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Motivation

• Defects are important in both low- and high-energy physics,
with or without supersymmetry.

• Impurities in condensed matter systems.

• Wilson loop in gauge theories tells us about confinement.

• Defects give access to new observables.

• 1d CFTs are nonlocal → natural interpretation as conformal
line defects.
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Line defects
• Conformal defects preserve a conformal subgroup of the original
bulk conformal symmetry:

SO(4, 1) → SO(2, 1)× SO(2) .

• Bulk and defect operators:

O

O

Ô

Ô

Ô
3d CFT

• Only consider operators on the line → can use ”ordinary”
bootstrap techniques including numerical bootstrap.
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Displacement

• Generically no conserved stress-energy tensor on the defect.

• Instead displacement operator D [Billò et al. (2016)]:

∂µT
µi = −δ(q)(D)Di .

• D has a protected conformal dimension

∆D = 2 ,

• and has transverse spin sD = 1.
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Tilt
• The bulk CFT can have an additional global symmetry group
O(N) with current Jµ.

• The defect can break O(N) symmetry to O(N − 1): no
conserved current on the defect.

• Instead, the tilt t will appear [Bray et al. (1977)][Padayasi et al.

(2021)]:

∂µJ
µ
A =δ(q)(D)tA , A ∈ O(N − 1) .

• tA has a protected conformal dimension

∆tA = 1 ,

• and is a vector under O(N − 1).
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Crossing equations for 1d CFTs
• Operators ordered on the line: τ1 < τ2 < τ3 < τ4.

• Crossing symmetry follows from cyclicity.

∆O
∑
O

(λO)
2 ∆O

=
∑
O
(λO)

2

∑
O
λijOλklO(1− ξ)∆k+∆jg

∆ij ,∆kl

∆ (ξ) =
∑
O
λkjOλilOξ

∆i+∆jg
∆kj ,∆il

∆ (1− ξ) .

• No parallel spin ℓ. There is parity (and transverse spin s)

S : τ → −τ , S(ψ(τ)) = (−1)Sψψ(−τ) , Sψ = 0, 1 .

• Use numerical bootstrap to find exclusion bounds for ∆, λ.
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Single-correlator tilt

• Start with agnostic bootstrap: no specific gap assumptions.

• Bootstrap displacement or tilt:

⟨t(τ1)t(τ2)t̄(τ3)t̄(τ4)⟩ .

• Two channels:

t × t̄ ∼ 1+ (tt̄)± + · · · , t × t ∼ t2 + · · · .

• Find maximal scaling dimension of first operator in t × t̄ as a
function of ∆t2 .
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Single-correlator tilt

Figure: Bounds on the dimension of the S-parity odd scalar (tt̄)− vs. the
S-parity even scalar (tt̄)+ gap vs. the gap on t2. Λ = 33.
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Tilt and displacement

• Extend to multi-correlator bootstrap: t and D simultaneously.

⟨t(τ1)t̄(τ2)t(τ3)t̄(τ4)⟩ , ⟨D(τ1)D̄(τ2)D(τ3)D̄(τ4)⟩
⟨t(τ1)t̄(τ2)D(τ3)D̄(τ4)⟩ .

• Access to additional channel (tD)±.

• We still perform the agnostic bootstrap: no specific gap
assumptions.
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Tilt and displacement

Figure: Bounds on the dimension of the first S-parity even singlet O+ as a
function of the scaling dimensions ∆(tD)± and ∆(tt̄)− . Λ = 33.
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Changing gears

Bootstrapping
O(2) line defects

Agnostic
bootstrap of D and t

Bootstrapping the monodromy
and magnetic line defects
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Monodromy line defect

• Start from N = 2 real scalars combined in a complex scalar Φ
that satisfies

Φ(r , θ + 2π, x⃗) = e2πivΦ(r , θ, x⃗) , v ∼ v + 1 , v ∈ [0, 1) .

• The defect modes Ψ of Φ will have fractional transverse spin
s ∈ Z+ v and dimensions [Söderberg 2017][Giombi et al. 2021]

∆Ψs = 1 + |s| − ε

2
+

1

5

v(v − 1)

|s|
ε+ O(ε2) .

• Generalization of Z2 Ising twist defect [Gaiotto et al. 2013]
[Billó et al. 2013]
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Monodromy bootstrap

• D appears in the OPE of defect modes:

Ψv × Ψ̄v−1 ∼ D+ · · · .

• We bootstrap the defect modes of the fundamental scalar

⟨Ψv (τ1)Ψv (τ2)Ψ̄v (τ3)Ψ̄v (τ4)⟩ , ⟨Ψv−1(τ1)Ψv−1(τ2)Ψ̄v−1(τ3)Ψ̄v−1(τ4)⟩ ,
⟨Ψv (τ1)Ψv−1(τ2)Ψ̄v−1(τ3)Ψ̄v (τ4)⟩ .

• Only information we give is appearance of D and the external
dimensions of ∆Ψv ,∆Ψv−1 .
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Monodromy bootstrap

Figure: Bounds on the dimension of the first singlet in Ψs × Ψ̄s ∆(ΨΨ̄)±

versus the OPE coefficient (λΨv Ψ̄1−vD
)2.
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Magnetic line defect
• The action of the localized magnetic field line defect is given
by:

S =

∫
ddx

(
1

2
(∂µϕa)

2 +
λ0
4!

(ϕ2a)
2

)
+ h0

∫ ∞

−∞
dτ ϕ1(x(τ)) ,

• Defect breaks bulk O(3)F symmetry to defect O(2)F symmetry.

• Breaking introduces an O(2) vector tâ and a scalar ϕ1 with
dimension [Cuomo et al. 2022]

∆ϕ1 = 1 + ε− 184

121
ε2 + O(ε3)

Padé−−−→ 1.55 .

• Displacement is given by a transverse derivative:

D ∝ ∇ϕ1 .
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Magnetic line bootstrap
• We bootstrap the tilt and the fundamental scalar:

⟨t(τ1)t̄(τ2)t(τ3)t̄(τ4)⟩ , ⟨ϕ1(τ1)ϕ1(τ2)ϕ1(τ3)ϕ1(τ4)⟩ ,
⟨t(τ1)t̄(τ2)ϕ1(τ3)ϕ1(τ4)⟩ .

• Special feature: externals appear in OPE

ϕ1 × ϕ1 ∼ 1+ ϕ1 + s− + · · · , (t × t̄)+ ∼ 1+ ϕ1 + s− + · · · ,
(t × t̄)− ∼ A+ · · · , t × t ∼ T + . . . , t × ϕ1 ∼ t + V + · · · , .

• Reminiscent of Ising model island!

• Gap assumptions from ε-expansion results at O(ε) :

∆s− = 2.36 , ∆A = 3 , ∆T = 2.18 , ∆V = 3.18 ,
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Magnetic line bootstrap

0.90 0.95 1.00 1.05 1.10 1.15 1.20
Δt

0.65

0.70

0.75

0.80
Δϕ1

Figure: Bounds on the scaling dimensions ∆ϕ1 and ∆t for Λ = 21.

• Close to rediscovering the tilt!

• Set ∆t = 1 and bootstrap

(λϕ1ϕ1ϕ1)
2 + (λttϕ1)

2 , tan θ =
λϕ1ϕ1ϕ1
λttϕ1

.
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Magnetic line bootstrap
• We found a series of cusps. Improves with higher number of
derivatives?
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λttϕ1

Δϕ1 = 1.2, Λ = 21 Δϕ1 = 1.2, Λ = 33

Figure: Upper bounds on the OPE coefficient λϕ1ϕ1ϕ1 as a function of
λttϕ1 .
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Magnetic line bootstrap
• Predicted value of ∆ϕ1 = 1.55, falls outside of numerical
bounds.
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Figure: Upper bounds on the OPE coefficient λϕ1ϕ1ϕ1 as a function of
λttϕ1 .
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Conclusions

• Focus on canonical operators: D and t.

• Agnostic searches already show interesting behaviour.

• Without rigorous gap assumptions hard to isolate solutions.

• Gap assumptions inspired by ε-expansion show very interesting
behavior, but too strong.
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Future directions

• Monodromy defect breaks global symmetry.

• Generalize to supersymmetric setup:

OSp(2|4) → SU(1, 1|1)× U(1) .

• Appearance of tilt, displacement → work in progress.
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Thank you!
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Backup
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The numerical bootstrap

• Functionals to rule out possible solutions

λ2O′α
(
F∆O′

)
= −α

(
F0

)
−
∑
O
λ2Oα

(
F∆O

)
.

• Upper bound if you can find α s.t.

α
(
F∆O′

)
= 1 , α

(
F∆O

)
≥ 0 .

• Allowed and disallowed solutions for conformal dimensions.

• Upper and lower bounds for OPE coefficients.
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Single-correlator tilt

Figure: Bounds on the maximal gap on the dimension of the S-parity even
scalar (tt̄)+ vs. the S-parity odd scalar gap (tt̄)− vs. the gap on the
leading charged operator t2. Λ = 33,P = 53.
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Single-correlator tilt

Figure: Bounds on the dimension of the first singlet in the t × t̄ OPE as a
function of the gap on the dimension ∆t2 and the OPE coefficient (λttt2)

2

of the first operator charged under O(2)F in the t × t OPE.
Λ = 49,P = 69.
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Tilt and displacement
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Figure: Bounds on (λtD(tD)+)
2 as a function of the scaling dimension of

∆(tD)+ and of the scaling dimension of the first parity-even singlet ∆(ϕϕ̄)+ .
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Monodromy line defect
• The scaling dimensions of Ψs are given by [Giombi et al. 2021]:

∆Ψs = 1 + |s| − ε

2
+

1

5

v(v − 1)

|s|
ε+ O(ε2) .

• The displacement D appears in the OPE Ψv × Ψ̄v−1.

• Other results we need to compare to the numerics [Giombi et
al. 2021]:

|λΨv Ψ̄v−1D
|2 = 1 +

1

10
(2H1−v + 2Hv − 3) ,

Ψv × Ψ̄v ∼ 1+O0 + . . . , Ψv−1 × Ψ̄v−1 ∼ 1+O0 + . . . .

∆O0 =
4

5(1 + 2v)
+

2(v − 1)

5
.
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Monodromy bootstrap

Figure: Bounds on the dimension of the first singlet in the Ψs × Ψ̄s OPE
∆(ΨΨ̄)± versus the OPE coefficient of the displacement operator and the
monodromy v . Λ = 21,P = 41.

7 / 9



Magnetic line defect
• We can compute the scaling dimensions of leading operators
[Cuomo et al. 2022]:

∆ϕ1 = 1 + ε− 3N2 + 49N + 194

2(N + 8)2
ε2 + O(ε3)

Padé−−−→ 1.55 ,

∆s± = 2 + ε
3N + 20±

√
N2 + 40N + 320

2(N + 8)
+ O(ε2) ,

∆A = 3 + O(ε2) , ∆T = 2 +
2ε

N + 8
+ O(ε2) ,

∆V = 2 + ε
N + 10

N + 8
+ O(ε2) .

• To compare with numerics, we also need the OPE coefficients

λϕ1ϕ1ϕ1 =
3πε√
N + 8

+ O(ε2) , λttϕ1 =
πε√
N + 8

+ O(ε2) .
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Magnetic line bootstrap

Figure: Bounds on the OPE coefficients λϕ1tt̄ and λϕ1ϕ1ϕ1 as a function of
the gap ∆ϕ1 for the O(3)-breaking magnetic line defect. Λ = 21,P = 41.
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