Tc superconductivity [21] postulates that
doping away from the half-filled-band, where the cuprate ma-
terials are AFM insulators, eventually leads to a “flop” on an
SO(5) sphere from the a direction spanned by the three AFM
components into the plane spanned by the superconducting
order parameter. This mechanism is very similar to what we
have discussed here for the transition of the AFM into the
PVBS state.

In the case of the cuprates, to study the SO(5) scenario
with numerical simulations, the underlying Hubbard or t-J
model first has to be projected down to an effective model
(because the electronic models are too difficult to study on
sufficiently large length scales), which is bosonic and can
be simulated with QMC methods. Such studies were carried
out with the SSE method in Ref. [122]. Though a first-order
transition was identified at a critical doping fraction, the
coexistence state did not exhibit SO(5) symmetry, but instead
conventional phase coexistence was found. It was argued that
long-range Coulomb interactions might eventually act against
phase separation and lead to a quantum-critical point. This
scenario thus differs from the first-order coexistence state with
SO(5) symmetry of the J-Q6 model at the AFM-PVBS transi-
tion, where there is neither phase separation nor conventional
criticality.

Experimentally, the existence of an excitation mode at
41 meV, detected in inelastic neutron scattering experiments,
was taken as support of the SO(5) scenario [21,123], but
arguments to the contrary have also been voiced [124]. Since
the J-Q6 model has a different, more exotic kind of coex-
istence state than what was found in the projected SO(5)
model, it would be interesting to study also the dynamical
spectral functions of the J-Q6 model (which can be done
with SSE simulations in combination with numerical analytic
continuation methods [76]) in and close to the coexistence
state. It is tempting to speculate that the SO(5) predictions
for the cuprates would come out differently with the exotic
coexistence state, and further studies of the J-Q6 model may
serve as an analogy where reliable results can be obtained.

D. Future prospects

Our work presented here illustrates the power of the
J-Q designer Hamiltonian approach in engineering sign-free
Hamiltonians with exotic quantum states and quantum phase
transitions. The results and remaining open issues prompt sev-
eral possible follow-up studies, some of which we summarize
here.

It would clearly be interesting to design a J-Q model with a
continuous AFM-PVBS transition, which was our initial goal.
This may not be so easy however, as we have so far not even
succeeded in creating a PVBS state with less than six singlet
projectors (with Q4 terms similar to our Q6 terms in Fig. 2
leading to CVBS states). If nucleation due to a large number
of coupled spins is indeed the root cause of the first-order
transition (which is not clear, as discussed in Sec. VIII B),
an even larger number of singlet projectors will likely take
us even further away from the DQC scenario. It would still
be worth trying, e.g., Q8 interactions defined on 4 × 4 lattice
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FIG. 22. Probability distribution of the dimer order parame-
ter P(Dx, Dy ) of the columnar J-Q6 model at (a) Q = 0.1961,
(b) 0.1962, (c) 0.1963, and (d) 0.1964, computed in SSE simulations
on lattices of size L = 48.
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state. It is tempting to speculate that the SO(5) predictions
for the cuprates would come out differently with the exotic
coexistence state, and further studies of the J-Q6 model may
serve as an analogy where reliable results can be obtained.

D. Future prospects

Our work presented here illustrates the power of the
J-Q designer Hamiltonian approach in engineering sign-free
Hamiltonians with exotic quantum states and quantum phase
transitions. The results and remaining open issues prompt sev-
eral possible follow-up studies, some of which we summarize
here.
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Theoretical descriptions of quantum phase transitions have indicated the existence of critical points with
higher symmetry than those of the underlying Hamiltonian. Points of emergent symmetry have not been ex-
pected at discontinuous (first-order) transitions, however. Here we present such an example, where phase coex-
istence at a first-order transition takes the form of an enhanced rotational symmetry in a space of two order pa-
rameters. Using quantum Monte Carlo simulations to study a two-dimensional (2D) S = 1/2 quantum magnet
hosting the antiferromagnetic (AFM) and plaquette-singlet solid (PSS) states recently detected in SrCu2(BO3)2,
we observe that the O(3) symmetric AFM order and the Z2 symmetric PSS order form an SO(4) vector at the
transition. The control parameter (a coupling ratio) rotates the vector from the AFM sector to the PSS sector,
with the length of the combined order parameter vector always remaining non-zero. This phenomenon should
be observable in neutron scattering experiments on SrCu2(BO3)2.

Introduction.—Theoretical studies of exotic quantum states
of matter and the transitions between them can provide new
perspectives on quantum many-body physics and stimulate
experimental investigations. One example is the quantum
phase transition between Néel antiferromagnetic (AFM) and
spontaneously dimerized valence-bond solid (VBS) states in
two-dimensional (2D) quantum magnets [1, 2]. The theory of
deconfined quantum critical points (DQCPs) suggests that this
transition represents a breakdown of the Landau-Ginzburg-
Wilson (LGW) mechanism of phase transitions, as a conse-
quence of quasi-particle fractionalization [3, 4]. Over the past
decade, likely DQCPs have been identified in lattice models,
using “designer hamiltonians” constructed for their amenabil-
ity to large-scale quantum Monte Carlo (QMC) simulations
of VBS physics and the AFM–VBS transition [5–16]. How-
ever, only very recently was a potential experimental realiza-
tion of this type of DQCP reported—in the quasi-2D Shastry-
Sutherland (SS) compound SrCu2(BO3)2 under pressure [17].
Though the SS model Hamiltonian [18] is difficult to study
numerically, due to its geometrical frustration (which causes
sign problems in QMC simulations), a specific type of VBS—
a two-fold degenerate plaquette-singlet solid (PSS)—between
the known AFM and bond-singlet phases was nevertheless
demonstrated rather convincingly using a calculation with
tensor-network states [19]. Zayed et al. [17] showed that a
PSS also exists in SrCu2(BO3)2 and suggested that the AFM–
PSS transition may be a DQCP. The phase transition was not
studied in the experiment, however, and it is not immediately
clear if the two-fold degenerate PSS can support spinon de-
confinement in the same way as a four-fold degenerate VBS.
QMC studies of rectangular lattices with two-fold degenerate
VBS states point to a first-order transition [13].

Here we propose and study a sign-problem-free model that
mimics the SS compound, in the sense that it shares the same
kinds of AFM and PSS ground states. The Hamiltonian, illus-
trated in Fig. 1 along with the SS model, is a new member in
the “J-Q” family of Hamiltonians [5], with standard antifer-
romagnetic Heisenberg exchange of strength J supplemented
by four-spin interactions of strength Q that weaken and even-

tually destroy the AFM order. Our QMC simulations demon-
strate a quantum phase transition of a new kind, where the
O(3) symmetry of the AFM order parameter and the Z2 sym-
metry of the PSS order combine into an SO(4) (pseudo)vector,
even though no such large symmetry is apparent in the Hamil-
tonian. Non-LGW transitions with emergent higher symme-
tries have been intensely investigated during the past few years
[20–27], but, to our knowledge, always in the context of criti-
cal points, where the magnitude of the order parameter(s) van-
ishes. In the case discussed here, the order parameters exhibit
discontinuities, but the transition is not a conventional first-
order one. We show that the AFM order is rotated by the con-
trol parameter into PSS order, and that coexistence of the two
phases at the transition is in the form of an SO(4) symmet-
ric vector order parameter. The transition mechanism is, thus,
similar to that in an ordered system tuned through a point of
explicitly higher symmetry that separates ordered phases with
symmetries that are subgroups of the higher symmetry. A well
known case is the XXZ spin model tuned from the O(2) sym-
metric XX phase through the O(3) symmetric XXX (Heisen-
berg) point into the Z2 (Ising) phase. However, in our system
the different components of the SO(4) vector are physically
distinct order parameters, not just different components of a
magnetic order, and the higher symmetry is emergent instead
of explicit and trivial.

Ground states.—Our Hamiltonian can be defined using sin-
glet projection operators P
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where hiji denotes nearest neighbors on a periodic 2D square
lattice with N = L2 sites and ⇤0 are the 2 ⇥ 2-site plaque-
ttes with J 0 bonds in the SS model (Fig. 1), with ijkl corre-
sponding to consecutive sites around a plaquette. We define
the coupling ratio g = J/Q. For g ! 1, this checker-board
J-Q (CBJQ) model reduces to the usual AFM ordered (at tem-
perature T = 0) Heisenberg model, and for g ! 0 we will
demonstrate a two-fold degenerate PSS. The model does not
have any phase corresponding the SS model for large J 0/J ,
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Figure 1. In the SS model (a), AFM Heisenberg interactions of
strength J between nearest neighbors compete with interactions of
strength J

0 on the subset of next-nearest neighbors indicated by di-
agonal lines. In the CBJQ model (b) the J

0 interactions are replaced
by four-spin Q interactions defined in Eq. (1).

where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
study a conventional dimer order parameter

D
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=
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X

r

(�1)rµSz(r)Sz(r+ µ̂), µ = x, y, (2)

where the sum is over all lattice coordinates r = (r
x

, r
y

). In a
columnar symmetry-broken VBS, we have hD

x

i 6= 0, hD
y

i =
0 for x-oriented bond order and the same with x $ y for y
oriented bonds. Since a singlet plaquette can be regarded as a
resonance between two horizontal and two vertical bond pairs,
a two-fold degenerate PSS should have |hD

x

i| = |hD
y

i| 6= 0,
which on the lattice in Fig. 1 would correspond to alternat-
ing higher and lower singlet density on the plaquette rows and
columns. On a finite lattice the symmetry is not broken, and
the system fluctuates between the two possible states. We
use the SSE method to generate the probability distribution
P (D

x

, D
y

). While strictly speaking not a bona fide quantum
mechanical observable, this distribution nevertheless properly
reflects the fluctuations and symmetry properties of the sys-
tem. Results on either side of the AFM–PSS transition (the
exact location of which will be discussed below) are shown in
Fig. 2. We can clearly see the two-fold symmetry expected for
a PSS, instead of a four-fold symmetry of the columnar VBS
[9, 30] that also is compatible with the lattice.

If the Q terms are included for all plaquettes we arrive back
to the original J-Q model, whose AFM–VBS transition ap-
pears to be continuous [16]. In accord with the DQCP theory,

Figure 2. Dimer order distribution P (D
x

, D

y

) in the ground state
of the L = 96 CBJQ model at g = 0.20 (in the PSS phase) and
at g = 0.24 (in the AFM phase). The different intensities in the
two maximums at g = 0.20 reflect slow migration between the two
symmetry-broken states in the QMC simulations.

an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
rameters defined solely with the Sz spin components,
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where the subscripts s (spin) and p (plaquette) mark the AFM
and PSS order parameters, respectively. In m

s

, r runs over all
N sites on the lattice and �(r) = ±1 is the staggered AFM
sign. In m

p

, we have defined an operator

P z(q) = Sz(q)Sz(q+ x̂)Sz(q+ ŷ)Sz(q+ x̂+ ŷ), (4)
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Figure 1. In the SS model (a), AFM Heisenberg interactions of
strength J between nearest neighbors compete with interactions of
strength J

0 on the subset of next-nearest neighbors indicated by di-
agonal lines. In the CBJQ model (b) the J

0 interactions are replaced
by four-spin Q interactions defined in Eq. (1).

where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
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proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
rameters defined solely with the Sz spin components,
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FIG. 1. (Color online) The phase diagram of the Shastry-
Sutherland model as a function of nearest-neighbor coupling J

(J ′ = 1), obtained with iPEPS. The width of a bond is proportional
to the magnitude of the bond energy, where full (dashed) lines
correspond to negative (positive) energies. The arrows in the right
panel illustrate the Néel order. In between the well-established dimer
and Néel phase we find a phase with plaquette long-range order.

The paper is organized as follows: In Sec. II we provide
a brief introduction to the iPEPS method and explain the
different simulation setups used in this work. In Sec. III
we present our simulation results, first for values of J deep
in the individual phases, followed by a detailed study of
the phase transitions. Finally, in Sec. IV we summarize our
findings. In the Appendix the scheme to treat next-nearest-
neighbor interactions in iPEPS is explained.

II. METHOD

A. Infinite projected entangled-pair states

In this section we provide a short overview of iPEPS. For
a more detailed introduction to iPEPS and tensor networks in
general we refer to Refs. 14 and 25–27.

The main idea of a tensor network ansatz is to represent
(approximate) the coefficients ci1i2...iN of a wave function,

|!⟩ =
∑

i1i2...iN

ci1i2i3...iN |i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |iN ⟩, (2)

by a trace over a product of tensors. Here each index ik
runs over the d local basis states of a lattice site. The most
famous example is matrix product states (MPS) which form
the class of variational states underlying the density-matrix
renormalization group (DMRG) method.15 In an MPS the
coefficients are given by a trace over the product of 3-index
tensors T lr

i (with 2-index tensors at the boundaries), as for
example for a 6-site system

ci1i2i3i4i5i6 ≈
∑

j1j2j3j4j5
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Thus, each coefficient ci1i2i3i4i5i6 is given by a product of
matrices (with vectors at the open boundaries), hence the name
matrix product state. Tensor networks are most conveniently
represented graphically, as shown in Fig. 2(a) for this particular
example. Each tensor is represented by a shape with lines (legs)
attached to it, which correspond to the indices of the tensor.
A connection between two tensors implies a sum over the
corresponding index, and an open leg of a tensor corresponds
to the physical index for the local Hilbert space of a site. Each
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FIG. 2. (Color online) Graphical representation of an infinite
projected entangled-pair state (iPEPS) made of a 4 × 2 unit cell
of tensors (surrounded by thick dashed lines) which is periodically
repeated. Each sphere corresponds to a rank-5 tensor and the lines
(legs) attached to the sphere represent the indices of the tensor, as
shown on the right-hand side.

auxiliary index jk runs over D elements, which is called the
bond dimension. Thus, D controls the size of the tensors (or
matrices), i.e., the number of variational parameters of the
ansatz.

A projected entangled-pair state (PEPS)13 is a natural
generalization of a matrix product state to two dimensions.
Instead of a three-index tensor, a five-index tensor T ldru

i

is introduced for each lattice site on a two-dimensional
(square) lattice, where each tensor is connected with its four
neighboring tensors via the auxiliary indices l, d, r , u, each
having a bond dimension D. Thus, the number of variational
parameters per tensor is dD4. An infinite PEPS (iPEPS) is an
ansatz for a wave function in the thermodynamic limit.14 It is
made of a unit cell of tensors which is periodically repeated on
the infinite lattice, as depicted in Fig. 2(b). If the wave function
is translational invariant, the same tensor can be used on each
lattice site. If the state breaks translational symmetry, a larger
unit cell may be required.17 In practice, different unit cell sizes
are tested to check, which size leads to the state with lowest
variational energy.

An iPEPS with D = 1 is nothing but a site-vectorized wave
function (a product state), parametrized by vectors Ti on each
site. With increasing D the iPEPS can represent more and more
entangled states, with a scaling of the entanglement with block
size which obeys the area law of the entanglement entropy.25,28

Or in other words, with increasing D the iPEPS can take
into account more of the quantum fluctuations of the true
ground state. These quantum fluctuations may select, e.g., one
of infinitely many degenerate states in the classical D = 1
case. Thus, iPEPS provides a way to systematically study a
state as a function of D, where D controls the amount of
quantum fluctuations (or entanglement) in the system.

In order to obtain an approximate representation of the
ground state for a given Hamiltonian, the tensors need to
be optimized; i.e., the best variational parameters have to be
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Figure 3. Finite-size scaling of CBJQ results from SSE simulations at T = 1/L. (a) Spin (open symbols) and plaquette (solid symbols) Binder
cumulants versus g for L = 24 (black), 48 (blue) and 96 (red). Interpolations within these data sets (and results for other system sizes) underlie
the analysis presented in the other panels. In (b) the crossing g-values of U

z

and U

p

are shown vs 1/L along with the (L, 2L) same-quantity
crossing points from U

z

and U

p

. The points approach the infinite-size transition point g
c

= 0.2175 ± 0.0001. The curves are fits including
a single power-law correction / L

�! . In (c) the squared order parameters at the Binder (L, 2L) cross points are graphed versus 1/L along
with polynomial fits. The estimator of the correlation-length exponent, Eq. (6), is shown in (d) for both order parameters, along with line fits.
In all fits, small system sizes were excluded until acceptable agreement with the functional forms were obtained.

Figure 4. Results for the classical 3D Heisenberg model with anisotropy � graphed as in Fig. 3. Here T

�1 = 0.7 > T

�1
c

for all values of �.
The system sizes in (a) are L = 8 (black), 16 (blue) and 32 (red), with open and solid symbols used for U

xy

and U

z

, respectively. In the other
panels the analysis is presented as in Fig. 3.

The slopes of the cumulants at g
c

can be used to extract
the correlation length exponents ⌫

z

and ⌫
p

, using two system
sizes, L and bL [16, 36]:

1

⌫
zp

=

1

ln(b)
ln


dU

zp

(g, bL)/dg

dU
zp

(g, L)/dg

�

g=gc(L)

, (6)

where g
c

(L) is the relevant (L, bL) cross point. The deriva-
tives can be evaluated directly in the QMC simulations, and
we interpolate to obtain the cross points and slopes from data
on a dense g-grid in the neighborhood of g

c

.
The analysis is presented and explained in Fig. 3. We find a

single transition with g
c

= 0.2175±0.0001 based on all three
cross point estimators in Fig. 3(b). Most notably, in Fig. 3(c)
the order parameters at their respective Binder crossing points
do not vanish as L ! 1. This coexistence of AFM and PSS

order is a decisive indicator of a first-order transition. Another
first-order indicator is 1/⌫

z

and 1/⌫
p

growing to values larger
than 3 with increasing L. At a classical first-order transition,
1/⌫ ! d, where d is the spatial dimensionality. Here, in 2+1
dimensions we might expect 1/⌫

zp

! 3, but in Fig. 3(d) we
see larger values, perhaps related to the Anderson-Goldstone
rotor spectrum of the coexistence state. In any case, the large
values do not support the already ruled-out continuous transi-
tion. Then one would normally also expect divergent negative
peaks in the Binder cumulants [37, 38], which are not seen in
Fig. 3(a) but are present at the first-order transition in a J-Q
model with staggered Z4 VBS [39].

The lack of negative Binder peak at the first-order transition
leads us to consider alternative scenarios for coexisting order
parameters. A well known case is a system with long-range

4

Figure 4. (a) One quadrant of the sampled [43] distribution of two
components of an O(4) vector with Gaussian length fluctuations with
mean R = 1 and standard deviation �. (b) Projector QMC distribu-
tion P (m

z

,m

p

) for the L = 96 CBJQ model at three coupling ratios
g. The x axis represents the z component of the AFM order parame-
ter m

z

, while the y-axis is the PSS order parameter m
p

[39].

(L = 8, 16), but no detectable deviations at gc for the largest
systems studied (up to L = 96).

Having concluded that there is emergent O(4) symmetry,
we can also understand why 1/⌫z,p > 3 in Fig. 3(b): The
dynamic exponent of the Anderson-Goldstone rotor states as-
sociated with O(N � 3) order is z = 2, and therefore one
may expect the exponents to eventually tend to d + z = 4

when L ! 1 at T = 0. The deviations may be due to T > 0

effects when T is scaled as L�1 (instead of L�2). As we show
in SM [39], quantitative measures of the emergent O(4) sym-
metry in our T = 0 calculations exhibit L�4 scaling of the
size of the g-window in which the symmetry is emergent.

Another interesting consequence of O(4) symmetry should
be a specific logarithmic (log) form of the critical PSS tem-
perature Tc versus the distance � = gc � g from the T = 0

transition point, Tc / log

�1
(C/�), as in an O(N � 3) model

with an Ising deformation [31, 32]. This form is very different
from that expected close to an Ising quantum-critical point,
where Tc / �⌫3D , where ⌫3D is the 3D Ising correlation-length
exponent. Neither form should apply at a conventional first-
order transition extending from (gc, T = 0) to some T > 0. If
the O(4) breaking perturbation is very weak, one should still
expect the log form to hold down to some low temperature.

We have computed Tc(g) for the PSS by the cumulant-
crossing method using SSE data for L  160. We can reli-
ably extrapolate Tc to the thermodynamic limit for g  0.216
(� & 0.0015), as shown in Fig. 5. The behavior for � . 0.02
is very well described by the log form, lending strong indirect
support to the emergent O(4) symmetry through an important
physical observable in the thermodynamic limit.

Discussion.—We cannot exclude that the O(4) symmetry is
present only up to some length scale above the largest system,
L = 96, studied here. Such symmetry violations at a long
scale may be expected at certain weak first-order transitions,
either when the system is close to a fine-tuned point with or-
der parameter of the higher symmetry (though no convincing

Figure 5. Inverse PSS critical temperature versus the shifted coupling
ratio � = g

c

�g. The red line is a fit to the expected log form, and the
black curve is of the conventional Ising form as a contrast. The inset
shows examples of the extrapolation of T

c

using the expected critical
scaling form with a subleading correction, T

c

= aL

�b(1 + cL

�d),
with fitting parameters a, b, c, d and L up to 160.

emmergent symmetries were observed in connection with this
scenario [44]), or in proximity of a quantum-critical point at
which the higher symmetry is emergent [20, 25, 28]. In the lat-
ter case, perturbations break the symmetry above some length
scale ⇠0 larger than the correlation length ⇠ [25].

In the CBJQ model studied here, the observed discontinu-
ities are rather strong; from Fig. 3(c), the magnitude of the
O(4) vector in AFM units is ms = h4m2

zi1/2 ⇡ 0.12, almost
25% of the maximum staggered magnetization 1/2. The first-
order nature of the transition is apparent even on small lat-
tices, e.g., as seen in the flow of 1/⌫z toward an anomalously
large value in Fig. 3(d). Thus, in the scenario of Ref. [25], we
should have ⇠ ⌧ L ⌧ ⇠0 ⇠ ⇠1+a, where the exponent a must
be rather large in order to give the clear separation of length
scales needed to account for the observed behavior. Such be-
havior has not been previously anticipated; rather, emergent
symmetry on large length scales has been cited as support for
continuous non-LGW transitions [20, 27]

In an alternative scenario of an asymptotic O(4) symme-
try, the dominant symmetry-breaking field is tuned to zero at
the AFM-PSS transition and higher-order O(4) violating per-
turbations would vanish upon renormalization, perhaps by an
extension of the DQCP framework, or by some more general
mechanism. While emergent O(N ) multicritical points arising
from O(N�1) and Z2 order parameters have been extensively
discussed within the LGW framework [45–48], the influence
of the higher symmetry on associated first-order lines have not
been addressed until recently in the weakly first-order DQCP
context [25]. In order to exclude that the CBJQ model is ac-
cidentally fine-tuned to vanishing or extremely small pertur-
bations of the O(4) symmetry, we have also studied a model
extended by additional interactions; see SM [39].

We designed the CBJQ model with SrCu2(BO3)2 in mind.
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(L = 8, 16), but no detectable deviations at gc for the largest
systems studied (up to L = 96).

Having concluded that there is emergent O(4) symmetry,
we can also understand why 1/⌫z,p > 3 in Fig. 3(b): The
dynamic exponent of the Anderson-Goldstone rotor states as-
sociated with O(N � 3) order is z = 2, and therefore one
may expect the exponents to eventually tend to d + z = 4

when L ! 1 at T = 0. The deviations may be due to T > 0

effects when T is scaled as L�1 (instead of L�2). As we show
in SM [39], quantitative measures of the emergent O(4) sym-
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where Tc / �⌫3D , where ⌫3D is the 3D Ising correlation-length
exponent. Neither form should apply at a conventional first-
order transition extending from (gc, T = 0) to some T > 0. If
the O(4) breaking perturbation is very weak, one should still
expect the log form to hold down to some low temperature.

We have computed Tc(g) for the PSS by the cumulant-
crossing method using SSE data for L  160. We can reli-
ably extrapolate Tc to the thermodynamic limit for g  0.216
(� & 0.0015), as shown in Fig. 5. The behavior for � . 0.02
is very well described by the log form, lending strong indirect
support to the emergent O(4) symmetry through an important
physical observable in the thermodynamic limit.

Discussion.—We cannot exclude that the O(4) symmetry is
present only up to some length scale above the largest system,
L = 96, studied here. Such symmetry violations at a long
scale may be expected at certain weak first-order transitions,
either when the system is close to a fine-tuned point with or-
der parameter of the higher symmetry (though no convincing
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emmergent symmetries were observed in connection with this
scenario [44]), or in proximity of a quantum-critical point at
which the higher symmetry is emergent [20, 25, 28]. In the lat-
ter case, perturbations break the symmetry above some length
scale ⇠0 larger than the correlation length ⇠ [25].

In the CBJQ model studied here, the observed discontinu-
ities are rather strong; from Fig. 3(c), the magnitude of the
O(4) vector in AFM units is ms = h4m2

zi1/2 ⇡ 0.12, almost
25% of the maximum staggered magnetization 1/2. The first-
order nature of the transition is apparent even on small lat-
tices, e.g., as seen in the flow of 1/⌫z toward an anomalously
large value in Fig. 3(d). Thus, in the scenario of Ref. [25], we
should have ⇠ ⌧ L ⌧ ⇠0 ⇠ ⇠1+a, where the exponent a must
be rather large in order to give the clear separation of length
scales needed to account for the observed behavior. Such be-
havior has not been previously anticipated; rather, emergent
symmetry on large length scales has been cited as support for
continuous non-LGW transitions [20, 27]

In an alternative scenario of an asymptotic O(4) symme-
try, the dominant symmetry-breaking field is tuned to zero at
the AFM-PSS transition and higher-order O(4) violating per-
turbations would vanish upon renormalization, perhaps by an
extension of the DQCP framework, or by some more general
mechanism. While emergent O(N ) multicritical points arising
from O(N�1) and Z2 order parameters have been extensively
discussed within the LGW framework [45–48], the influence
of the higher symmetry on associated first-order lines have not
been addressed until recently in the weakly first-order DQCP
context [25]. In order to exclude that the CBJQ model is ac-
cidentally fine-tuned to vanishing or extremely small pertur-
bations of the O(4) symmetry, we have also studied a model
extended by additional interactions; see SM [39].

We designed the CBJQ model with SrCu2(BO3)2 in mind.
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(L = 8, 16), but no detectable deviations at gc for the largest
systems studied (up to L = 96).

Having concluded that there is emergent O(4) symmetry,
we can also understand why 1/⌫z,p > 3 in Fig. 3(b): The
dynamic exponent of the Anderson-Goldstone rotor states as-
sociated with O(N � 3) order is z = 2, and therefore one
may expect the exponents to eventually tend to d + z = 4

when L ! 1 at T = 0. The deviations may be due to T > 0

effects when T is scaled as L�1 (instead of L�2). As we show
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order transition extending from (gc, T = 0) to some T > 0. If
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expect the log form to hold down to some low temperature.

We have computed Tc(g) for the PSS by the cumulant-
crossing method using SSE data for L  160. We can reli-
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physical observable in the thermodynamic limit.

Discussion.—We cannot exclude that the O(4) symmetry is
present only up to some length scale above the largest system,
L = 96, studied here. Such symmetry violations at a long
scale may be expected at certain weak first-order transitions,
either when the system is close to a fine-tuned point with or-
der parameter of the higher symmetry (though no convincing
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emmergent symmetries were observed in connection with this
scenario [44]), or in proximity of a quantum-critical point at
which the higher symmetry is emergent [20, 25, 28]. In the lat-
ter case, perturbations break the symmetry above some length
scale ⇠0 larger than the correlation length ⇠ [25].

In the CBJQ model studied here, the observed discontinu-
ities are rather strong; from Fig. 3(c), the magnitude of the
O(4) vector in AFM units is ms = h4m2

zi1/2 ⇡ 0.12, almost
25% of the maximum staggered magnetization 1/2. The first-
order nature of the transition is apparent even on small lat-
tices, e.g., as seen in the flow of 1/⌫z toward an anomalously
large value in Fig. 3(d). Thus, in the scenario of Ref. [25], we
should have ⇠ ⌧ L ⌧ ⇠0 ⇠ ⇠1+a, where the exponent a must
be rather large in order to give the clear separation of length
scales needed to account for the observed behavior. Such be-
havior has not been previously anticipated; rather, emergent
symmetry on large length scales has been cited as support for
continuous non-LGW transitions [20, 27]

In an alternative scenario of an asymptotic O(4) symme-
try, the dominant symmetry-breaking field is tuned to zero at
the AFM-PSS transition and higher-order O(4) violating per-
turbations would vanish upon renormalization, perhaps by an
extension of the DQCP framework, or by some more general
mechanism. While emergent O(N ) multicritical points arising
from O(N�1) and Z2 order parameters have been extensively
discussed within the LGW framework [45–48], the influence
of the higher symmetry on associated first-order lines have not
been addressed until recently in the weakly first-order DQCP
context [25]. In order to exclude that the CBJQ model is ac-
cidentally fine-tuned to vanishing or extremely small pertur-
bations of the O(4) symmetry, we have also studied a model
extended by additional interactions; see SM [39].

We designed the CBJQ model with SrCu2(BO3)2 in mind.
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Emergent O(4) symmetry: Combine AF,PS order parameter
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P (mz,mp)Distribution (L=96)

At transition: order parameter lives on surface of O(4) sphere
- fluctuating radius due to finite size
Emergent SO(5) in a different model: J. Takahashi & AWS, PRR 2020
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Unified phase diagram for quantum magnets with DQCPs
B. Zhao, J. Takahashi, Sandvik (PRL 2020)
J. Yang, Sandvik, L. Wang (PRB 2022)
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Original DQCP scenario:
generic transition vs one parameter

Does not exclude 1st-order transitions
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There can be a multi-critical end 
point of the generic critical line,
followed by 1st-order line
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first order The continuous transitions
may even be unreachable
- non-unitary CFT 
  (Senthil et al. PRX 2017,…)

Alternative scenario
The DQCP is a fine-tuned
multi-critical point
- separating first-order line
  and a gapless spin-liquid
- g, h are relevant fields at the 
  DQCP, tuned by two parameters
  in a lattice model

- but we can at least get 
  close enough to observe 
  critical scaling


