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The subject of line defects has been historically extremely
productive. The Kondo line defect in 2d has led to the
renormalization group [Wilson...], to substantial progress on
integrability [Andrei, Tsvelick-Wiegmann...], and of course to the
development of conformal symmetry at the end points of the RG
flow. The topic of this talk is to explore line defects in higher
dimensions.
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While a lot is known about the space of local operators, much less
is known about the space of conformal line operators. Much like
local operators, a line operator does not have to be charged (under
a one-form symmetry) to be non-trivial.
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Our setup would be a conformal theory in d space-time dimensions
with a one-dimensional defect.
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H = Hbulk + Himp
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H = J0
~T · ~S + Hbulk
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We are already familiar with many constructions of line defects in
d > 2:

Wilson/’t Hooft loops.

Twist (symmetry) defects in 2+1 dimensions

SPT defects

Worldlines of anyons in 2+1 dimensions

Pinning Field Defects

· · ·
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We will touch briefly upon several subjects:

RG flows on line defects

Magnetic field defects

Spin impurities

Wilson lines
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Consider a straight line in a d-dimensional CFT. It can be
conformal or non-conformal. A conformal line preserves

SL(2,R)× SO(d − 1)

(we assume the line has no transverse spin). A non-conformal line
preserves

R× SO(d − 1) .

It describes a point-like impurity in space at zero temperature,
with a critical bulk. At long distances, the impurity becomes
critical (and may or may not be non-trivial).
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In this setup there are bulk operators, which are the usual ones,
and defect operators, which are local operators acting on the line
defect. At the defect fixed point (DCFT), operators are classified
by their SL(2,R)× SO(d − 1) quantum numbers. In general, the
space of defect operators has nothing to do with the bulk
operators.

Zohar Komargodski Line Defects, Renormalization Group Flows, Magnets, and Wilson Lines



There is a bulk-defect OPE, where we expand bulk operators in
terms of defect operators

O(x⊥, t) ∼
∑

akx
∆Ôk
−∆O

⊥ Ôk(t) .

This expansion is useful at short distances from the defect.

Zohar Komargodski Line Defects, Renormalization Group Flows, Magnets, and Wilson Lines



The trivial line defect is just the unit line operator. It is completely
transparent. The defect operators then coincide with the bulk
operators restricted to the line.
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An interesting observable for such a line is its “defect entropy.” We
make the line into a Euclidean circle and compute the expectation
value of the circle.

s =

(
1− R

∂

∂R

)
log〈L〉 ≡ log g .

The differential operator
(
1− R ∂

∂R

)
cancels a scheme dependent

linear in R term in log〈L〉 (mass renormalization of the impurity).
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Therefore s is a scheme-independent intrinsic observable. At the
fixed point of the line defect the value of s is also called log g .
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It is hard to directly measure log g .

For line defects in a 2+1 dimensional topological theory, g is called
the “quantum dimension.” Unlike line defects in topological
theories, it is not necessarily true that g ≥ 1 for general conformal
defects, as we will see.
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In the event that relevant defect operators exist (∆Ô < 1), we can

deform by M
1−∆Ô
0

∫
dtÔ(t). M0 becomes the physical scale of the

flow.

The defect entropy s =
(
1− R ∂

∂R

)
log〈L〉 becomes a nontrivial

function
s = s(M0R)

We have

s(M0R)→
{

log gUV as R → 0
log gIR as R →∞

The renormalization group flow is implemented by changing the
radius of the circle of the defect worldline.
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One basic result is the following identity (with T̂D the energy
localized at the defect)

R
∂s

∂R
= −R2

∫
dφ1dφ2〈T̂D(φ1)T̂D(φ2)〉c (1− cos(φ1 − φ2)) .

Since 〈T̂D(φ1)T̂D(φ2)〉c ≥ 0 at separated points and since
(1− cos(φ1 − φ2)) ≥ 0 we have that

R
∂s

∂R
≤ 0 ,

and therefore also gUV ≥ gIR .
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This generalizes the familiar results of [Affleck-Ludwig,
Friedan-Konechny] to line defects/impurities in higher dimensions.

Note that it follows that g is independent of exactly marginal
defect couplings. We will soon see an example of that.
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This higher-dimensional g theorem should be connected somehow
to entanglement entropy. Our g function is not the same as the
additional entanglement entropy of the vacuum with the impurity.
See [Casini – Salazar-Landea – Torroba] for the d = 2 case, where
these two quantities coincide.

<latexit sha1_base64="n8KPuc8BNDY6S+THYKRRnUEK10k=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFclUREXRal4LKifUAbw2Q6aYfOTMLMRAkxn+LGhSJu/RJ3/o3TNgttPXDhcM693HtPEDOqtON8W0vLK6tr66WN8ubW9s6uXdlrqyiRmLRwxCLZDZAijArS0lQz0o0lQTxgpBOMryZ+54FIRSNxp9OYeBwNBQ0pRtpIvl259bNGI7/PKI8TSXWa+3bVqTlTwEXiFqQKCjR9+6s/iHDCidCYIaV6rhNrL0NSU8xIXu4nisQIj9GQ9AwViBPlZdPTc3hklAEMI2lKaDhVf09kiCuV8sB0cqRHat6biP95vUSHF15GRZxoIvBsUZgwqCM4yQEOqCRYs9QQhM3jFEM8QhJhbdIqmxDc+ZcXSfuk5p7V3JvTav2yiKMEDsAhOAYuOAd1cA2aoAUweATP4BW8WU/Wi/Vufcxal6xiZh/8gfX5A98RlGg=</latexit>

Simpurity
EE
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Sno�impurity
EE
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The main idea of the derivation is to promote the massive
perturbation to a time dependent one

M1−∆
0

∫
dtÔ(t) −→ M1−∆

0

∫
dte(1−∆)Φ(t)Ô(t) .

Φ(t) is usually called the dilaton though it has nothing to do with
the string theory dilaton. Φ(t) is a classical field (background
field).
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We then fuse appropriate bulk topological surfaces
∫
dΣνξµTµν

with the line defect and obtain new, but equivalent defects. This
leads to infinitely many new identities of which one is the gradient
formula.
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The defect entropy inequality sUV ≥ sIR provides a general
non-perturbative constraint on RG flows on line defects. Another
non-perturbative constraint arises from one-form symmetry. The
statement is that if a line defect is charged under an end-able
one-form symmetry then it cannot flow to a trivial or topological
line in the infrared.

The constrain from defect entropy applies in relativistic systems but
the constraint from one-form symmetry should be more general.

Zohar Komargodski Line Defects, Renormalization Group Flows, Magnets, and Wilson Lines



Three ways to construct line defects:

Start from the trivial line defect (gUV = 1). If there is a bulk
operator with ∆ < 1 then we can integrate it on the line:

S = Sbulk + M1−∆O
0

∫
dtO(t)

This is called a “pinning field” defect or an external field
defect. Physically this is an impurity created by applying
external fields in a manner localized in space, independent of
time. Example: applying a magnetic field in a critical magnet,
but only at a few lattice sites.
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Start from a QM model on the line with d states. Couple
some operators acting on these states to the bulk operators:

S = Sbulk + M1−∆O−∆T
0

∫
dtTQM(t)O(t)

Example: a qubit coupled to some bulk CFT.
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Start from a QM model on the line with d states in a
representation of G and consider a bulk CFT with G gauge
symmetry. Couple the two systems by gauging the symmetry
G in QM.

Sbulk +

∫
dtJaQM(t)Aa(t)

In this case there is no free defect coupling constant since the
coefficient of JaQM(t)Aa(t) is fixed. Wilson lines are
constructed in this manner.
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The most abstract point of view on line defects which would
include all the preceding examples (and include new ones) is that
line defects are defined by prescribing the behavior of all bulk fields
(operators) near the line defect.
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For the remaining part of this talk we will discuss some examples
and quote results about their properties.
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The Pinning Field in O(N) Models

Consider the O(N) model in 2 ≤ d ≤ 4 with an external localized
magnetic field:

S = SO(N) + h

∫
dtφ1(t)

where SO(N) stands for the critical bulk O(N) model in d

space-time dimensions and φ1 is the first component of ~φ.

This is a relevant perturbation in 2 ≤ d ≤ 4. By the g theorem,
this must flow to a nontrivial (g < 1) infrared DCFT in any
2 ≤ d < 4. Hence, the external magnetic field cannot be
“screened” and cannot disappear.
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The Pinning Field in O(N) Models

This is physically realizable as a localized magnetic field at zero
temperature at a bulk quantum critical point and it can be tested
in quantum critical points and also in Monte Carlo [....Assaad,
Herbut; Parisen Toldin, Assaad, Wessel....]

This infrared DCFT will have no nontrivial relevant operators
whatsoever.
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The Pinning Field in O(N) Models

In principle, understanding the infrared is a strongly coupled
problem.
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The Pinning Field in O(N) Models

Many concrete predictions can be made in the epsilon expansion.
For instance,

log gIR = −N + 8

16
ε+ · · · .

∆(φ̂1) = 1 + ε− ε2 3N2 + 49N + 194

2(N + 8)2
+ · · · ,

Note: the infrared value of h is NOT small in the ε expansion.
However, the ε expansion makes sense since the bulk is weakly
coupled.
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The Pinning Field in O(N) Models

The line operator
e−h

∫
dtφ1(t)

has a smooth large N limit which is manifested if we define a
‘t Hooft coupling λ = h/

√
N. The claim is that in the large N

limit the coupling λ flows to some λ∗ ∼ O(1) in the infrared.

There is a saddle point that determines the DCFT observables, e.g.
the g function:

g = e−NSclassical

For more analytic work from recently see [Rodriguez Gomez,
Popov, Wang, Grau, Lauria, Liendo]
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The Pinning Field in O(N) Models

It should be in principle possible to solve for the whole RG flow of
the ’t Hooft coupling λ in the large N limit. Here, we will try to go
after the infrared directly by looking for a self-consistent conformal
line defect solution.

Zohar Komargodski Line Defects, Renormalization Group Flows, Magnets, and Wilson Lines



The Pinning Field in O(N) Models

At the conformal point we can map the problem by a Weyl
transformation to AdS2 × Sd−2 with standard boundary conditions
in AdS2. So the problem reduces to the O(N) model on this space
with standard (source) boundary conditions familiar from the
AdS/CFT correspondence.
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The Pinning Field in O(N) Models

After the transformation to AdS2 × Sd−2, a Hubbard Stratonovich
transformation, and a guess for self-consistent conformal boundary
conditions, the problem turns out to reduce to the following
Schwinger-Dyson type action

S =
N

2

[
Tr log(−� + s +

d − 2

4(d − 1)
R)− JG∂∂ [s]J

]
.

G∂∂ is the boundary-to-boundary propagator, J is a standard
non-normalizable source, and s(x) is a bulk field.
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The Pinning Field in O(N) Models

We can find the critical point of this action analytically, and we
can analyze fluctuations about this critical point using recent
progress on loop diagrams in AdS2 [see especially Carmi, Di Pietro,
Komatsu].
This allows us to obtain many exact predictions for the spectrum
of the defect in the large N limit and the dimensions of defect
operators.
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The Pinning Field in O(N) Models

Here is a sample of results at large N and d = 3:

log g = −0.1536N +O(N0)

∆(φ̂1) = 1.542 +O(N−1)

Note: g is exponentially small at large N.
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The Pinning Field in O(N) Models

Combining all the data we amassed suggests that in d = 3 one
should expect ∆(φ̂1) ∼ 1.5 with rather weak N dependence. This
is the first nontrivial O(N − 1) singlet operator. It is roughly
consistent with Monte Carlo simulations and this along with
several other predictions should be testable.
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Spin Impurities

Another important line defect especially for the O(3) model comes
about as follows: We begin with QM with a spin s representation
of SO(3), so just a QM system with Hilbert space of dimension
2s + 1. We then couple the SO(3) generators Sa to the interacting
bulk:

S = SO(3) − γ
∫

dtSa(t)φa(t) .

This is the line operator

TrsPe
γ
∫
dtSaφa .

It is similar to Wilson lines but it is just a line defect in a magnet.
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Spin Impurities

Physically this is realizable by putting an external atom of spin s in
a quantum anti-ferromagnet at the critical point. While there is a
lot to say about this problem here I will mention one general result.
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Spin Impurities

At s →∞ the spin impurity breaks up into two almost-decoupled
DCFTs, one being the pinning field DCFT we studied above and
the other being just the theory of a free spin s. There is a
systematic 1/s expansion. This statement leads to many
predictions that can be checked in the future.
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Spin Impurities

For additional recent work on this subject see
[Beccaria-Giombi-Tseytlin, Rodriguez Gomez-Russo, Nahum,
Weber-Vojta, Grau]
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Now we will consider gauge theories in 3 or 4 space-time
dimensions. An important line operator is the Wilson line:

WR = TrR

[
P exp

(
i

∫
γ
dxµAa

µT
a
R

)]
This describes the insertion of a probe particle moving on the
worldline γ.
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In confining theories Wilson lines serve as order parameters for
confinement. Wilson lines are order parameters only if there are no
dynamical fields with the same quantum numbers.
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But today we are interested in de-confining theories (conformal
theories). The Wilson lines are potentially interesting whether or
not there are dynamical particles with the same quantum numbers.
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Massless scalar QED4 is not a conformal theory but the beta
function and generated mass are so small that it would be an
excellent playground to explain almost all the main points of this
talk.

S =

∫
d4x

[
− 1

4e2
F 2 + |Dφ|2 − λ|φ|4

]
+ q

∫
dtAt .

Dφ = ∂φ− iAφ.
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This leads to the classical saddle point

At =
e2q

4πr
, φ = 0 .

To justify the saddle point treatment mathematically and to
neglect the beta function of QED4 we can take e2q ∼ const,
e2 ∼ λ→ 0.
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An important computation to do is the measure the dimension of
the defect operator ∆(φ̂†φ̂) =? For small q it has to be close to
the bulk dimension so we expect

∆(φ̂†φ̂) = 2 + #e4q2 + #(e4q2)2 + · · ·

The answer can be found exactly by studying the Green’s function
around the saddle point. One finds:

∆(φ̂†φ̂) = 1 +

√
1− e4q2

4π2
.

Clearly for e2|q|
2π > 1 there is some sickness.
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Digression

The square root may ring a bell. To understand its origin one can
think of Wilson lines in radial quantization [e.g. Kapustin 05]:

ds2 = dt2 − dr2 − r2dΩ2
2 = r2

(
dt2 − dr2

r2
− dΩ2

2

)
.

Therefore Wilson lines can be studied as boundary conditions for
AdS2 × S2. The Coulomb field in these coordinates stays

At = e2q
4πr . From the AdS2 × S2 point of view, this is a constant

electric field since F 2 = const.
The field Φ moves in a constant electric field in AdS2 × S2. The
propagation in AdS2 in a constant electric field is quite similar
mathematically to a shift in the AdS2 mass. This is why we have

∆

2

(
∆

2
− 1

)
= − e4q2

16π2
,

which is like the effective AdS2 mass due to the electric field.
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Continuation of Digression
The instability due to an electric field in AdS2 is familiar from the
work of [Gubser; Hartnoll-Herzog-Horowitz] on holographic
super-conductors, but the fate of the instability is completely
different here.
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Intuitively, for e2|q|
2π > 1 the electric field is so strong that it leads

to pair creation and the saddle point is destablized.
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As we approach e2|q|
2π = 1 from below, the defect operator φ̂†φ̂

becomes closer and closer to being marginal. So we must consider
the more general Wilson line

W g
q = P exp

(
i

∫
γ
dt (q

dxµ

dt
Aµ − g φ̂†φ̂)

)
.

q cannot be renormalized, being an integer. But g can be
renormalized.
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The deformation by φ̂†φ̂ is analogous to a double-trace
deformation in AdS2 × S2. The old (new) Wilson line corresponds
to standard (alternative) quantization.
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Therefore something drastic happens e2|q|
2π = 1 because there are

two fixed points that annihilate and past that point, for e2|q|
2π > 1,

the Wilson line must define a new type of defect in the infrared.

Additionally, if we fine tune to the new fixed point, a deformation
by φ̂†φ̂ with a positive coefficient leads to the old Wilson line while
the deformation by φ̂†φ̂ with a negative coefficient, leads to some
long flow to a new infrared DCFT which we have to understand.
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It is not too hard to guess what happens when g → −∞; this
drives the scalar field to condense on the defect which
subsequently triggers a condensate in the bulk.
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The annihilation of the two fixed points we have seen above is
reminiscent of how QCD exits the conformal phase and also of the
BKT transition. It leads to Miransky scaling
[Kaplan-Lee-Son-Stephanov].

It is then not surprising that the scalar cloud that forms around the
Wilson loop is actually exponentially large in units of the cutoff
(e.g. the impurity radius). There is therefore dimensional
transmutation!

Also we will see that the cloud completely screens the Wilson line
and the infrared DCFT is entirely trivial. That is, at distances
much bigger than the scale of the scalar cloud, all the bulk one
point functions vanish and the space of defect operators is trivial.
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The naive guess for the extent of the cloud should be

Λ = µ0e

−2π√
e4q2

4π2 −1

This is the spread of the wave functions of the bosons which are
tachyonic around the original saddle point.

In reality we find a larger extent due to the non-linearities of the
condensate.
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If there is a one-form symmetry, such as in scalar QED with a
charge-2 scalar field, the screening cannot be complete as there has
to be a left-over nontrivial DCFT to transform under the one-form
symmetry. Naturally one should guess that the screening reduces
the charge all the way to 1 rather than 0 for lines with odd q.

It is not entirely obvious that this is what happens or how to prove
it.

Zohar Komargodski Line Defects, Renormalization Group Flows, Magnets, and Wilson Lines



A few words about the new conformal Wilson line:

∆new (φ̂†φ̂) = 1−
√

1− e4q2

4π2
.

This must be positive which is satisfied for all 0 < e2|q|
2π < 1. But

that does not mean that the new conformal line indeed exists for
this whole range. For instance, the operator |φ̂|4 becomes marginal
as

e2q

2π
→
√

3

2

from above. Then we need to re-analyze the space of lines.
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To conclude:

Scalar QED4 has two conformal lines which annihilate for
e2|q| = 2π. (A similar story happens for some spin-boson
impurities in magnets, as we have shown recently. See also
[Beccaria-Giombi-Tseytlin, Nahum, Weber-Vojta].)

The new conformal line can be understood as alternative
quantization of the boson field Φ near the probe charge.

For e2|q| > 2π the theory develops a low-energy scale
(dimensional transmutation) and flows to a trivial line defect.
There is interesting physics at that new scale, where we have
a boson cloud.

The full phase diagram of Wilson lines is not yet understood
as at some sufficiently small e2|q| there are quartics in the
new Wilson line.
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For massless fermionic QED4 the story is similar

S =

∫
d4x

[
− 1

4e2
F 2 + iΨ̄γµDµΨ

]
+ q

∫
dtA0 .

Now one finds an instability at e2|q|
4π = 1.

For e2|q|
4π < 1 there are two conformal Wilson lines, given by two

fixed points for the coupling g in (schematic)

W g
q = P exp

(
i

∫
γ
dt (q

dxµ

dt
Aµ − g ˆ̄Ψγ5Ψ̂)

)
.
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The fact that something dramatic happens at e2|q|
4π > 1 is not

limited to massless fermionic QED4. A similar instability exists for
massive QED4. The Wilson line is a nucleus of charge q. Since
e2/4π = 1/137, we see that

For nuclei with q > 137 there is an instability to
electron-positron production in the vacuum.

Of course there are practical difficulties to measure it, but it is
observable in graphene where the inverse fine structure
constant is much smaller [Pereira-Nilsson-Castro Neto;
Shytov-Katsnelson-Levitov; Wang-Wong-Shytov et al.].
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For a range of 119 < q < 137 there are two conformal boundary
conditions for the electron wave function at the nucleus and there
is an RG flow between them. These are our two line defects which
annihilate at q = 137. This flow could be observable in the phase
shift of electron scattering. A similar phenomenon should exist in
graphene.

Note: perhaps various fermion quartics become marginal in the UV
fixed point in the range 119 < q < 137.
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Just as an elementary remark: to see why q = 137 emerges for
hydrogen-like atoms [Pomeranchuk-Smorodinsky], consider the
energy of the ground state orbital

ERydberg = −1

2
α2mq2

We can compare it to the electron rest mass m and find that the
ground state of the hydrogen atom facilitates pair creation far from
the nucleus if −1

2α
2mq2 = 2m i.e. αq = 2. This is almost the

correct answer. If one includes corrections from relativity in the
hydrogen-like atom, one find αq = 1.
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Another interesting problem is to understand what happens for
e2|q|
4π > 1 in fermionic QED4.

For bosons we saw a cloud forming with an exponentially large
scale and the infrared was a trivial DCFT.

For fermions, instead, we only have a rigorous solution for
e2|q|
4π = 1 + ε for 0 < ε� 1.
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Again a charge cloud is forming, namely a bulk condensate

〈Ψ̄γ0Ψ(x⊥)〉 6= 0

The size of the cloud is again exponentially large

log(Λ/µ0) ∼ − 1

e2

but the crucial difference from the boson case is that it only

screens the defect down to e2|q|
4π = 1.
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So far we have covered bosonic and fermionic QED4. However, the
story is similar in any conformal gauge theory in 4d.

The case of N = 4 SYM is quite interesting to contemplate. Let
us pick the gauge group to be SU(2) and denote the spin of the
representation of the Wilson line by s

Ws = Trs

[
P exp

(
i

∫
γ
dtAa

0T
a
s

)]
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Then in the limit of

g2
YMs ∼ fixed , g2

YM → 0

the results are essentially identical to what we found above. Wilson
lines cease to exist as distinct DCFTs for g2

YMs ∼ 1.

By S-duality it implies that there are many distinct ’t Hooft lines
at strong coupling. But it suggests that perhaps they disappear at
weak coupling! Are there ’t Hooft lines at weak coupling?! It turns
out that in SU(2) gauge theory there are none!!
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Let us now make some comments about conformal gauge theories
in 3d. Other than purely theoretical motivation, such theories
appear as quantum phase transitions in the lab and one can study
charged impurities.
One interesting setup is a 3d multi-critical boson charged under a
4d gauge field

S =

∫
z≥0

dzd3x
1

4e2
F 2 +

∫
z=0

d3x
(
|DAΦ|2 + ρ(|Φ|2)3

)
(1)

There is a fixed point ρ∗ = 8
15e

2 + O(e4) [Di
Pietro-Gaiotto-Lauria-Wu].
The electric potential due to a Wilson line at z0 is

At =
e2q

4π

(
1√

r2 + (z − z0)2
+

1√
r2 + (z + z0)2

)
.
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One finds that, regardless of e, already for small values of q the
line leads to an instability! So all charged impurities should develop
a scalar cloud that screens the charge.

The cloud will develop only on the three-dimensional boundary,
where Φ is allowed to condense.
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Some obvious questions we did not discuss

Chern-Simons Matter theories, U(1)0 + Nf Ψ – here we find
that lines exist up to charge ∼ Nf /2.

A large N and holographic understanding?

Which Wilson lines exist beyond weak coupling?

The effects of the quartic |Φ̂|4 and possible fermion quartics.

· · ·
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Thank You!
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