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Basic setup

- Bosonic tensor product Hilbert space H = ® H;

. Hamiltonian sum of local terms

A=Y"H,

- May have global symmetries

A

Ul(g),H|=0 VgedG
G = Gint X Glat

In the thermodynamic limit, H

« Gapped (trivial)

- Spontaneously breaks (discrete) symmetry
- Gapless



Generalized Lieb-Schultz Mattis Theorems

. Assume H is translation-invariant
H; = H;11
. Internal global symmetry Giy = Z?\,
(Generators: X = ® X; / = ® 2
i

1

. Internal symmetry realized projectively at each site

Ui(9)Ui(h) = a(g, h)Ui(gh) a] € H*(G,U(1))
X7 =e"N 7, X, a]™ = [0]
XN=2Z)"=1

[Lieb, Schultz, Mattis, 1961]

[Affleck, 1959] (Generalized) Lieb-Schultz-Mattis (LSM) Theorem:

[Oshikawa, 2000]
[Hastings, 2004] ~ . .
[Ohen, G e, 2011] H cannot have a unique, symmetric, gapped ground
Else, Thorngren, 2019
[Prakash, 2020| State_
[Ogata, Tachikawa, Tasaki, 2020]
[Gioia, Wang, 2022]




Generalized Lieb-Schultz Mattis Theorems

Intuition behind LSM ingappability /anomaly:

Take system to obey:
- U(g9)U(h) = U(gh)
. Assume ground state |1p) is unique

.« At most Ul(g)|wo) = e"*|1o)

Adding a site amounts to adding translation symmetry defect

(e—e—e—e—e)o{o—0o—0o—0—0)

- Dangling site transforms in projective representation
. Irreducible projective representations have dimension > 1

- Symmetry spoiled in presence of non-trivial translation background
. Signal of mixed 't Hooft anomaly

Need non-trivial low-enerqy theory to saturate
r.e. CFT



LSM at ¢ = 1 and beyond

Simplest examples of 14+1d CFTs with discrete LSM anomaly are ¢ = 1 compact bosons

Known to describe e.g. anti-ferromagnetic Heisenberg chain (su(2);) and related models
H = E S XiXip1 + YY1 +J. 245244
1

- These models have Z% C Gipt
.« Gapped (SSB) unless microscopic U(1) present (i.e. |J;| =|J,| etc.)

. Z% X Lityrans LSM anomaly matched in lattice and continuum



LSM at ¢ = 1 and beyond

For N = 3 the story is more rich

Many gapless models have ¢ = 2 compact
boson descriptions

0= (LXiX[ + 1220, ) + he

|Qin, Leinaas, Ryu, Ardonne, Xiang, Lee, 2012]

+ Above models gapless with only 72 x Zi ans
microscopically

- With more terms and enhanced symmetry,
described by su(3);

Taken from [Alavirad, Barkeshli, 2019]

Story not clear beyond N = 3, no numerics for models with just Z3%



Anomaly matching for N = 2

Action Local operators
An mR A n mR _
S = /dzfﬂ Oupd* Vi (2,2) = € (B2 )Xe@Hi(7="7 ) Xa(2)
CorR n,m € Z
Y~ QT aT
o J() = 0X,1 ()
p(2,2) = Xp(2) + XR(2) J(2) = 0XRg(2)
Global Symmetries
Winding/momentum U(1) symmetries Charge conjugation Z$
U(1)w U(1)m
Q aR
X X — i
L= L+R XL = X+ Xr/r = —XL/R
v R
XR%XR—E XR—>XR+%

Internal symmetry group at generic R: G = (U(1)y X U(1),) X ZZO

Ly X 15" X ZQC C (G carries LSM anomaly



Anomaly matching for N = 2

To see anomaly, look at twisted sectors

Twist boundary conditions by Z7* symmetry (assume IR action of lattice translation)

| | 1
p(e* 2, e Z) = p(2,2) + 21(m + )R

2
L. . . . 1
The winding mode is now is quantized as m € Z + 5
7§ 7Y B
Vn,m HQ V—n,—m - (_1) mv—n,—m
7Y 7.5
Vi — (=1)"Vam —> (=1)"V_pn

(=)™ # (=)™

Charge conjugation and winding symmetry do not commute in twisted sector!

7Y x 7§ realized projectively



(Questions for bootstrap

What s the space of CFTs with LSM anomalies?

Assume in the IR Zirans — Zny = looking for CFTs with internal G = Z?\,

For any N odd and prime, abundance of examples at ¢ = N -1

For N not prime, we point out other free boson theories with lower c

Hard Question: For any N is there any CFT with the LSM anomaly
with ¢ < N-17

|Alavirad, Barkeshli, 2019]

Fasier Question: Is there a universal upper bound on the lightest
charged operator in theories with the LSM anomaly as a function of c?

[Lin, Shao, 2019,2021]
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Symmetries and topological defect lines

Internal symmetries in (1+1)d CFT implemented via topological line operators called
topological defect lines (TDLs)

L [Frolich, Fuchs, Runkel, Schweigert, 2004]
|Gaiotto, Kapustin, Seiberg, Willett, 2015]
[Chang,Lin,Shao,Wang,Yin,2018]

Assume each TDL corresponds to group element g € GG for finite group G
Lines can fuse and form junctions

£g Eh £gh

— A v E V£9h7£_9’£_h

Y
Q

D
>
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't Hoott anomalies with TDLs

Different internal configurations of TDLs with four external TDLs related by F-move

Ly Lohk L, s

Phase difference is a 3-cocycle w € H?(G,U(1))

G is anomalous if W cohomologically non-trivial

Anomalous discrete symmetries affect symmetry properties of defect operators



Defect operators

g
p?)
- TDLs can terminate on point-like defect operators

- Spectrum of defect operators encoded in defect Hilbert space Hp,

13



Defect operators

g
L9.09
Ly
- Can act on defect operators with other TDLs via “lasso”

. Anomalies imply failure of the group law in Hg,

. Defect operators carry fractionalized /projective representations when G is anomalous

LILY = xq(h, k) LY,

14



Ziyg anomalies

Simplest possible anomalous symmetry in (1+1)d is Zy
3
H>(Zp,U(1)) = Zypy

k] € H*(Zn,U(1)) leads defect operators to have restricted spin
For defect operator living on defect generating the Z; :
s€k/M?*+7Z/M

£ !k—M\)
M2 M?

Unitarity = Apjn = min(

Successtully incorporated into modular bootstrap by Lin, Shao [Lin, Shao, 2019,2021]

Note: for general group G and anomaly w

w
ZM XZM XZM

determines spin selection rule for Z,; C G

15



77 LSM anomalies

- Representative cocycle for LSM L., Ly
anomaly: i
w(g,h, k) = e & 91h2ks
g =(91,92,93) € Ly -
Ly, Ly,
L, Ly,

- LSM anomaly leads to projective representations ot Z?\, for defect operators
 This is essentially the only signature for odd N
- Modular bootstrap insensitive to LSM anomaly for odd N

- For even N some defects may have Zj,; anomalies

16



Why expect a bound?

Place theory on a torus with symmetry twists

17



Why expect a bound?

Choose some subgroup Zn C Z?\, and suppose it acts trivially (no charged operator)
Assume we have a CF'T with unique vacuum and LSM anomaly

Then

But then

Ly

Defect ground state N-fold degenerate but bulk vacuum is unique

—>  Must have a charged operator, ¢ = 0 forbidden

18



Constraints on (1+1)d CFTs with global symmetries

Modular covariance Cardy, 1986]
[Lin, Shao, 2019,2021]
L,
S — Eg
Crossing symmetry Zamolodchikov, Zamoldchikoy, 1989
|Chang,Lin,Shao,Wang,Yin,2018|
91 919293~ " —1
¥ 91929
1 g04 90? <7041 293
—1 —1 —1
W(91 ydo 593 )
g gs
g2 g3 ©3° ©3

¥ Y3
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Bootstrapping LSM anomalies

Correlator bootstrap

DD Abn ViAo, w0, (1:7) - Ao, =0

R Ogr
|Rattazzi, Rychkov, Tonni, Vichi, 2008|

|[El-Showk, Paulos, Poland, Richkov, Simmons-Duffin, Vichi, 2012]
|Chang,Lin,Shao, Wang,Yin,2018|

. Fix some external operators (may be defect or local)
- Obtain upper bounds on dimension of operators appearing in OPE
- May also bound e.g. OPE coefficients, consequently lower bound central charge

Modular bootstrap

j j . O [Collier, Lin, Yin, 2016]
n. - M (7’ 7‘) — Lin, Shao, 2019,2021
E : hh AL\ T in, Sho, 2019.2021]
iA,s |Chang,Lin,Shao,Wang,Yin,201§|
Y Y

Constraint for each irreducible representation of G and each H .

Positive coeflicients encode degeneracy of Virasoro primaries

Able to rule out combination of gaps in local/defect operator sectors

I.e. universal upper bound on scalar gap

20



Bootstrapping LSM anomalies

Ultimately want universal upper bound on e.g. scalar gap Ay
. Can restrict to lightest charged /symmetric operator

Assume we have CF'T obeying:
1. Central charge c 2. LSM anomaly 3. Scalar defect operator ¢’

Lightest scalar Scalar local
defect operator operator spectrum
A 4 A,
Correlator
9 / \ - bootstrap
Ap| — OPE ~ allowed region
0 0 for scalar gap

Conversely... assuming scalar gap leads to lower bound on lightest defect operator

21



Bootstrapping LSM anomalies

Defect crossing symmetry leads to a stronger assumption beyond unitarity on
defect spectrum gap when scalar gap is assumed

Local operators Defect operators

iy = 69 2 Hp = 69 e,
p T g T

Gaps A™" Gaps A?gin

Ask modular bootstrap to rule out combination of defect and local operator gaps

If successful, we have upper bound on local scalar gap

22



Correlator bootstrap with defect operators

Want to quantify the consequences of a single scalar detect operator in the spectrum
living on an order-IN, non-anomalous defect line

- Two such defect operators mutually local
- Treat as local operators transforming in ALy,
representations of non-Abelian groups

0—>Zn —G—7Z% —0 o9

T

ch_Ie(37 ZN)” [Bhardwaj, Tachikawa, 2017]

- Take external operators to transform in the N-dimensional rep
- Anomaly ensures OPE of defect operators contains charged local operators

NMelN= @ o
pERep(He(3,ZN))
p 1d

- One-dimensional irreps of “He(3,Zy)” are Z3, representations
- Without anomaly, just have i.e.

dX P~ T+ ..



Implementation

Used autoboot to generate correlator bootstrap constraints (Go, Tachikawa, 2019]
- Assume external operators transforming in /N dimensional rep

N | # vector constraints Dimension
2 3 3

3 § 12

4 15 33

5 6 28

6 18 36

Modular bootstrap constraints obtained with character theory

Computations performed on Hyak cluster at UW

. For central charge bounds at A = 15 each call took 1 hour on 40-core node for N = 5
- Thousands of calls to generate plots



Local operators from defect operators

3.0

2.7

2.07

<] 1.57

1.0~

0.0 0.9 0.4 0.6 0.8 1.0

Upper bound on dimension of lightest local operator
appearing in OPE of defect operators computed at A = 25
and Smax = 50.
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Lower bounds on central charge

N—=3
2.0 4.0
| 3 3.9
3.0
1.6+
Q © 2.5
1.4
2.0 1
1.2 151
1.0 ' ' ' ' 1.0 '
0.00 0.05 0.10 0.15 0.20 0.25 0.0 0.1

Ap
Lower bounds on central charge assuming varying gap in all local operators as a function of
lightest defect operator dimension. Computed at A = 15 and Smax = 30.

. Scan over local, scalar operator gap (light to dark = low to high gap)
- Impose same gap for all charge sectors

26



Bounds on scalar operators: Z:3

3

DO | +—

- Known theory su(2); saturates bound at ¢ = 1

Charged

T su(2)

N =2

A =25
Smax — o0



Bounds on scalar operators: Z:3

3

- Known theory su(2); saturates bound at ¢ =1

Symmetric

N =2

C

- Relevant, symmetric scalar if 1 < ¢ < 3.5565

A =25
Smax =10



Bounds on scalar operators: Z:

3

.| Charged
| Local

N =3

- Known theory su(3); at prominent kink

- Charged operator bound impossible with modular bootstrap alone!

A =25
Smax =0
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Bounds on scalar operators: 73

5
N =3

.| Symmetric

A=25
Smax =0

- Must contain relevant symmetric scalar if ¢ < 2

30



Bounds on scalar operators: Z;

3
N =4

Charged

- Kinks near ¢ = 1.12,1.65—unexplained

A =25
Smax =10
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Bounds on scalar operators: Z:

3
N =5

Charged

Local

« Sharp kink near ¢ = 2.8—unexplained
. (g2)1 ruled out at A =41 and Smax = 80

A =25
Smax = 50

32



Bounds on scalar operators: Z?

3
N =6

Charged

- Kinks near ¢ = 1.08,1.85—unexplained

33



Summary & Outlook

- LSM anomalies imply bounds on charged operators
. Quantified relationship between central charge (ground state quantity) and scaling
of energy gap in gapless spin chains
- LSM tells us ~ O(1)/L , we make this more precise
. State-of-the-art way of bootstrapping (1+1)d CFTs with global symmetry

. Extend to non-invertible symmetries (ongoing Lin, Shao)

 Study interesting N = 5 kink

- Anomalous symmetries constrain conformal boundary conditions [Thormgren, Wang, 2020
. Leverage this for possible anomaly-dependent ¢ bound? (Coltier, Mazac, Wang, 2021

. Is this a roadmap for anomalies in bootstrap in higher d?

. Line operators in (2+1)d?

34



Spin-selection rules

Subgroup generated by g € GG

G ZQ Zg Z4 ZE) ZG
s lifg=(LLy

2 0 else
Z% — 0 - - -

2 if g; odd

3 . @ _ _
Ly 0 0 else
Zg — — — 0 —
73 1if g =(3,3,3) 0 B ~ 3ifg; odd

0 else 0 else




