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small scales (the UV), become same CFT at large scales (the IR).

@ Usually one of the CFTs is weakly coupled in the regime where
the other is strongly coupled, or both are strongly coupled.

o Classically each theory looks different, but quantum effects make
them identical.

@ Since at least one theory is strongly coupled, hard to check
duality. All d > 2 cases required supersymmetry to check, e.g.

o Original duality between 4d N = 2 gauge theories [Seiberg '95] .

e Generalized to dualities between 3d N = 4 [Intriligator, Seiberg '96]
and then ' = 2 [Giveon, Kutasov '09] gauge theories.
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@ First experimentally relevant (i.e. non-supersymmetric) IR duality
in d > 2 is particle/vortex duality [Peskin '78; Dasgupta, Halperin '81] :

e QED3 with 1 complex scalar < critical O(2) model.

@ Describes continuous transition between superfluid and Mott
phase of Bose-Hubbard model at integer filling on 2d lattice.

@ Compare charge g scaling dimension A, from O(2) lattice
[Hasenbusch '20] to QEDS3 lattice [Kajantie et al ‘04, Karathik 18]

0(2): Ag=1511, Ayp=.5191, Ay=1236, Agyp =210
QED3: Ag=1508, Aqp=.48  A;=123, Agp=215
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e QED3 with 1 complex fermion and Chern-Simons level —1/2 <
critical O(2) model.

@ This duality is called 3d bosonization, like 2d bosonization
[Mandelstam '75; Coleman '75I; Luther, Peschel "74] .

e 2d duality is exact for QFT along entire flow, not just IR duailty.

@ Recently, a fermion-fermion duality was proposed by [son 15 Wang,
Senthil '15; Metlitski, Vishwanath ’16] .

o QEDS with 1 complex fermion and k = 0 < 1 free complex fermion.

@ Hard to check CFT data of dualities using lattice, bc
Chern-Simons and/or fermions causes sign problem.
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e Derive original bosonization duality as scalar = T~'S~[fermion]

@ Can verify that 't Hooft anomalies match between each side for the
dualities, and parity emergent from other conjectured dualities.

@ But hard to check CFT data of duality using lattice, bc
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< SU(k) QCD3 with N fermions and CS N/2 — N, [Aharony 16] .
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o But flow to non-susy theory is uncontrolled.

@ Can show that lattice description in UV of each dual theory are
related [Chen, Son, Wang, Raghu "18] .
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This talk: Check dualities by computing monopole operator scaling
dimensions at large N, k and extrapolating to N = k = 1 for seed
bosonization duality, and kK = 0, N = 1 for particle/vortex.

Ouitline:
@ Define monopole operators in QED3.

@ Describe large N, k calculation of scaling dimension to
sub-leading order.

@ Compare to operators in dual theories (O(2) dual to k = 0, free
fermion dual to kK = 1), find precise match after extrapolating N, k.
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Conformal QED3

@ QED3 with N complex ¢; and Chern-Simons level k has action:

F F o2 1 ik
3 /W e 2 i2 ,Lu/pA A
[Tt AT = AP+ (i)~ A0,
e o is real scalar Hubbard-stratonovich for ¢* term.
e k must be integer, when k = 0 call it CPN~" model.
@ Atlarge N, can show that theory flows to interacting CFT in the IR

[Appelquist, Nash, Wilewardhana '88] , believed to hold at finite N except
maybe N =2 and k = 0.

@ e, )\ — oo when we flow to IR, bc F2 and o2 are irrelevant.

@ Can construct operators from ¢;, o, and A, in irreps of SU(N)
flavor symmetry, compute correlators at large N using Feynman
diagrams [Halperin, Lubetsky, Ma '74; Kaul, Sachdev '08] .
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Monopole operators

@ In addition to SU(N) flavor symmetry, have U(1)1 symmetry:
JH = g-etvPF,, current conserved b/c €479, F,, = 0.

e All fields in Lagrangian uncharged under U(1)7.

@ Monopole operator M, defined as having charge q under U(1)7,

e Dirac quantization condition requires g € Z/2.
@ When k = 0, M, are scalars and singlets under SU(N).

e For k # 0, we will see that M, generically in nontrivial irreps.
@ Can compute scaling dimensions A, at large N. Hard on R®

[Murthy, Sachdev '90] , instead use state-operator correspondence
[Borokhov, Kapustin, Wu '02] .
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@ Consider thermal free energy Fy = %fz on 82 x Sg with 47q
flux, where g = 1/T is length of S [sMC, lliesiu, Mezei, Pufu17] .

@ After integrating out matter, can compute Fg from large N saddle
point, s.t. holonomy of gauge field acts as chemical potential for
matter fixed by saddle condition to cancel gauge charge.
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S? Hilbert space with 47q magnetic flux, s.t. Aq given by energy
on S? x R with 47q flux [Borokhov, Kapustin, Wu '02] .

@ Chern-Simons term contributes 2gk to Gauss law constraint, so
need to dress vacuum with matter to make gauge invariant.

@ Consider thermal free energy Fy = %fz on 82 x Sg with 47q
flux, where g = 1/T is length of S [sMC, lliesiu, Mezei, Pufu17] .

@ After integrating out matter, can compute Fg from large N saddle
point, s.t. holonomy of gauge field acts as chemical potential for
matter fixed by saddle condition to cancel gauge charge.

@ Bonus: Subleading in 1/ terms in Fy tell us degeneracy of states
= irreps of monopole operator.
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—
Large N for A4

@ Integrate out ¢ to get action proportional to N:

7_ / dAdo eNTHoglo+ 5 (ViR N [ Pxervr Ad,A,]

@ Consider most general saddle point A, = A, + A, and o = y + i5
on $2 x Sl st. [o F = 4rq:

ATE—ia:,B1/ A, fg¢d9/\d(]§£C]Sih9d9/\d¢,
S}

@ Plug in to Z to compute leading large N free energy NFC(,O)(a, )

. 1
F (o, ) = ' Trlog [—(Vﬂ — A2+ 2 tH| —2kga,

= 513" djlogl2(cosh(BA;) — cosh(Ba))] — 2xqa
i>q
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—
Large N for A4

@ Integrate out ¢ to get action proportional to N:
7_ / dAdo eNTHoglo+ 5 (ViR N [ Pxervr Ad,A,]

@ Consider most general saddle point A, = A, + A, and o = y + i5
on $2 x Sl st. [o F = 4rq:

ATE—ia:,B1/ A, fg¢d9/\d(]§£C]Sih9d9/\d¢,
S}

@ Plug in to Z to compute leading large N free energy NFC(,O)(a, )

. 1
FO(a, 1) = B Trlog [—(vﬂ — AP+ 7+ | —26qa,
=871 dilog[2(cosh(82;) — cosh(Ba))] — 2kqe
j=q
e )\, d; are eigenvalues and degeneracies on S? x R with 4rq flux.
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Saddle point values

@ Holonomy « and . are constants determined from saddle point
equations:
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equations: o .
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da o, 8,u oL =0.

@ For o we find up to O(e~*) a unique saddle that gives real Fy:
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Saddle point values

@ Holonomy « and . are constants determined from saddle point
equations:
OFS (0, 1)
O

IR p)

=0.
a, 8,u

o

@ For o we find up to O(e~*) a unique saddle that gives real Fy:

2
o) = —sen) (g + 5 g ) 6= 29
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=0.
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o

@ For o we find up to O(e~*) a unique saddle that gives real Fy:

2
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@ For p, given by solution to equation (regularize with zeta
functions):
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Saddle point values

@ Holonomy « and . are constants determined from saddle point
equations:

IR p)

=0.
a, 8u

o

Oa

@ For o we find up to O(e~*) a unique saddle that gives real Fy:

() = —senl) (da+ 5 og S ) ¢

2q|x|
+£ '

dg

@ For p, given by solution to equation (regularize with zeta
functions):

d, : ,
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Saddle point values

@ Holonomy « and . are constants determined from saddle point
equations:

IR p)

=0.
a, 8u

o

Oa

@ For o we find up to O(e~*) a unique saddle that gives real Fy:

() = —senl) (da+ 5 og S ) ¢

2q|x|
+£ '

dg

@ For p, given by solution to equation (regularize with zeta
functions):

d, : ,
ZA,M) 5")07 )\jE\/(/+1/2)2_q2+M7 d=2j+1.
j>aq

e For 2|x| = d, find solution 1, = g2, otherwise solve numerically.
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Fo=NF® + FD +..., F((,):AE,)—ESE,)JrO(e %).
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Leading order free energy

@ Plug a, pinto F(SO) to get final answer
0 1 0 0 140 _
Fo=NF® + FD +..., F((,):AE,)—ESE,)JrO(e %).

@ The energy NAgO) is the monopole scaling dimension by
state-operator correspondence, and entropy SE,O) is log# of
operators with Ago) at large N:

A =" di + €dg)g.
j>2q
SO — —dy (¢log & — (1 +€) log[1 +£]) .

@ For 2|x| = dy, find simple Ago) (otherwise compute numerically):
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Leading order free energy

@ Plug a, pinto FC(,O) to get final answer
0 1 0 0 140 _
Fo=NF® + FD +..., F((,):AE,)—BSE,)JrO(e %).

@ The energy NAgo) is the monopole scaling dimension by
state-operator correspondence, and entropy SE,O) is log# of
operators with Ago) at large N:

A =" di + €dg)g.
j=q
S = —dg (¢log& — (1 +€)log[1 +¢]) .

@ For 2|x| = dy, find simple AE,O) (otherwise compute numerically):
2

A
973

9(g+1)(2g+1)= > n?st nis (odd) even for g (half) intege
0<n<2q
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Sub-leading calculation

@ Subleading F(g” from 2nd order in fluctuations around saddle:
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Sub-leading calculation

@ Subleading F(g” from 2nd order in fluctuations around saddle:

exp(—BFV) = / DADG exp [—g’ / d®xd®x’ (A“(X)Kgl’(x,x’)l\y(x’)

+5(X)K7 (x, X5 (X') + 25 (X)KS" (x, x’)/z\l,(x’)>] ,

M to cancel divergent gauge modes.

n rr
o Consider ratio (R

@ The kernels Ky(x, x) are written terms of the Green'’s function:

(VAT

g TH Gy(x,x') =d6(x = x').

e Computed for general q in [SMC, lliesiu, Mezei, Pufu'17] in terms of
infinite sum of monopole spherical harmonics.
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Sub-leading calculation

@ Subleading F(g” from 2nd order in fluctuations around saddle:

exp(—BFV) = / DADG exp [—g’ / d®xd®x’ (A“(X)Kgl’(x,x’)l\y(x’)

+5(X)K7 (x, X5 (X') + 25 (X)KS" (x, x’)/z\l,(x’)>] ,

M to cancel divergent gauge modes.

n rr
o Consider ratio (R

@ The kernels Ky(x, x) are written terms of the Green'’s function:

(VAT

g TH Gy(x,x') =d6(x = x').

e Computed for general q in [SMC, lliesiu, Mezei, Pufu'17] in terms of
infinite sum of monopole spherical harmonics.

e For 2|x| = dg, can be written in simple closed form [swvic 21].
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Sub-leading expression

@ Integrate 5, Z\M by going to Fourier space with kernels, get:
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Sub-leading expression

@ Integrate 5, Z\M by going to Fourier space with kernels, get:

2 (20 +1) K7™ (wn)
FO—yoyo log det | L n) |
q K

n=0 (=0 2n K?’ wn)
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Sub-leading expression

@ Integrate 5, Z\M by going to Fourier space with kernels, get:
2 = (20 41) K7 (wn)
FO =33 BT o e | K2 (0 |
q K
par Ky (wn)

@ Take S — oo to get scaling dimension (turns sum over w, to
integral over continuous w):
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Sub-leading expression

@ Integrate 5, Z\M by going to Fourier space with kernels, get:

2 (20 +1) K7™ (wn)
F{ = ( logdet | &4~ |
q K

2.2 K7

@ Take S — oo to get scaling dimension (turns sum over w, to
integral over continuous w):

A = dﬂi(ze 1) log det
a = | 2n T 1)logde
/=0

Kj (w)] |

g,k
K" (w)
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Sub-leading expression

@ Integrate 5, Z\M by going to Fourier space with kernels, get:
2 = (20 41) K7 (wn)
FO =33 BT o e | K2 (0 |
q K
par Ky (wn)

@ Take S — oo to get scaling dimension (turns sum over w, to
integral over continuous w):

00 g,k
(1)_/dw K" (w)
A = [ 2537 (20 + 1) log det .
q o ezo( ) g [K%K(w)

e Also find various 5~' and 8~ log /3 terms.
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Sub-leading expression

@ Integrate 5, Z\M by going to Fourier space with kernels, get:
2 (20 +1) K7™ (wn)
FiY = g E @r+1) log det [z .
q K
par K" (wn)

@ Take S — oo to get scaling dimension (turns sum over w, to
integral over continuous w):

00 g,k
(1)_/dw K" (w)
A = [ 2537 (20 + 1) log det .
q o ezo( ) g [K%K(w)

e Also find various 5~' and 8~ log /3 terms.

o Need to subtract linear divergence using counterterm.
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Sub-leading expression

@ Integrate 5, Z\M by going to Fourier space with kernels, get:
2 = (20 41) K7 (wn)
FO =33 BT o e | K2 (0 |
q K
par Ky (wn)

@ Take S — oo to get scaling dimension (turns sum over w, to
integral over continuous w):

00 g,k
(1)_/dw K" (w)
A = [ 2537 (20 + 1) log det .
q o ezo( ) g [K%K(w)

e Also find various 5~' and 8~ log /3 terms.
o Need to subtract linear divergence using counterterm.

@ Numerically compute sum/integral, nontrivial check that get
convergent answer (no logarithmic divergence).
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Subleading result

@ Final result for F(g” up to O(e?) is:
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o Ag) computed for x = 0 and general q in [Dyer, Mezei, Pufu, Sachdev '15]
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o Ag) computed for x = 0 and general q in [Dyer, Mezei, Pufu, Sachdev '15]

e Large g limit for x = 0 computed by [de la Fuente 18], O(qP)
matches prediction from [Hellerman, Orlando, Reffert, Watanabe '15] .
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e Large g limit for x = 0 computed by [de la Fuente 18], O(qP)
matches prediction from [Hellerman, Orlando, Reffert, Watanabe '15] .

@ Generalized to 2|x| = dy and g = 1/2in [svic 21], easier bc
Gqy(x, x") simplified. Then general g, x [SMC. Dupuis, Witzcak-Krempa 22]
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Subleading result

@ Final result for F(g” up to O(e?) is:

FN =al) 4+ ;ﬁ[log(N27rdq£(1 +8)) + (d§ —1)log 8

dg—1

+ 3 (20+1)log (5(1 +&)Cou + 5_1) ]
=1

o Ag) computed for x = 0 and general q in [Dyer, Mezei, Pufu, Sachdev '15]

e Large g limit for x = 0 computed by [de la Fuente 18], O(qP)
matches prediction from [Hellerman, Orlando, Reffert, Watanabe '15] .

@ Generalized to 2|x| = dy and g = 1/2in [svic 21], easier bc
Gqy(x, x") simplified. Then general g, x [SMC. Dupuis, Witzcak-Krempa 22]

@ Next, we give a microcanonical interpretation of the 3~ terms.
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Microcanonical interpretation

@ We would like to explain our results using an oscillator
construction, which is only valid in the UV at N — 0.
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construction, which is only valid in the UV at N — 0.

@ Not obvious that such a construction should remain valid for the IR
CFT at &N — oco. Evidence for conjecture from thermal results.

@ For scalar QED3, expand ¢, in modes on Lorentzian S? x R:

| energy | spin | gauge charge | SU(N) irrep | degenera
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Microcanonical interpretation

@ We would like to explain our results using an oscillator
construction, which is only valid in the UV at N — 0.

@ Not obvious that such a construction should remain valid for the IR
CFT at &N — oco. Evidence for conjecture from thermal results.

@ For scalar QED3, expand ¢, in modes on Lorentzian S? x R:

| energy | spin | gauge charge | SU(N) irrep | degenera
ar Y j +1 N Naj
b | % | )| - N N
Myare | N 0N | O 2gN~ 1 1

@ Mhare is vacuum in presence of 47 q flux.

@ )\; depends on p, so ¢; modes not really free (mean-field like).

Shai Chester (Harvard University) October 22, 2022 17/28



Microcanonical interpretation: Leading order

Recall:  NAY = N[ 3" di; +£dghq]
j=q
NS = N[—dg (¢ log € — (1+ &) log[1 +€])].
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lowest energy A\q modes needed to cancel gauge charge of Myare.
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Microcanonical interpretation: Leading order
Recall:  NAY = N[ 3" di; +£dghq]
j>a
NS = N[—dg (¢ log € — (1+ &) log[1 +€])].

@ Firsttermin NAE,O) is Casimir energy of Myare, second are NEdy
lowest energy A\q modes needed to cancel gauge charge of Myare.
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Microcanonical interpretation: Leading order
Recall:  NAY = N[ 3" di; +£dghq]
j>a
NS = N[—dg (¢ log € — (1+ &) log[1 +€])].

@ Firsttermin NAE,O) is Casimir energy of Myare, second are NEdy
lowest energy A\q modes needed to cancel gauge charge of Myare.

@ These N¢dy modes each in the fundamental of SU(N), together
form many degenerate SU(N) x SU(2)qt irreps. E.Q.:

Ng+¢
Ng
dg=2: PR,2¢+1), R,= ‘ D
£=0 - e L |

@ Log of these degenerate irreps reproduce NSéO) !
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Microcanonical interpretation: Subleading order

@ Conjecture continuous density of states C(E — Ey)* at large N:
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F=
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@ Compare to 3~ terms from Fq (set dy = 2 for simplicity) we find
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@ Compare to 3~ terms from Fq (set dy = 2 for simplicity) we find
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D(E) ~ (E—NAP), — Al
N'/27r€2(4 —i—é)QCf;SJ / /
@ Compare to D(E) from microcanonical states with y = ﬁ:
, NS(©
D(E) ~ (2¢+1)dimR, ~ 26" yze_ﬁﬁﬂ.
AE, N1/27€2(1 — ¢)32 dE

@ Solve to get energy splitting £ ~ NA(), — Al)) + Cy 212,
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Comparison of A, to duality: particle/vortex

@ Scalar QED3 with N = 1 and k = 0 < critical O(2) Wilson Fisher.
@ M, < lowest dimension operator made of 2q complex bosons ¢:

o M2 & ¢, and My < ¢¢, and Mz 2 < ¢ppé.

@ All these operators are unique scalars, so no degeneracy
breaking terms in monopole calculation.

@ O(2) operators computed for g < 2 at high precision from
numerical bootstrap [SMC, Landry, Liu, Poland, DSD, Su, Vichi '20; Liu, Meltzer,
Poland, DSD '20] .

@ General g in O(2) computed at lower precision using lattice
[Banerjee, Chandrasekharan, Orlando ’18] .
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Evidence for particle/vortex from monopoles

q H AS;,)()J ‘ Ag% ‘ N=1 ‘ 0(2) ‘ Error (%)
1/2 || 0.12459 | 0.38147 | 0.50609 | 0.519130434 2.5
1 0.31110 | 0.87452 | 1.1856 | 1.23648971 4.1
3/2 | 0.54407 | 1.4646 | 2.0087 2.1086(3) 4.7
2 | 0.81579 | 2.1388 | 2.9546 | 3.11535(73) 5.2
5/2 | 1.1214 | 2.8879 | 4.0093 4.265(6) 5.8
3 1.4575 | 3.7053 | 5.1628 5.509(7) 6.3
7/2 | 1.8217 | 45857 | 6.4074 6.841(8) 6.3
4 2.2118 | 5.5249 | 7.7367 8.278(9) 6.5
9/2 | 2.6263 | 6.5194 | 9.1458 9.796(9) 6.6
5 3.0638 | 7.5665 | 10.630 11.399(10) 6.7
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2 | 0.81579 | 2.1388 | 2.9546 | 3.11535(73) 5.2
5/2 | 1.1214 | 2.8879 | 4.0093 4.265(6) 5.8
3 1.4575 | 3.7053 | 5.1628 5.509(7) 6.3
7/2 | 1.8217 | 45857 | 6.4074 6.841(8) 6.3
4 2.2118 | 5.5249 | 7.7367 8.278(9) 6.5
9/2 | 2.6263 | 6.5194 | 9.1458 9.796(9) 6.6
5 3.0638 | 7.5665 | 10.630 11.399(10) 6.7

@ Match even though sub-leading Ag()) bigger than leading Ag?()) !

@ Match gets slightly worse with bigger q.
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Comparison to lattice for N > 1and k =0
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@ Lattice [Lou, Sandvik, Kawashima '09; Kaul, Sandvik *12; Block, Melko, Kaul '13] also
matches large N for Ay, (i.e. Fq2) for various finite N > 1.
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Comparison to lattice for N > 1and k =0
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@ Lattice [Lou, Sandvik, Kawashima '09; Kaul, Sandvik *12; Block, Melko, Kaul '13] also
matches large N for Ay, (i.e. Fq2) for various finite N > 1.

@ Note that N = 2 might not be CFT.
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Comparison of A, to duality: 3d bosonization

@ Scalar QED3 with N = k = 1 < Free complex 2 component
fermion ,,.
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Comparison of A, to duality: 3d bosonization

@ Scalar QED3 with N = k = 1 < Free complex 2 component
fermion ,,.

@ Free fermion parity invariant, scalar QEDS parity invariant bc of
duality that relates k = +1.

@ M, < lowest dimension operators made of 2q fermions, half
integer spin for half integer g:

e M ,» & 1, with spin 1/2, and My < €*Ppa1h s With spin zero.

@ For higher g need to dress with derivatives bc of antisymmetry, so
degenerate operators with same g and dimension, e.g. for g = 2:

Q *Pathse199,1,0,1,5 has A = 6 and spin 2.
Q “Pioippe?? 81,015 has A = 6 and spin 0.

Shai Chester (Harvard University) October 22, 2022 23/28



Operators in free fermion theory

@ We can determine spectrum of free fermion theory by looking at
free energy on S? x R in presence of background U(1) flux q.
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Operators in free fermion theory

@ We can determine spectrum of free fermion theory by looking at
free energy on S? x R in presence of background U(1) flux q.

@ Fermionic modes of spinj = 1/2,3/2,... have eigenvalue
Aj =j+1/2, charge 1/2, and 2j +- 1 in each energy shell.

@ Operators with charge g that correspond to states of n filled
energy shells are unique scalars have charge and dimension:

n—1/2

g= Y (2j+1)=n(n+1)/2, eg. g=1,3610,...
j=1/2
n—1/2

A= (2j+1)x —q\/1+8 , eg. A=210,28,60,...
j=1/2

@ Operators that correspond to states of partially filled energy shells
will have spin and degeneracy corresponding to valence modes.
Shai Chester (Harvard University) October 22, 2022 24/28



Evidence for 3d bosonization from monopoles

q H Ag’q ‘ Ag} ‘ N =1 ‘ Fermion ‘ Error (%)
1/2 1 —0.2789 | 0.7211 1 28
1 2.5833 | —0.6312 | 1.952 2 2.4
3/2 || 45873 | —1.052 | 3.535 4 15
2 |/ 6.9380 | —1.534 | 5.404 6 9.9
5/2 || 9.5904 | —2.070 7.52 8 6.0
3 || 12514 | —2.655 | 9.859 10 1.4
6 || 34.727 | —7.032 | 27.70 28 1.1
10 || 74.141 | —14.71 | 59.43 60 0.95
15 || 135.67 | —26.63 | 109.04 110 0.87
21 || 22423 | —43.75 | 180.5 182 0.82
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q H Ag’q ‘ Ag} ‘ N =1 ‘ Fermion ‘ Error (%)
1/2 1 —0.2789 | 0.7211 1 28
1 2.5833 | —0.6312 | 1.952 2 2.4
3/2 || 45873 | —1.052 | 3.535 4 15
2 |/ 6.9380 | —1.534 | 5.404 6 9.9
5/2 || 9.5904 | —2.070 7.52 8 6.0
3 || 12514 | —2.655 | 9.859 10 1.4
6 || 34.727 | —7.032 | 27.70 28 1.1
10 || 74.141 | —14.71 | 59.43 60 0.95
15 || 135.67 | —26.63 | 109.04 110 0.87
21 || 22423 | —43.75 | 180.5 182 0.82

@ Purple are unique scalar operators (i.e. filled energy shells)

@ Find match for unique scalars, that improves with q.

Shai Chester (Harvard University)

October 22, 2022

25/28



|
Match for other g

@ Operators in free fermion theory that NOT unique scalars do not
match our monopole calculation (tho mismatch shrinks with q).
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|
Match for other g

@ Operators in free fermion theory that NOT unique scalars do not
match our monopole calculation (tho mismatch shrinks with q).

@ This could be because of the degeneracy breaking term in the
large N calculation, that we have not taken into account.

o If we take quree = §q~/1 + 8q of unique scalars in free fermion
theory, which only valid for ¢ = 1, 3,6, ..., and analytically
continue to general g then we get precise match now for all g:

AT = 7454, AT = 3.606, AF™ = 5.498,
AT/"Z”" =.7211, Ag";’zm = 3.535, AJ°"™ = 5.404,
@ Suggests that large N calculation might correspond to effective

large g theory, which only applies to unique scalars but is analytic
in @ [Komargodski, Mezei, Pal, Raviv-Moshe '21] .
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Conclusion

@ Computed scaling dimensions of monopoles in QED3 with N
scalars and CS k at large N, k and fixed x = k/N to sub-leading
order.
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Conclusion

@ Computed scaling dimensions of monopoles in QED3 with N
scalars and CS k at large N, k and fixed x = k/N to sub-leading
order.

o Generalized previous results for x = 0.

@ Extrapolating to N = 1 and x = 0 matches operators in critical
O(2) model, first check of particle-vortex duality for charged
operators.

@ Extrapolating to N =1 and x = 1 matches operators in free
fermion theory, first dynamical check of 3d bosonization!

e Check so far only works for g for unique scalar operators, but
intriguing connection to large charge expansion for general q.
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Future directions

@ Improve large N calculation of monopoles for non-unique scalars
to get match to free fermion theory.
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Future directions

@ Improve large N calculation of monopoles for non-unique scalars
to get match to free fermion theory.

@ Check how higher orders in 1/N contribute.

@ Derive analytic proof of 3d bosonization at large charge, hinted by
our answer

@ Generalize to other 3d gauge theories at large N, k and fixed
k= k/N,e.q.:

o QEDS with N fermions, use to check duality between QED3 with
N =1 fermion and k = 1/2, and critical O(2) model.

e N =1 SQED, check dualities in that case [Benini, Benvenuti '18] .

e QCD3 with general finite rank gauge group (x = 0 already
done in [Dyer, Mezei, Puiu '15] ), check other dualities e.g. [Aharony,
Benini, Hsin, Seiberg '17] .
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