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IR Duality

IR Duality is when two quantum field theories that are different at
small scales (the UV), become same CFT at large scales (the IR).

Usually one of the CFTs is weakly coupled in the regime where
the other is strongly coupled, or both are strongly coupled.

Classically each theory looks different, but quantum effects make
them identical.

Since at least one theory is strongly coupled, hard to check
duality. All d > 2 cases required supersymmetry to check, e.g.

Original duality between 4d N = 2 gauge theories [Seiberg ’95] .

Generalized to dualities between 3d N = 4 [Intrilligator, Seiberg ’96]

and then N = 2 [Giveon, Kutasov ’09] gauge theories.
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Duality in nature

First experimentally relevant (i.e. non-supersymmetric) IR duality
in d > 2 is particle/vortex duality [Peskin ’78; Dasgupta, Halperin ’81] :

QED3 with 1 complex scalar⇔ critical O(2) model.

Describes continuous transition between superfluid and Mott
phase of Bose-Hubbard model at integer filling on 2d lattice.

Compare charge q scaling dimension ∆q from O(2) lattice
[Hasenbusch ’20] to QED3 lattice [Kajantie et al ’04, Karathik ’18] :

O(2) : ∆0 = 1.511, ∆1/2 = .5191, ∆1 = 1.236, ∆3/2 = 2.109,

QED3 : ∆0 = 1.508, ∆1/2 = .48, ∆1 = 1.23, ∆3/2 = 2.15.
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3d Bosonization

Later duality was found that relates fermionic theory to bosonic
theory [Chen, Fisher, Wu ’93, Barkeshli, McGreevy ’14] :

QED3 with 1 complex fermion and Chern-Simons level −1/2⇔
critical O(2) model.

This duality is called 3d bosonization, like 2d bosonization
[Mandelstam ’75; Coleman ’75l; Luther, Peschel ’74] .

2d duality is exact for QFT along entire flow, not just IR duailty.

Recently, a fermion-fermion duality was proposed by [Son 15’; Wang,
Senthil ’15; Metlitski, Vishwanath ’16] :

QED3 with 1 complex fermion and k = 0⇔ 1 free complex fermion.

Hard to check CFT data of dualities using lattice, bc
Chern-Simons and/or fermions causes sign problem.
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Web of dualities
All these dualities are part of web of 3d dualities [Seiberg, Senthil, Wang,
Wittten ’16; Karch, Tong ’16] , bc given one duality can derive others by
two operations:

1 S: gauge the global symmetry of both theories.

2 T : shift Chern-Simons level by 1 for both theories.

All dualities can thus be derived from a seed duality:

QED3 with 1 complex scalar and Chern-Simons level 1⇔ 1 free
complex fermion, i.e. ST [scalar ] = fermion.

Derive original bosonization duality as scalar = T−1S−1[fermion]

Can verify that ’t Hooft anomalies match between each side for the
dualities, and parity emergent from other conjectured dualities.

But hard to check CFT data of duality using lattice, bc
Chern-Simons term causes sign problem.
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Motivation for seed duality

Consider generalization to: U(Nc) QCD3 with N scalars and CS k
⇔ SU(k) QCD3 with N fermions and CS N/2− Nc [Aharony ’16] .

Many checks at leading large Nc , k and finite N, k/Nc starting with
correlators in [Aharony, Gur-Ari, Yacoby ’12; Giombi, Minwalla, Prakash, Trivedi,

Wadia, Yin ’12] .

But extrapolation to Nc = N = k = 1 is uncontrolled.

Break supersymmetric version of duality [Giveon, Kutasov ’09] to flow to
non-susy seed duality [Gur-Ari, Yacoby ’15] .

But flow to non-susy theory is uncontrolled.

Can show that lattice description in UV of each dual theory are
related [Chen, Son, Wang, Raghu ’18] .

But flow to IR CFTs is uncontrolled.
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Outline

This talk: Check dualities by computing monopole operator scaling
dimensions at large N, k and extrapolating to N = k = 1 for seed
bosonization duality, and k = 0,N = 1 for particle/vortex.

Outline:

Define monopole operators in QED3.

Describe large N, k calculation of scaling dimension to
sub-leading order.

Compare to operators in dual theories (O(2) dual to k = 0, free
fermion dual to k = 1), find precise match after extrapolating N, k .
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Conformal QED3

QED3 with N complex φi and Chern-Simons level k has action:∫
d3x

[FµνFµν

4e2 +
σ2

4λ
+ |(∇µ − iAµ)φi |2 + (

1
4

+ iσ)|φi |2 − ik
4π
εµνρAµ∂νAρ

]
,

σ is real scalar Hubbard-stratonovich for φ4 term.

k must be integer, when k = 0 call it CPN−1 model.

At large N, can show that theory flows to interacting CFT in the IR
[Appelquist, Nash, Wijewardhana ’88] , believed to hold at finite N except
maybe N = 2 and k = 0.

e, λ→∞ when we flow to IR, bc F 2 and σ2 are irrelevant.

Can construct operators from φi , σ, and Aµ in irreps of SU(N)
flavor symmetry, compute correlators at large N using Feynman
diagrams [Halperin, Lubetsky, Ma ’74; Kaul, Sachdev ’08] .

Shai Chester (Harvard University) October 22, 2022 8 / 28



Conformal QED3

QED3 with N complex φi and Chern-Simons level k has action:∫
d3x

[FµνFµν

4e2 +
σ2

4λ
+ |(∇µ − iAµ)φi |2 + (

1
4

+ iσ)|φi |2 − ik
4π
εµνρAµ∂νAρ

]
,

σ is real scalar Hubbard-stratonovich for φ4 term.

k must be integer, when k = 0 call it CPN−1 model.

At large N, can show that theory flows to interacting CFT in the IR
[Appelquist, Nash, Wijewardhana ’88] , believed to hold at finite N except
maybe N = 2 and k = 0.

e, λ→∞ when we flow to IR, bc F 2 and σ2 are irrelevant.

Can construct operators from φi , σ, and Aµ in irreps of SU(N)
flavor symmetry, compute correlators at large N using Feynman
diagrams [Halperin, Lubetsky, Ma ’74; Kaul, Sachdev ’08] .

Shai Chester (Harvard University) October 22, 2022 8 / 28



Conformal QED3

QED3 with N complex φi and Chern-Simons level k has action:∫
d3x

[FµνFµν

4e2 +
σ2

4λ
+ |(∇µ − iAµ)φi |2 + (

1
4

+ iσ)|φi |2 − ik
4π
εµνρAµ∂νAρ

]
,

σ is real scalar Hubbard-stratonovich for φ4 term.

k must be integer, when k = 0 call it CPN−1 model.

At large N, can show that theory flows to interacting CFT in the IR
[Appelquist, Nash, Wijewardhana ’88] , believed to hold at finite N except
maybe N = 2 and k = 0.

e, λ→∞ when we flow to IR, bc F 2 and σ2 are irrelevant.

Can construct operators from φi , σ, and Aµ in irreps of SU(N)
flavor symmetry, compute correlators at large N using Feynman
diagrams [Halperin, Lubetsky, Ma ’74; Kaul, Sachdev ’08] .

Shai Chester (Harvard University) October 22, 2022 8 / 28



Conformal QED3

QED3 with N complex φi and Chern-Simons level k has action:∫
d3x

[FµνFµν

4e2 +
σ2

4λ
+ |(∇µ − iAµ)φi |2 + (

1
4

+ iσ)|φi |2 − ik
4π
εµνρAµ∂νAρ

]
,

σ is real scalar Hubbard-stratonovich for φ4 term.

k must be integer, when k = 0 call it CPN−1 model.

At large N, can show that theory flows to interacting CFT in the IR
[Appelquist, Nash, Wijewardhana ’88] , believed to hold at finite N except
maybe N = 2 and k = 0.

e, λ→∞ when we flow to IR, bc F 2 and σ2 are irrelevant.

Can construct operators from φi , σ, and Aµ in irreps of SU(N)
flavor symmetry, compute correlators at large N using Feynman
diagrams [Halperin, Lubetsky, Ma ’74; Kaul, Sachdev ’08] .

Shai Chester (Harvard University) October 22, 2022 8 / 28



Conformal QED3

QED3 with N complex φi and Chern-Simons level k has action:∫
d3x

[FµνFµν

4e2 +
σ2

4λ
+ |(∇µ − iAµ)φi |2 + (

1
4

+ iσ)|φi |2 − ik
4π
εµνρAµ∂νAρ

]
,

σ is real scalar Hubbard-stratonovich for φ4 term.

k must be integer, when k = 0 call it CPN−1 model.

At large N, can show that theory flows to interacting CFT in the IR
[Appelquist, Nash, Wijewardhana ’88] , believed to hold at finite N except
maybe N = 2 and k = 0.

e, λ→∞ when we flow to IR, bc F 2 and σ2 are irrelevant.

Can construct operators from φi , σ, and Aµ in irreps of SU(N)
flavor symmetry, compute correlators at large N using Feynman
diagrams [Halperin, Lubetsky, Ma ’74; Kaul, Sachdev ’08] .

Shai Chester (Harvard University) October 22, 2022 8 / 28



Conformal QED3

QED3 with N complex φi and Chern-Simons level k has action:∫
d3x

[FµνFµν

4e2 +
σ2

4λ
+ |(∇µ − iAµ)φi |2 + (

1
4

+ iσ)|φi |2 − ik
4π
εµνρAµ∂νAρ

]
,

σ is real scalar Hubbard-stratonovich for φ4 term.

k must be integer, when k = 0 call it CPN−1 model.

At large N, can show that theory flows to interacting CFT in the IR
[Appelquist, Nash, Wijewardhana ’88] , believed to hold at finite N except
maybe N = 2 and k = 0.

e, λ→∞ when we flow to IR, bc F 2 and σ2 are irrelevant.

Can construct operators from φi , σ, and Aµ in irreps of SU(N)
flavor symmetry, compute correlators at large N using Feynman
diagrams [Halperin, Lubetsky, Ma ’74; Kaul, Sachdev ’08] .

Shai Chester (Harvard University) October 22, 2022 8 / 28



Conformal QED3

QED3 with N complex φi and Chern-Simons level k has action:∫
d3x

[FµνFµν

4e2 +
σ2

4λ
+ |(∇µ − iAµ)φi |2 + (

1
4

+ iσ)|φi |2 − ik
4π
εµνρAµ∂νAρ

]
,

σ is real scalar Hubbard-stratonovich for φ4 term.

k must be integer, when k = 0 call it CPN−1 model.

At large N, can show that theory flows to interacting CFT in the IR
[Appelquist, Nash, Wijewardhana ’88] , believed to hold at finite N except
maybe N = 2 and k = 0.

e, λ→∞ when we flow to IR, bc F 2 and σ2 are irrelevant.

Can construct operators from φi , σ, and Aµ in irreps of SU(N)
flavor symmetry, compute correlators at large N using Feynman
diagrams [Halperin, Lubetsky, Ma ’74; Kaul, Sachdev ’08] .

Shai Chester (Harvard University) October 22, 2022 8 / 28



Monopole operators

In addition to SU(N) flavor symmetry, have U(1)T symmetry:
Jµ = 1

8π ε
µνρFνρ current conserved b/c εµνρ∂µFνρ = 0.

All fields in Lagrangian uncharged under U(1)T .

Monopole operator Mq defined as having charge q under U(1)T ,
s.t.

∫
S2 F = 4πq.

Dirac quantization condition requires q ∈ Z/2.

When k = 0, Mq are scalars and singlets under SU(N).

For k 6= 0, we will see that Mq generically in nontrivial irreps.

Can compute scaling dimensions ∆q at large N. Hard on R3

[Murthy, Sachdev ’90] , instead use state-operator correspondence
[Borokhov, Kapustin, Wu ’02] .
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∆q from S2 × R

The state-operator correspondence relates Mq on R3 to state on
S2 Hilbert space with 4πq magnetic flux, s.t. ∆q given by energy
on S2 × R with 4πq flux [Borokhov, Kapustin, Wu ’02] .

Chern-Simons term contributes 2qk to Gauss law constraint, so
need to dress vacuum with matter to make gauge invariant.

Consider thermal free energy Fq ≡ − log Z
β on S2 × S1

β with 4πq
flux, where β ≡ 1/T is length of S1 [SMC, Iliesiu, Mezei, Pufu ’17] .

After integrating out matter, can compute Fq from large N saddle
point, s.t. holonomy of gauge field acts as chemical potential for
matter fixed by saddle condition to cancel gauge charge.

Bonus: Subleading in 1/β terms in Fq tell us degeneracy of states
⇒ irreps of monopole operator.
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Large N for ∆q

Integrate out φ to get action proportional to N:

Z =

∫
dA dσ eNTr log[σ+ 1

4−(∇µ−iAµ)2]+N iκ
4π

∫
d3xεµνρAµ∂νAρ

]
.

Consider most general saddle point Aµ = Aµ + Ãµ and σ = µ+ iσ̃
on S2 × S1

β s.t.
∫

S2 F = 4πq:

Aτ ≡ −iα = β−1
∫

S1
β

A , Fθφdθ ∧ dφ ≡ q sin θdθ ∧ dφ ,

Plug in to Z to compute leading large N free energy NF (0)
q (α, µ)

F (0)
q (α, µ) = β−1Tr log

[
−(∇µ − iAµ)2 +

1
4

+ µ

]
− 2κqα ,

= β−1
∑
j≥q

dj log[2(cosh(βλj)− cosh(βα))]− 2κqα

λj ,dj are eigenvalues and degeneracies on S2 × R with 4πq flux.
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λj ,dj are eigenvalues and degeneracies on S2 × R with 4πq flux.
Shai Chester (Harvard University) October 22, 2022 11 / 28



Saddle point values

Holonomy α and µ are constants determined from saddle point
equations:

∂F (0)
q (α, µ)

∂α

∣∣∣
α,µ

=
∂F (0)

q (α, µ)

∂µ

∣∣∣
α,µ

= 0 .

For α we find up to O(e−β) a unique saddle that gives real Fq:

α(κ) = − sgn(κ)

(
λq + β−1 log

ξ

1 + ξ

)
, ξ ≡ 2q|κ|

dq
.

For µ, given by solution to equation (regularize with zeta
functions):∑

j≥q

dj

λj(µ)
+

ξdq

λq(µ)
= 0 , λj ≡

√
(j + 1/2)2 − q2 + µ , dj ≡ 2j + 1 .

For 2|κ| = dq , find solution µ = q2, otherwise solve numerically.
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Leading order free energy

Plug α, µ into F (0)
q to get final answer

Fq = NF (0)
q + F (1)

q + . . . , F (0)
q = ∆

(0)
q −

1
β

S(0)
q + O(e−β) .

The energy N∆
(0)
q is the monopole scaling dimension by

state-operator correspondence, and entropy S(0)
q is log# of

operators with ∆
(0)
q at large N:

∆
(0)
q =

∑
j≥q

djλj + ξdqλq ,

S(0)
q = −dq (ξ log ξ − (1 + ξ) log[1 + ξ]) .

For 2|κ| = dq, find simple ∆
(0)
q (otherwise compute numerically):

∆
(0)
q =

2
3

q(q + 1)(2q + 1) =
∑

0<n≤2q

n2 s.t. n is (odd) even for q (half) integer

For 2|κ| = dq , find solution µ = q2, otherwise solve numerically.
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Sub-leading calculation

Subleading F (1)
q from 2nd order in fluctuations around saddle:

exp(−βF (1)
q ) =

∫
DÃDσ̃ exp

[
−N

2

∫
d3xd3x ′

(
Ãµ(x)K µν

q (x , x ′)Ãν(x ′)

+ σ̃(x)K σσ
q (x , x ′)σ̃(x ′) + 2σ̃(x)K σν

q (x , x ′)Ãν(x ′)
)]

,

Consider ratio exp(−βF (1)
q )

exp(−βF (1)
0 )

to cancel divergent gauge modes.

The kernels Kq(x , x ′) are written terms of the Green’s function:[
− (∇µ − iAµ)2 +

1
4

+ µ

]
Gq(x , x ′) = δ(x − x ′) .

Computed for general q in [SMC, Iliesiu, Mezei, Pufu ’17] in terms of
infinite sum of monopole spherical harmonics.

For 2|κ| = dq, can be written in simple closed form [SMC ’21] .
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)]

,

Consider ratio exp(−βF (1)
q )

exp(−βF (1)
0 )

to cancel divergent gauge modes.

The kernels Kq(x , x ′) are written terms of the Green’s function:[
− (∇µ − iAµ)2 +

1
4

+ µ

]
Gq(x , x ′) = δ(x − x ′) .

Computed for general q in [SMC, Iliesiu, Mezei, Pufu ’17] in terms of
infinite sum of monopole spherical harmonics.

For 2|κ| = dq, can be written in simple closed form [SMC ’21] .
Shai Chester (Harvard University) October 22, 2022 14 / 28



Sub-leading calculation

Subleading F (1)
q from 2nd order in fluctuations around saddle:

exp(−βF (1)
q ) =

∫
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Ãµ(x)K µν

q (x , x ′)Ãν(x ′)
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Sub-leading expression

Integrate σ̃ , Ãµ by going to Fourier space with kernels, get:

F (1)
q =

∞∑
n=0

∞∑
`=0

(2`+ 1)

2π
log det

[
Kq,κ
` (ωn)

K0,κ
` (ωn)

]
.

Take β →∞ to get scaling dimension (turns sum over ωn to
integral over continuous ω):

∆
(1)
q =

∫
dω
2π

∞∑
`=0

(2`+ 1) log det

[
Kq,κ
` (ω)

K0,κ
` (ω)

]
.

Also find various β−1 and β−1 log β terms.

Need to subtract linear divergence using counterterm.

Numerically compute sum/integral, nontrivial check that get
convergent answer (no logarithmic divergence).
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Subleading result

Final result for F (1)
q up to O(e−β) is:

F (1)
q =∆

(1)
q +

1
2β

[
log (N 2πdq ξ(1 + ξ)) + (d2

q − 1)log β

+

dq−1∑
`=1

(2`+ 1) log
(
ξ(1 + ξ)Cq,` + β−1

) ]
∆

(1)
q computed for κ = 0 and general q in [Dyer, Mezei, Pufu, Sachdev ’15]

Large q limit for κ = 0 computed by [de la Fuente ’18] , O(q0)
matches prediction from [Hellerman, Orlando, Reffert, Watanabe ’15] .

Generalized to 2|κ| = dq and q = 1/2 in [SMC ’21] , easier bc
Gq(x , x ′) simplified. Then general q, κ [SMC, Dupuis, Witzcak-Krempa ’22]

Next, we give a microcanonical interpretation of the β−1 terms.
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Microcanonical interpretation

We would like to explain our results using an oscillator
construction, which is only valid in the UV at e2N → 0.

Not obvious that such a construction should remain valid for the IR
CFT at e2N →∞. Evidence for conjecture from thermal results.

For scalar QED3, expand φI in modes on Lorentzian S2 × R:

energy spin gauge charge SU(N) irrep degeneracy

ai,†
jm λj j +1 N Ndj

b†jm,i λj j −1 N Ndj

Mbare N
∑

j djλj 0 2qNκ 1 1

Mbare is vacuum in presence of 4πq flux.

λj depends on µ, so φI modes not really free (mean-field like).
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Microcanonical interpretation: Leading order

Recall: N∆
(0)
q = N

[∑
j≥q

djλj + ξdqλq

]
,

NS(0)
q = N[−dq (ξ log ξ − (1 + ξ) log[1 + ξ])] .

First term in N∆
(0)
q is Casimir energy of Mbare, second are Nξdq

lowest energy λq modes needed to cancel gauge charge of Mbare.

These Nξdq modes each in the fundamental of SU(N), together
form many degenerate SU(N)× SU(2)rot irreps. E.g.:

dq = 2 :

Nξ⊕
`=0

(R`,2`+ 1) , R` ≡ ︸ ︷︷ ︸
Nξ−`

Nξ+`︷ ︸︸ ︷
· · · · · ·
· · · ,

Log of these degenerate irreps reproduce NS(0)
q !
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Microcanonical interpretation: Subleading order

Conjecture continuous density of states C(E − E0)α at large N:

F = − log
∫

dED(E)e−βE

β
= E0 + (α + 1)

log β

β
− log(CΓ(α + 1))

β
+ O(β−2)

Compare to β−1 terms from Fq (set dq = 2 for simplicity) we find

D(E) ≈ eNS(0)
1

N1/2πξ2(1 + ξ)2C3/2
1/2,1

(E − N∆
(0)
1/2 −∆

(1)
1/2)1/2

Compare to D(E) from microcanonical states with y ≡ √̀
N

:

D(E) ≈ (2`+ 1) dim R`

∆E`
≈ 2eNS(0)

1

N1/2πξ2(1− ξ)2 y2e−
1

ξ(1−ξ)
y2 dy

dE
.

Solve to get energy splitting E ≈ N∆
(0)
1/2 −∆

(1)
1/2 + C1/2,1y2.
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Comparison of ∆q to duality: particle/vortex

Scalar QED3 with N = 1 and k = 0⇔ critical O(2) Wilson Fisher.

Mq ⇔ lowest dimension operator made of 2q complex bosons φ:

M1/2 ⇔ φ, and M1 ⇔ φφ, and M3/2 ⇔ φφφ.

All these operators are unique scalars, so no degeneracy
breaking terms in monopole calculation.

O(2) operators computed for q ≤ 2 at high precision from
numerical bootstrap [SMC, Landry, Liu, Poland, DSD, Su, Vichi ’20; Liu, Meltzer,

Poland, DSD ’20] .

General q in O(2) computed at lower precision using lattice
[Banerjee, Chandrasekharan, Orlando ’18] .
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Evidence for particle/vortex from monopoles

q ∆
(0)
q,0 ∆

(1)
q,0 N = 1 O(2) Error (%)

1/2 0.12459 0.38147 0.50609 0.519130434 2.5
1 0.31110 0.87452 1.1856 1.23648971 4.1

3/2 0.54407 1.4646 2.0087 2.1086(3) 4.7
2 0.81579 2.1388 2.9546 3.11535(73) 5.2

5/2 1.1214 2.8879 4.0093 4.265(6) 5.8
3 1.4575 3.7053 5.1628 5.509(7) 6.3

7/2 1.8217 4.5857 6.4074 6.841(8) 6.3
4 2.2118 5.5249 7.7367 8.278(9) 6.5

9/2 2.6263 6.5194 9.1458 9.796(9) 6.6
5 3.0638 7.5665 10.630 11.399(10) 6.7

Match even though sub-leading ∆
(1)
q,0 bigger than leading ∆

(0)
q,0 !

Match gets slightly worse with bigger q.
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Comparison to lattice for N > 1 and k = 0

0 0.1 0.2 0.3 0.4 0.5
0.1

0.2

0.3 0.1246
0.1246+0.3815/N
square
honeycomb
rectangular

1/Nb

F1/2/Nb

Lattice [Lou, Sandvik, Kawashima ’09; Kaul, Sandvik ’12; Block, Melko, Kaul ’13] also
matches large N for ∆1/2 (i.e. F1/2) for various finite N > 1.

Note that N = 2 might not be CFT.
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Comparison of ∆q to duality: 3d bosonization

Scalar QED3 with N = k = 1⇔ Free complex 2 component
fermion ψα.

Free fermion parity invariant, scalar QED3 parity invariant bc of
duality that relates k = ±1.

Mq ⇔ lowest dimension operators made of 2q fermions, half
integer spin for half integer q:

M1/2 ⇔ ψα with spin 1/2, and M1 ⇔ εαβψαψβ with spin zero.

For higher q need to dress with derivatives bc of antisymmetry, so
degenerate operators with same q and dimension, e.g. for q = 2:

1 εαβψαψβε
γδ∂µψγ∂νψγδ has ∆ = 6 and spin 2.

2 εαβψαψβε
γδ∂µψγ∂

µψγδ has ∆ = 6 and spin 0.
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Operators in free fermion theory

We can determine spectrum of free fermion theory by looking at
free energy on S2 × R in presence of background U(1) flux q.

Fermionic modes of spin j = 1/2,3/2, . . . have eigenvalue
λj = j + 1/2, charge 1/2, and 2j + 1 in each energy shell.

Operators with charge q that correspond to states of n filled
energy shells are unique scalars have charge and dimension:

q =

n−1/2∑
j=1/2

(2j + 1) = n(n + 1)/2 , e.g. q = 1,3,6,10, . . .

∆ =

n−1/2∑
j=1/2

(2j + 1)λj =
2
3

q
√

1 + 8q , e.g. ∆ = 2,10,28,60, . . .

Operators that correspond to states of partially filled energy shells
will have spin and degeneracy corresponding to valence modes.
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Evidence for 3d bosonization from monopoles

q ∆
(0)
q,1 ∆

(1)
q,1 N = 1 Fermion Error (%)

1/2 1 −0.2789 0.7211 1 28
1 2.5833 −0.6312 1.952 2 2.4

3/2 4.5873 −1.052 3.535 4 15
2 6.9380 −1.534 5.404 6 9.9

5/2 9.5904 −2.070 7.52 8 6.0
3 12.514 −2.655 9.859 10 1.4
6 34.727 −7.032 27.70 28 1.1
10 74.141 −14.71 59.43 60 0.95
15 135.67 −26.63 109.04 110 0.87
21 224.23 −43.75 180.5 182 0.82

Purple are unique scalar operators (i.e. filled energy shells)

Find match for unique scalars, that improves with q.
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Match for other q

Operators in free fermion theory that NOT unique scalars do not
match our monopole calculation (tho mismatch shrinks with q).

This could be because of the degeneracy breaking term in the
large N calculation, that we have not taken into account.

If we take ∆free
q = 2

3q
√

1 + 8q of unique scalars in free fermion
theory, which only valid for q = 1,3,6, . . . , and analytically
continue to general q then we get precise match now for all q:

∆ferm
1/2 = .7454, ∆ferm

3/2 = 3.606, ∆ferm
2 = 5.498,

∆mono
1/2 = .7211, ∆mono

3/2 = 3.535, ∆mono
2 = 5.404,

Suggests that large N calculation might correspond to effective
large q theory, which only applies to unique scalars but is analytic
in q [Komargodski, Mezei, Pal, Raviv-Moshe ’21] .
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Conclusion

Computed scaling dimensions of monopoles in QED3 with N
scalars and CS k at large N, k and fixed κ ≡ k/N to sub-leading
order.

Generalized previous results for κ = 0.

Extrapolating to N = 1 and κ = 0 matches operators in critical
O(2) model, first check of particle-vortex duality for charged
operators.

Extrapolating to N = 1 and κ = 1 matches operators in free
fermion theory, first dynamical check of 3d bosonization!

Check so far only works for q for unique scalar operators, but
intriguing connection to large charge expansion for general q.
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Future directions

Improve large N calculation of monopoles for non-unique scalars
to get match to free fermion theory.

Check how higher orders in 1/N contribute.

Derive analytic proof of 3d bosonization at large charge, hinted by
our answer

Generalize to other 3d gauge theories at large N, k and fixed
κ ≡ k/N, e.g.:

QED3 with N fermions, use to check duality between QED3 with
N = 1 fermion and k = 1/2, and critical O(2) model.

N = 1 SQED, check dualities in that case [Benini, Benvenuti ’18] .

QCD3 with general finite rank gauge group (κ = 0 already
done in [Dyer, Mezei, Pufu ’15] ), check other dualities e.g. [Aharony,

Benini, Hsin, Seiberg ’17] .
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