The O(N) Gross-Neveu-Yukawa Archipelago

Rajeev S. Erramilli

October 10, 2022

Prepared for Bootsrapping Nature at the Galileo Galilei Institute. Based on [2210.02492] with Luca V. Iliesiu, Petr Kravchuk, Aike Liu, David Poland, and David Simmons-Duffin.

Introduction: The O(N) Gross-Neveu-Yukawa models

$$\mathcal{L}_{O(N)} = -\frac{1}{2}(\partial\phi)^2 - i\frac{1}{2}\psi_i\partial\psi_i - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{4}\phi^4 - i\frac{g}{2}\phi\psi_i\psi_i$$

- \cdot 2-component Majoranas $\psi_{i=1\dots N}$, pseudoscalar ϕ
- O(N) global symmetry plus parity
- $\cdot m^2 \geq m_*^2$: $\langle \phi
 angle =$ 0, ψ_i massless, parity preserved
- + $m^2 < m_*^2$: $\langle \phi
 angle
 eq$ 0, ψ_i massive, parity broken

Parity breaking also means time-reversal symmetry breaking (TRSB).

Condensed matter background

- Graphene lattice (*N* = 8) [Herbut '06; Herbut, Juricic, Roy '09]
- d-wave cuprate superconductors (N = 8) [Vojta, Zhang, Sachdev '00]
- TRSB in topological superconductors [Grover, Sheng, Vishwanath '14]
- Experimentally realizable on the surface of He³-B [Grover, Sheng, Vishwanath '14]
- Critical transition from Cartan symmetry class DIII to class D
- Not in the Chiral Ising universality class

We will come back to this.

Bootstrap background: fermions

Previously studied by the bootstrap [1508.00012, 1705.03484]:

Bootstrap background: $\mathcal{N} = 1$ super-Ising

Contact with $\mathcal{N}=$ 1 super-Ising bootstrap [1807.04434, 1807.05702, 2201.02206]

 $\Lambda = 27, 35, 43, 51, 59$

Model and setup

Results

O(N) GNY vs chiral Ising

Wrap-up

Model and setup

Results

O(N) GNY vs chiral Ising

Wrap-up

$$\mathcal{L}_{O(N)} = -\frac{1}{2}(\partial\phi)^2 - i\frac{1}{2}\psi_i\partial\psi_i - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{4}\phi^4 - i\frac{g}{2}\phi\psi_i\psi_i$$

Let's identify a list of external operators for our bootstrap setup and their spin ℓ , parity \mathcal{P} , and flavor rep μ :

We will consider all 4-point correlation functions of ψ_i, σ, ϵ .

Crossing equations

(

Four point functions involved in the crossing equations: $\{\langle \psi\psi\psi\psi\psi\rangle, \langle\epsilon\epsilon\epsilon\epsilon\rangle, \langle\sigma\sigma\sigma\sigma\rangle, \langle\psi\psi\epsilon\epsilon\rangle, \langle\psi\psi\sigma\sigma\rangle, \langle\sigma\epsilon\psi\psi\rangle, \langle\sigma\sigma\epsilon\epsilon\rangle\}.$ For each of these equations:

$$\mathcal{O}_{i}(x_{1})\mathcal{O}_{j}(x_{2})\mathcal{O}_{k}(x_{3})\mathcal{O}_{l}(x_{4})\rangle = \sum_{I} g_{ijkl}^{I}(u,v)T_{I,ijkl}$$

 $g_{ijkl}^{I}(u,v) = \sum_{\Delta,\rho} \sum_{a,b} \lambda_{ij\mathcal{O}}^{a}\lambda_{kl\mathcal{O}}^{b}G_{ijkl,\Delta,\rho}^{ab,I}(u,v),$

From this point onwards, it's a straightforward process to write out what all the a, b, I are [1612.08987] and plug that all in, and then impose crossing. See our paper and code for the explicit details.

Assumptions

We used perturbative results together with bootstrap results for $\mathcal{N}=1$ super-Ising to arrive at the following assumptions:

Channel	l	\mathcal{P}	μ	Δ_{min}
$\sigma'\sim \phi^3$	0	_	•	3 ¹
$\epsilon'\sim \phi^4$	0	+	•	3
$\sigma_{\rm T} \sim \psi_{(i} \psi_{j)}$	0	_		2
$\psi'\sim\psi\phi^2$	$\frac{1}{2}$	+		2
$\chi\sim\psi\phi^{\rm 3}$	$\frac{1}{2}$	—		3.5
otherwise				$\Delta_{ m U}+10^{-6}$

¹For N = 1 we know that $\Delta_{\sigma'} = 2.8869(25)$, so this gap assumption wasn't used for N = 1.

Numerics

Everything Andy talked about, plus:

- Searching over OPE coefficient ratios [1603.04436]
- Cutting surface search algorithm, and Delaunay mesh search, hotstarting [1912.03324]
- SDPB [1502.02033] with HPC parallelism [1909.09745].
- blocks_3d [1907.11247,2011.01959]
- A whole software stack, written in Haskell, which can be found at [gitlab.com/davidsd/fermions-3d; 2210.02492]

Searched over the space $\{\Delta_{\psi}, \Delta_{\sigma}, \Delta_{\epsilon}, \frac{\lambda_{\psi\psi\sigma}}{\lambda_{\sigma\sigma\epsilon}}, \frac{\lambda_{\psi\psi\epsilon}}{\lambda_{\sigma\sigma\epsilon}}, \frac{\lambda_{\epsilon\epsilon\epsilon}}{\lambda_{\sigma\sigma\epsilon}}\}.$

We had 38 crossing equations (28 for N = 1).

On Yale's Grace cluster and XSEDE's Expanse cluster, we used ${\sim}6\text{M}$ CPU-hours.

Model and setup

Results

O(N) GNY vs chiral Ising

Wrap-up

Results: Archipelago

 ε -exp [1806.04977], Large-N [hep-th/9306107, 1607.05316]; σ - ϵ bootstrap [1807.05702]

Results: Archipelago

Results: Archipelago

ε-expansion [1806.04977]; Monte Carlo [2112.09209]

ε-expansion [1806.04977]; Monte Carlo* [1912.12823]

ϵ-expansion [1806.04977]; Monte Carlo* [1910.07430]

 $\Delta_{\sigma} = 0.58444(8)$ along the SUSY constraint line.

Results: N=1 Supercurrent

 $\Delta_{\rm SC} <$ 2.5003219 at the SUSY Ising point.

Results: Table with critical exponents

	Δ_{ψ}	Δ_{σ}	Δ_{ϵ}	η_{ψ}	η_{ϕ}	ν^{-1}
N = 2						
$n_{\max} = 18, \Delta_{\sigma'} > 2.5$	1.0672(25)	0.657(13)	1.74(4)	0.134(5)	0.313 (25)	1.26(4)
$n_{\max} = 18, \Delta_{\sigma'} > 3$	1.06861 (12)	0.6500(12)	1.725(7)	0.13722(24)	0.3000(23)	1.275(7)
ϵ -exp w/DREG ₃	1.07(2)	0.6467(21)	1.724(15)	0.1400(39)	0.2934(42)	1.276(15)
Monte Carlo	1.068(3)	0.655(5)	1.81(3)	0.136(5)	0.31(1)	1.19(3)
N = 4						
$n_{\max} = 18, \Delta_{\sigma'} > 3$	1.04356 (16)	0.7578(15)	1.899 (10)	0.08712(32)	0.5155(30)	1.101(10)
ϵ -exp w/DREG ₃	1.051(6)	0.744(6)	1.886(33)	0.102(12)	0.487(12)	1.114(33)
Monte Carlo*	-	0.755(15)	1.876(13)	-	0.51(3)	1.124(13)
N = 8						
$n_{\max} = 18, \Delta_{\sigma'} > 3$	1.02119(5)	0.8665(13)	2.002(12)	0.04238(11)	0.7329(27)	0.998(12)
ϵ -exp w/DREG ₃	1.022(6)	0.852(8)	2.007(27)	0.043(12)	0.704(15)	0.993(27)
Monte Carlo*	1.025(10)	0.79(1)	2.0(1)	0.05(2)	0.59(2)	1.0(1)

*s indicate studies conducted on the chiral Ising universality class.

Results: Table with OPE coefficient ratios

	Δ_{ψ}	Δ_{σ}	Δ_{ϵ}	$\lambda_{\psi\psi\sigma}/\lambda_{\sigma\sigma\epsilon}$	$\lambda_{\psi\psi\epsilon}/\lambda_{\sigma\sigma\epsilon}$	$\lambda_{\epsilon\epsilon\epsilon}/\lambda_{\sigma\sigma\epsilon}$
N = 2						
$n_{\max} = 18, \Delta_{\sigma'} > 2.5$	1.0672(25)	0.657(13)	1.74(4)	0.5071(15)	0.2347(35)	1.636(17)
$n_{\max} = 14, \Delta_{\sigma'} > 3$	1.06860(16)	0.6498(14)	1.724(8)	0.5087(10)	0.2392(6)	1.629(13)
$n_{\max} = 18, \Delta_{\sigma'} > 3$	1.06861(12)	0.6500(12)	1.725(7)	_	_	_
N = 4						
$n_{\max} = 18, \Delta_{\sigma'} > 3$	1.04356(16)	0.7578(15)	1.899 (10)	0.4386(6)	0.15530(19)	1.682(18)
N = 8						
$n_{\max} = 18, \Delta_{\sigma'} > 3$	1.02119(5)	0.8665(13)	2.002(12)	0.3322(8)	0.08082(12)	1.71(4)

For $N = 2 \Delta_{\sigma'} > 3$ at $n_{max} = 18$ we didn't have enough statistics to feel comfortable reporting the estamimates of the OPE coefficient ratios.

Model and setup

Results

O(N) GNY vs chiral Ising

Wrap-up

$$\mathcal{L}_{O(N/2)^2 \rtimes \mathbb{Z}_2} = -\frac{1}{2} (\partial \phi)^2 - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{4} \phi^4 - i \frac{1}{2} \psi_i^A \partial \psi_i^A - i \frac{g}{2} \phi(\psi_i^L \psi_i^L - \psi_i^R \psi_i^R)$$

- + 2-component Majoranas $\psi^{A=L,R}_{i=1\dots N/2}$, scalar ϕ
- $O(N/2)^2$ symmetry plus a "chiral" symmetry that exchanges them, hence $O(N/2)^2 \rtimes \mathbb{Z}_2$, plus parity
- + $m^2 \geq m_*^2$: $\langle \phi
 angle =$ 0, ψ_i massless, "chirality" preserved
- $\cdot m^2 < m_*^2$: $\langle \phi
 angle
 eq$ 0, ψ_i massive, "chirality" broken

Model and setup

Results

O(N) GNY vs chiral Ising

Wrap-up

- New archipelago of numerical bootstrap results improves upon existing results
- Distinction between O(N) vs $O(N/2)^2 \rtimes \mathbb{Z}_2$ GNY
- Agreement with emergent supersymmetry for N = 1
- \cdot We now have a highly sophisticated software stack

- Can we use the navigator [2104.09518] to strengthen our gap assumptions?
- Can we numerically resolve the difference between O(N) and $O(N/2)^2 \rtimes \mathbb{Z}_2$?
- What else can we investigate?
- What tools can we develop next?

Thank you!

Two-sided Padé Approximants of Scalar ∆s

Two-sided Padé Approximants of Fermion Δs

We define the three-point conformal structures,

	$\mathcal{O} \in (l, P, \mu)$	$\langle \mathcal{O}_a \mathcal{O}_b \mathcal{O}_c \rangle = \{ \text{structure}_1, \text{structure}_2, \cdots \}$		
$\sigma \times \sigma$	$(l \in 2\mathbb{Z} \text{ even } \bullet)$	$\langle \sigma \sigma Q \rangle \langle \epsilon \epsilon Q \rangle = \{ 0, l \rangle \}$		
$\epsilon \times \epsilon$	(<i>i</i> C 222, even, •)	$\langle 0 0 0 \rangle, \langle ee 0 \rangle = \{ 0, i \rangle \}$		
a Y c	$(l \in 2\mathbb{Z} \text{ odd } \bullet)$	$\langle \sigma \epsilon \mathcal{O} angle = \{ 0, l angle \}$		
0.20	(i ∈ 2±2,000, •)	$\langle \epsilon \sigma \mathcal{O} angle = \{ (-1)^l 0, l angle \}$		
	$(l \in \mathbb{Z} + \frac{1}{2}, \text{even}, \Box)$	$\langle \sigma \psi^i \mathcal{O}^j \rangle = \{ \delta^{ij} (-1)^{l+\frac{1}{2}} \frac{1}{2}, l+\frac{1}{2} \rangle \}$		
a x w		$\langle \psi^i \sigma \mathcal{O}^j \rangle = \{ \delta^{ij} \frac{1}{2}, l - \frac{1}{2} \rangle \}$		
	$(l \in \mathbb{Z} + \frac{1}{2} \text{ odd } \Box)$	$\langle \sigma \psi^i \mathcal{O}^j angle = \{ \delta^{ij} (-1)^{l-\frac{1}{2}} \frac{1}{2}, l-\frac{1}{2} angle \}$		
	$(i \in \mathbb{Z} + \frac{1}{2}, \text{out}, \square)$	$\langle \psi^i \sigma \mathcal{O}^j \rangle = \{ \delta^{ij} \frac{1}{2}, j + \frac{1}{2} \rangle \}$		
	$(l \in \mathbb{Z} + rac{1}{2}, ext{even}, \Box)$	$\langle \epsilon \psi^i \mathcal{O}^j \rangle = \{ \delta^{ij} (-1)^{l-\frac{1}{2}} \frac{1}{2}, l - \frac{1}{2} \rangle \}$		
$\epsilon \times \psi$		$\langle \psi^i \epsilon \mathcal{O}^j \rangle = \{ \delta^{ij} \frac{1}{2}, l + \frac{1}{2} \rangle \}$		
	$(l \in 2\mathbb{Z} + \frac{1}{2}, \text{odd}, \Box)$	$\langle \epsilon \psi^i \mathcal{O}^j \rangle = \{ \delta^{ij} (-1)^{l+\frac{1}{2}} \frac{1}{2}, l+\frac{1}{2} \rangle \}$		
		$\langle \psi^i \epsilon \mathcal{O}^j angle = \{ \delta^{ij} rac{1}{2}, l - rac{1}{2} angle \}$		

	$(l \in 2\mathbb{Z}, \text{ even}, \mu \in \{\bullet, \Box\Box\})$	$\langle \psi^i \psi^j \mathcal{O}^a angle = \{T^{ija}_\mu 0, l angle, T^{ija}_\mu 1, l angle \}$
	$(l \in 2\mathbb{Z} + 1, \text{ even}, \mu = -)$	$\langle \psi^i \psi^j \mathcal{O}^a angle = \{T^{ija}_\mu 0, l angle, T^{ija}_\mu 1, l angle \}$
$al_{1} \times al_{2}$	$(l \in 2\mathbb{Z}, \text{ odd}, \mu \in \{\bullet, \Box\Box\}),$	$\langle \psi^i \psi^j \mathcal{O}^a \rangle = \{ T^{ija}_\mu (\sqrt{l+1} 1, l+1 \rangle - \sqrt{l} 1, l-1 \rangle) \}$
$\varphi \land \varphi$	$(l \in 2\mathbb{Z} + 1, \text{ odd}, \mu \in \{\bullet, \Box\Box\})$	$\langle \psi^i \psi^j \mathcal{O}^a \rangle = \{ T^{ija}_\mu (\sqrt{l} 1, l+1 \rangle + \sqrt{l+1} 1, l-1 \rangle) \}$
	$(l \in (2\mathbb{Z})_{\geq 2}, \text{ odd}, \mu = -)$	$\langle \psi^i \psi^j \mathcal{O}^a \rangle = \{ T^{ija}_\mu(\sqrt{l} 1, l+1\rangle + \sqrt{l+1} 1, l-1\rangle) \}$
	$(l \in 2\mathbb{Z} + 1, \text{ odd}, \mu = \square)$	$\langle \psi^i \psi^j \mathcal{O}^a \rangle = \{ T^{ija}_\mu(\sqrt{l+1} 1, l+1\rangle - \sqrt{l} 1, l-1\rangle) \}$

Four-point Structures and Crossing Equations

$$\langle \psi^{i}\psi^{j}\psi^{k}\psi^{l}\rangle = \sum_{l,a} t_{l} Q_{a}^{jjkl} g_{\psi\psi\psi\psi}^{l,a}(u,v),$$

Flavor structures,

$$Q^{+} = \delta^{ij}\delta^{kl} + \delta^{il}\delta^{jk}, \quad Q^{3} = \delta^{ik}\delta^{jl}, \quad Q^{-} = \delta^{ij}\delta^{kl} - \delta^{il}\delta^{jk},$$

Conformal structures with nice symmetry properties,

 $[q_1q_2q_3q_4].$

Based on how the structures transform under (13) permutation, we obtain the factor M_j^l in the crossing equations.

$$g_{ijkl}^{l}(u,v)\pm\sum_{J}M_{J}^{l}g_{kjil}^{J}(v,u)=0.$$

The fully mixed system of $\{\psi, \epsilon, \sigma\}$ produces 38 crossing equations.

We will search for allowed regions in the 6d space of parameters

$$\{\Delta_{\psi}, \Delta_{\epsilon}, \Delta_{\sigma}, \frac{\lambda_{\psi\psi\sigma}}{\lambda_{\epsilon\epsilon\epsilon}}, \frac{\lambda_{\psi\psi\epsilon}}{\lambda_{\epsilon\epsilon\epsilon}}, \frac{\lambda_{\sigma\sigma\epsilon}}{\lambda_{\epsilon\epsilon\epsilon}}\}$$

Gap Assumptions

Operator	Parity	<i>O</i> (<i>N</i>) rep.	Δ at large N.	Δ in ϵ -exp.
ψ_i	+	V	$1 + \frac{4}{3\pi^2 N} + \frac{896}{27\pi^4 N^2} + \dots$	$\frac{3}{2} - \frac{N+5}{2(N+6)}\epsilon + \dots$
$\sigma = \phi$	_	S	$1 - \frac{32}{3\pi^2 N} + \frac{32(304 - 27\pi^2)}{27\pi^4 N^2} + \dots$	$1-\frac{3}{N+6}\epsilon+\ldots$
$\epsilon=\phi^2$	+	S	$2 + \frac{32}{3\pi^2 N} - \frac{64(632+27\pi^2)}{27\pi^4 N^2} + \dots$	$2 + \frac{\sqrt{N^2 + 132N + 36} - N - 30}{6(N+6)}\epsilon + \dots$
$\psi_i' = \phi^2 \psi_i$	+	V	$3 + \frac{100}{3\pi^2 N} + \dots$	-
$\chi_i = \phi^3 \psi_i$	_	V	$4 + \frac{292}{3\pi^2 N} + \dots$	-
$\sigma'=\phi^{\rm 3}$	-	S	$3 + \frac{64}{\pi^2 N} - \frac{128(770 - 9\pi^2)}{9\pi^4 N^2} + \dots$	$3 + \frac{\sqrt{N^2 + 132N + 36} - N - 30}{6(N+6)}\epsilon + \dots$
$\epsilon'=\phi^4$	+	S	$4 + \frac{448}{3\pi^2 N} - \frac{256(3520 - 81\pi^2)}{27\pi^4 N^2} + \dots$	-
$\sigma^{\rm T} = \psi_{(i}\psi_{j)}$	-	Т	$2 + \frac{32}{3\pi^2 N} + \frac{4096}{27\pi^4 N^2} + \dots$	-

$$\begin{array}{ll} (\frac{1}{2}, \mathsf{odd}, \boxed{}) : & \partial \!\!\!/ \psi_i = ig\phi\psi_i \quad \Rightarrow \quad \phi^3\psi_i \\ \Delta_{\psi'} > 2, \Delta_{\chi} > 3.5, \Delta_{\epsilon'} > 3, \Delta_{\sigma'} > 3, \Delta_{\sigma^{\intercal}} > 2 \end{array}$$