Bootstrapping line defects with O(2) symmetry

Pedro Liendo

October 17 2022

GGI Florence

arXiv:2208.11715 with E. Lauria, A. Gimenez-Grau, and P. van Vliet

Motivation

- Defects are important in both low- and high-energy physics, with or without supersymmetry.
- Impurities in condensed matter systems.
- Wilson loop in gauge theories tells us about confinement.
- Defects give access to new observables.
- 1d CFTs are nonlocal \rightarrow natural interpretation as conformal line defects.

Line defects

• Conformal defects preserve a conformal subgroup of the original bulk conformal symmetry:

 $SO(4,1) \rightarrow SO(2,1) \times SO(2)$.

Bulk and defect operators:

 Only consider operators on the line → can use "ordinary" bootstrap techniques including numerical bootstrap.

Displacement

- Generically no conserved stress-energy tensor on the defect.
- Instead displacement operator D [Billò et al. (2016)]:

$$\partial_\mu T^{\mu i} = - \delta^{(q)}(\mathcal{D}) \mathsf{D}^i$$
 .

• D has a protected conformal dimension

$$\Delta_D = 2$$
,

• and has transverse spin $s_D = 1$.

Tilt

- The bulk CFT can have an additional global symmetry group O(N) with current J^µ.
- The defect can break O(N) symmetry to O(N − 1): no conserved current on the defect.
- Instead, the tilt *t* will appear [Bray et al. (1977)][Padayasi et al. (2021)]:

$$\partial_{\mu}J^{\mu}_{A} = \delta^{(q)}(\mathcal{D})t_{A} , \quad A \in O(N-1) .$$

• *t_A* has a protected conformal dimension

$$\Delta_{t_A}=1\,,$$

• and is a vector under O(N-1).

• Operators ordered on the line: $\tau_1 < \tau_2 < \tau_3 < \tau_4$.

- Operators ordered on the line: $\tau_1 < \tau_2 < \tau_3 < \tau_4$.
- Crossing symmetry follows from cyclicity.

$$\sum_{\mathcal{O}} \lambda_{ij\mathcal{O}} \lambda_{kl\mathcal{O}} (1-\xi)^{\Delta_k + \Delta_j} g_{\Delta}^{\Delta_{ij}, \Delta_{kl}}(\xi) = \sum_{\mathcal{O}} \lambda_{kj\mathcal{O}} \lambda_{il\mathcal{O}} \xi^{\Delta_i + \Delta_j} g_{\Delta}^{\Delta_{kj}, \Delta_{il}} (1-\xi)$$

- Operators ordered on the line: $\tau_1 < \tau_2 < \tau_3 < \tau_4$.
- Crossing symmetry follows from cyclicity.

$$\sum_{\mathcal{O}} \lambda_{ij\mathcal{O}} \lambda_{kl\mathcal{O}} (1-\xi)^{\Delta_k + \Delta_j} g_{\Delta}^{\Delta_{ij}, \Delta_{kl}}(\xi) = \sum_{\mathcal{O}} \lambda_{kj\mathcal{O}} \lambda_{il\mathcal{O}} \xi^{\Delta_i + \Delta_j} g_{\Delta}^{\Delta_{kj}, \Delta_{il}} (1-\xi)$$

• No parallel spin ℓ . There is parity (and transverse spin s)

$${\cal S}: \qquad au o - au \;, \quad {\cal S}(\psi(au)) = (-1)^{{\cal S}_\psi} \psi(- au) \;, \quad {\cal S}_\psi = 0, 1 \;.$$

- Operators ordered on the line: $\tau_1 < \tau_2 < \tau_3 < \tau_4$.
- Crossing symmetry follows from cyclicity.

$$\sum_{\mathcal{O}} \lambda_{ij\mathcal{O}} \lambda_{kl\mathcal{O}} (1-\xi)^{\Delta_k + \Delta_j} g_{\Delta}^{\Delta_{ij}, \Delta_{kl}}(\xi) = \sum_{\mathcal{O}} \lambda_{kj\mathcal{O}} \lambda_{il\mathcal{O}} \xi^{\Delta_i + \Delta_j} g_{\Delta}^{\Delta_{kj}, \Delta_{il}} (1-\xi)$$

• No parallel spin ℓ . There is parity (and transverse spin s)

$${\mathcal S}: \qquad au o - au \;, \quad {\mathcal S}(\psi(au)) = (-1)^{{\mathcal S}_\psi} \psi(- au) \;, \quad {\mathcal S}_\psi = 0, 1 \;.$$

Use numerical bootstrap to find exclusion bounds for Δ, λ.

Single-correlator tilt

- Start with agnostic bootstrap: no specific gap assumptions.
- Bootstrap displacement or tilt:

$$\langle t(\tau_1)t(\tau_2)\overline{t}(\tau_3)\overline{t}(\tau_4)
angle$$
 .

• Two channels:

$$t \times \overline{t} \sim \mathbf{1} + (t\overline{t})^{\pm} + \cdots, \quad t \times t \sim t^2 + \cdots.$$

• Find maximal scaling dimension of first operator in $t \times \overline{t}$ as a function of Δ_{t^2} .

Single-correlator tilt

Figure: Bounds on the dimension of the S-parity odd scalar $(t\bar{t})^-$ vs. the S-parity even scalar $(t\bar{t})^+$ gap vs. the gap on t^2 . $\Lambda = 33$.

Tilt and displacement

• Extend to multi-correlator bootstrap: t and D simultaneously.

$$\begin{array}{l} \langle t(\tau_1)\bar{t}(\tau_2)t(\tau_3)\bar{t}(\tau_4)\rangle , \quad \langle \mathsf{D}(\tau_1)\bar{\mathsf{D}}(\tau_2)\mathsf{D}(\tau_3)\bar{\mathsf{D}}(\tau_4)\rangle \\ \langle t(\tau_1)\bar{t}(\tau_2)\mathsf{D}(\tau_3)\bar{\mathsf{D}}(\tau_4)\rangle . \end{array}$$

- Access to additional channel $(tD)^{\pm}$.
- We still perform the agnostic bootstrap: no specific gap assumptions.

Tilt and displacement

Figure: Bounds on the dimension of the first S-parity even singlet O^+ as a function of the scaling dimensions $\Delta_{(tD)^{\pm}}$ and $\Delta_{(t\bar{t})^-}$. $\Lambda = 33$.

Changing gears

Monodromy line defect

• Start from N = 2 real scalars combined in a complex scalar Φ that satisfies

$$\Phi(r, \theta+2\pi, \vec{x}) = e^{2\pi i \nu} \Phi(r, \theta, \vec{x}), \quad \nu \sim \nu+1, \quad \nu \in [0, 1).$$

• The defect modes Ψ of Φ will have fractional transverse spin $s \in \mathbb{Z} + v$ and dimensions [Söderberg 2017][Giombi et al. 2021]

$$\Delta_{\Psi_s} = 1 + |s| - rac{arepsilon}{2} + rac{1}{5} rac{ m{v}(m{v}-1)}{|s|} arepsilon + O(arepsilon^2) \ .$$

 Generalization of Z₂ Ising twist defect [Gaiotto et al. 2013] [Billó et al. 2013]

Monodromy bootstrap

• D appears in the OPE of defect modes:

$$\Psi_{v} imes ar{\Psi}_{v-1} \sim \mathbf{D} + \cdots$$

• We bootstrap the defect modes of the fundamental scalar

$$\begin{array}{l} \langle \Psi_{\nu}(\tau_1)\Psi_{\nu}(\tau_2)\bar{\Psi}_{\nu}(\tau_3)\bar{\Psi}_{\nu}(\tau_4)\rangle , \quad \langle \Psi_{\nu-1}(\tau_1)\Psi_{\nu-1}(\tau_2)\bar{\Psi}_{\nu-1}(\tau_3)\bar{\Psi}_{\nu-1}(\tau_4)\rangle , \\ \langle \Psi_{\nu}(\tau_1)\Psi_{\nu-1}(\tau_2)\bar{\Psi}_{\nu-1}(\tau_3)\bar{\Psi}_{\nu}(\tau_4)\rangle . \end{array}$$

Only information we give is appearance of D and the external dimensions of Δ_{Ψ_ν}, Δ<sub>Ψ_{ν-1}.
</sub>

Monodromy bootstrap

Figure: Bounds on the dimension of the first singlet in $\Psi_s \times \overline{\Psi}_s \ \Delta_{(\Psi \overline{\Psi})^{\pm}}$ versus the OPE coefficient $(\lambda_{\Psi_v \overline{\Psi}_{1-v}D})^2$.

Magnetic line defect

• The action of the localized magnetic field line defect is given by:

$$S=\int d^dx\left(rac{1}{2}(\partial_\mu\phi_a)^2+rac{\lambda_0}{4!}(\phi_a^2)^2
ight)+h_0\int_{-\infty}^\infty d au\,\phi_1(x(au))\,,$$

- Defect breaks bulk $O(3)_F$ symmetry to defect $O(2)_F$ symmetry.
- Breaking introduces an O(2) vector $t_{\hat{a}}$ and a scalar ϕ_1 with dimension [Cuomo et al. 2022]

$$\Delta_{\phi_1} = 1 + arepsilon - rac{184}{121}arepsilon^2 + {\it O}(arepsilon^3) \; \stackrel{{\sf Pad}m{\epsilon}}{\longrightarrow} \; 1.55 \; .$$

• Displacement is given by a transverse derivative:

$$\mathsf{D}\propto
abla \phi_1$$

• We bootstrap the tilt and the fundamental scalar:

 $\begin{array}{l} \langle t(\tau_1)\overline{t}(\tau_2)t(\tau_3)\overline{t}(\tau_4)\rangle , \quad \langle \phi_1(\tau_1)\phi_1(\tau_2)\phi_1(\tau_3)\phi_1(\tau_4)\rangle , \\ \langle t(\tau_1)\overline{t}(\tau_2)\phi_1(\tau_3)\phi_1(\tau_4)\rangle . \end{array}$

• Special feature: externals appear in OPE

 $\phi_1 \times \phi_1 \sim \mathbf{1} + \phi_1 + s_- + \cdots, \quad (t \times \overline{t})^+ \sim \mathbf{1} + \phi_1 + s_- + \cdots,$ $(t \times \overline{t})^- \sim A + \cdots, \quad t \times t \sim T + \cdots, \quad t \times \phi_1 \sim t + V + \cdots,$

Reminiscent of Ising model island!

• We bootstrap the tilt and the fundamental scalar:

 $\begin{array}{l} \langle t(\tau_1)\overline{t}(\tau_2)t(\tau_3)\overline{t}(\tau_4)\rangle , \quad \langle \phi_1(\tau_1)\phi_1(\tau_2)\phi_1(\tau_3)\phi_1(\tau_4)\rangle , \\ \langle t(\tau_1)\overline{t}(\tau_2)\phi_1(\tau_3)\phi_1(\tau_4)\rangle . \end{array}$

• Special feature: externals appear in OPE

 $\phi_1 \times \phi_1 \sim \mathbf{1} + \phi_1 + s_- + \cdots, \quad (t \times \overline{t})^+ \sim \mathbf{1} + \phi_1 + s_- + \cdots,$ $(t \times \overline{t})^- \sim A + \cdots, \quad t \times t \sim T + \cdots, \quad t \times \phi_1 \sim t + V + \cdots,$

- Reminiscent of Ising model island!
- Gap assumptions from ε -expansion results at $O(\varepsilon)$:

$$\Delta_{s_{-}} = 2.36 \;, \qquad \Delta_{\mathcal{A}} = 3 \;, \qquad \Delta_{\mathcal{T}} = 2.18 \;, \qquad \Delta_{\mathcal{V}} = 3.18 \;,$$

Figure: Bounds on the scaling dimensions Δ_{ϕ_1} and Δ_t for $\Lambda = 21$.

• Close to rediscovering the tilt!

Figure: Bounds on the scaling dimensions Δ_{ϕ_1} and Δ_t for $\Lambda = 21$.

- Close to rediscovering the tilt!
- Set $\Delta_t = 1$ and bootstrap

$$(\lambda_{\phi_1\phi_1\phi_1})^2 + (\lambda_{tt\phi_1})^2$$
, $\tan\theta = \frac{\lambda_{\phi_1\phi_1\phi_1}}{\lambda_{tt\phi_1}}$

• We found a series of cusps. Improves with higher number of derivatives?

Figure: Upper bounds on the OPE coefficient $\lambda_{\phi_1\phi_1\phi_1}$ as a function of $\lambda_{tt\phi_1}$.

• Predicted value of $\Delta_{\phi_1} = 1.55$, falls outside of numerical bounds.

Figure: Upper bounds on the OPE coefficient $\lambda_{\phi_1\phi_1\phi_1}$ as a function of $\lambda_{tt\phi_1}$.

Conclusions

- Focus on canonical operators: D and t.
- Agnostic searches already show interesting behaviour.
- Without rigorous gap assumptions hard to isolate solutions.
- Gap assumptions inspired by ε -expansion show very interesting behavior, but too strong.

Future directions

- Monodromy defect breaks global symmetry.
- Generalize to supersymmetric setup:

OSp(2|4)
ightarrow SU(1,1|1) imes U(1) .

• Appearance of tilt, displacement \rightarrow work in progress.

Thank you!

Backup

The numerical bootstrap

Functionals to rule out possible solutions

$$\lambda_{\mathcal{O}'}^2 \alpha \Big(\mathcal{F}_{\Delta_{\mathcal{O}'}} \Big) = -\alpha \Big(\mathcal{F}_0 \Big) - \sum_{\mathcal{O}} \lambda_{\mathcal{O}}^2 \alpha \Big(\mathcal{F}_{\Delta_{\mathcal{O}}} \Big) \,.$$

• Upper bound if you can find α s.t.

$$\alpha \Big(\mathcal{F}_{\Delta_{\mathcal{O}'}} \Big) = 1 , \quad \alpha \Big(\mathcal{F}_{\Delta_{\mathcal{O}}} \Big) \ge 0 .$$

- Allowed and disallowed solutions for conformal dimensions.
- Upper and lower bounds for OPE coefficients.

Single-correlator tilt

Figure: Bounds on the maximal gap on the dimension of the S-parity even scalar $(t\bar{t})^+$ vs. the S-parity odd scalar gap $(t\bar{t})^-$ vs. the gap on the leading charged operator t^2 . $\Lambda = 33, P = 53$.

Single-correlator tilt

Figure: Bounds on the dimension of the first singlet in the $t \times \bar{t}$ OPE as a function of the gap on the dimension Δ_{t^2} and the OPE coefficient $(\lambda_{ttt^2})^2$ of the first operator charged under $O(2)_F$ in the $t \times t$ OPE. $\Lambda = 49, P = 69.$

Tilt and displacement

Figure: Bounds on $(\lambda_{tD(tD)^+})^2$ as a function of the scaling dimension of $\Delta_{(tD)^+}$ and of the scaling dimension of the first parity-even singlet $\Delta_{(\phi\bar{\phi})^+}$.

Monodromy line defect

• The scaling dimensions of Ψ_s are given by [Giombi et al. 2021]:

$$\Delta_{\Psi_s} = 1 + |s| - rac{arepsilon}{2} + rac{1}{5} rac{v(v-1)}{|s|} arepsilon + O(arepsilon^2) \,.$$

- The displacement D appears in the OPE $\Psi_{\nu} imes \bar{\Psi}_{\nu-1}$.
- Other results we need to compare to the numerics [Giombi et al. 2021]:

$$\begin{split} &|\lambda_{\Psi_{\nu}\bar{\Psi}_{\nu-1}\mathsf{D}}|^{2} = 1 + \frac{1}{10} \left(2H_{1-\nu} + 2H_{\nu} - 3 \right) \,, \\ &\Psi_{\nu} \times \bar{\Psi}_{\nu} \sim \mathbf{1} + \mathcal{O}_{0} + \dots, \quad \Psi_{\nu-1} \times \bar{\Psi}_{\nu-1} \sim \mathbf{1} + \mathcal{O}_{0} + \dots, \\ &\Delta_{\mathcal{O}_{0}} = \frac{4}{5(1+2\nu)} + \frac{2(\nu-1)}{5} \,\,. \end{split}$$

Monodromy bootstrap

Figure: Bounds on the dimension of the first singlet in the $\Psi_s \times \overline{\Psi}_s$ OPE $\Delta_{(\Psi \overline{\Psi})^{\pm}}$ versus the OPE coefficient of the displacement operator and the monodromy v. $\Lambda = 21, P = 41$.

Magnetic line defect

• We can compute the scaling dimensions of leading operators [Cuomo et al. 2022]:

$$\begin{split} \Delta_{\phi_1} &= 1 + \varepsilon - \frac{3N^2 + 49N + 194}{2(N+8)^2} \varepsilon^2 + O(\varepsilon^3) & \xrightarrow{\text{Padé}} 1.55 \,, \\ \Delta_{s_{\pm}} &= 2 + \varepsilon \, \frac{3N + 20 \pm \sqrt{N^2 + 40N + 320}}{2(N+8)} + O(\varepsilon^2) \,, \\ \Delta_A &= 3 + O(\varepsilon^2) \,, \qquad \Delta_T = 2 + \frac{2\varepsilon}{N+8} + O(\varepsilon^2) \,, \\ \Delta_V &= 2 + \varepsilon \, \frac{N+10}{N+8} + O(\varepsilon^2) \,. \end{split}$$

• To compare with numerics, we also need the OPE coefficients

$$\lambda_{\phi_1\phi_1\phi_1} = \frac{3\pi\varepsilon}{\sqrt{N+8}} + O(\varepsilon^2), \qquad \lambda_{tt\phi_1} = \frac{\pi\varepsilon}{\sqrt{N+8}} + O(\varepsilon^2).$$

Figure: Bounds on the OPE coefficients $\lambda_{\phi_1 t\bar{t}}$ and $\lambda_{\phi_1 \phi_1 \phi_1}$ as a function of the gap Δ_{ϕ_1} for the O(3)-breaking magnetic line defect. $\Lambda = 21, P = 41$.