Bootstrapping Nature: Non-perturbative Approaches to Critical Phenomena Galileo Galilei Institute, Florence, Italy, October 17-21, 2022

Anders Sandvik, Boston University

Multi-Critical Deconfined Quantum-Critical Point - numerics and experiments

SIMONS FOUNDATION

Outline

Brief introduction

- deconfined criticality, lattice models and field theory

The J-Q family of 2+1 dim quantum lattice models - designer Hamiltonians for DQC and related phenomena

Critical and "pseudo critical" behavior - continuous transitions vs weak first-order ones

Multi-criticality

- identification of second relevant operator

Shastry-Sutherland model and checker-board J-Q model

- emergent O(4) symmetry

Unified phase diagram

- multi-critical DQCP as the tip of a gapless spin liquid

Experiments on SrCu₂(BO₃)₂

- case for proximate O(4) DQCP at high pressure and high magnetic field

Deconfined quantum criticality

Senthil, Vishwanath, Balents, Sachdev, Fisher (Science 2004) + (+ many previous works; Read & Sachdev, Sachdev & Murthy, Motrunich & Vishwanath....)

 $H = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + g \text{[other symmetry preserving interactions]}$

antiferromagnet for g=0

- breaks O(3) symmetry

 $=\langle \vec{S}_i \cdot \vec{S}_j \rangle$

g

VBS

valence-bond (or plaquette) solid for $g > g_c$

- breaks Z₄ (in other cases possibly Z₂) symmetry

Generic continuous transition at T=0

There can be a multi-critical end point of the generic critical line

- followed by 1st-order line

Field theory description; brief summary $\vec{x}_{\mu} = \mathbf{N}(\mathbf{x}_{\mu}) / |\mathbf{N}(\mathbf{x}_{\mu})|$

Standard low-energy theory of quantum antiferromagnets

$$S = \int d^{d}r d\tau \frac{1}{2} [c^{2} (\partial_{r} \phi)^{2} + (\partial_{\tau} \phi)^{2} + m_{0} \phi^{2} + u_{o} (\phi^{4})]$$

Can describe Neel to featureless paramagnet. $\mathcal{L}_{\sigma} = \frac{1}{2g} |\partial_{\mu}\vec{n}|^{2}$ - VBS pattern or topological order cannot be captured

Topological defects (hedgehogs) in field configurations: $\vec{n}(x_{\mu})$

- suppressed in the Neel state
- proliferate in the quantum paramagnet

The VBS state corresponds to a certain **condensation of topological defects**

Neel vector described by spinors z; $\phi = z^*_lpha \sigma_{lphaeta} z_eta$ [Murthy & Sachdev 1991, Read & Sachdev 1991]

- coupled to U(1) gauge field where hedgehogs correspond to monopoles
- VBS on square lattice arises from condensation of quadrupled monopoles

Topological defects conjectured "dangerously irrelevant" at transition

- universality of defect suppressed O(3)
- topological defects relevant in VBS state only Senthil, Vishwanath, Balents, Sachdev, Fisher (2004)

$$S_{z} = \int d^{2}r d\tau \left[\left| (\partial_{\mu} - iA_{\mu})z_{\alpha} \right|^{2} + s|z_{\alpha}|^{2} + u(|z_{\alpha}|^{2})^{2} + \frac{1}{2e_{0}^{2}}(\epsilon_{\mu\nu\lambda}\partial_{\nu}A_{\lambda})^{2} \right]$$
 non-compact (defect-free) CP¹ model

large-N calculations for SU(N) CP^{N-1} theory \rightarrow continuous transition

 \mathcal{T}

SU(2): Designer Hamiltonian for DQC physics, J-Q model

The Heisenberg exchange = singlet-projector

- $P_{ij} = \frac{1}{4} \mathbf{S}_i \cdot \mathbf{S}_j \qquad \qquad H_{\text{Heisenberg}} = -J \sum_{\langle ij \rangle} P_{ij}$
- Extended models with products of singlet projectors

- + all translations $P_{ij}P_{kl}P_{mn}$ and rotations
- no frustration in the conventional sense (no QMC sign problem)
- correlated singlet projection still competes with antiferromagnetism
 The J-Q model with two projectors (Sandvik 2007):

$$H_{JQ_2} = -J \sum_{\langle ij \rangle} P_{ij} - Q \sum_{\langle ijkl \rangle} P_{ij} P_{kl}$$

- Has Néel-VBS transition of ground state
- Sign-free in QMC simulations; large-scale simulations possible

Many variants, extensions of J-Q models

- test predictions from quantum field-theory, find new RG fixed points
- make contact with experiments on exotic quantum magnets

Phase transition in the J-Q₂ model

QMC simulations

- no approximations

Order parameters:

AFM: staggered magnetization

 $\vec{M} = \frac{1}{N} \sum_{i} (-1)^{x_i + y_i} \vec{S}_i$

VBS: dimer order parameter

$$D_x = \frac{1}{N} \sum_{i=1}^{N} (-1)^{x_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{x}}$$
$$D_y = \frac{1}{N} \sum_{i=1}^{N} (-1)^{y_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{y}}$$

Binder cumulants:

$$U_s = \frac{5}{2} \left(1 - \frac{1}{3} \frac{\langle M_z^4 \rangle}{\langle M_z^2 \rangle^2} \right) \ U_d = 2 \left(1 - \frac{1}{2} \frac{\langle D^4 \rangle}{\langle D^2 \rangle^2} \right)$$

 $U_s \rightarrow 1, \, U_d \rightarrow 0$ in AFM phase $U_s \rightarrow 0, \, U_d \rightarrow 1$ in VBS phase

- consistent with simultaneous, continuous (or almost...) transition

Phase transition in the J-Q₂ model

QMC simulations

- no approximations

Order parameters:

AFM: staggered magnetization

 $\vec{M} = \frac{1}{N} \sum_{i} (-1)^{x_i + y_i} \vec{S}_i$

VBS: dimer order parameter

$$D_x = \frac{1}{N} \sum_{i=1}^{N} (-1)^{x_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{x}}$$
$$D_y = \frac{1}{N} \sum_{i=1}^{N} (-1)^{y_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{y}}$$

Binder cumulants:

$$U_s = \frac{5}{2} \left(1 - \frac{1}{3} \frac{\langle M_z^4 \rangle}{\langle M_z^2 \rangle^2} \right) \ U_d = 2 \left(1 - \frac{1}{2} \frac{\langle D^4 \rangle}{\langle D^2 \rangle^2} \right)$$

 $U_s \rightarrow 1, \, U_d \rightarrow 0$ in AFM phase $U_s \rightarrow 0, \, U_d \rightarrow 1$ in VBS phase

Crossing-point analysis (finite-size scaling)

- consistent with simultaneous, continuous (or almost...) transition

Mutual consistency between two methods: $v = 0.455 \pm 0.002$

- at the very least, the model is extremely close to a critical point
- but violates CFT bound: v > 0.51 (if one relevant scalar; Nakayama, Ohtsuki, PRL 2016)

Emergent U(1) symmetry

VBS distribution P(D_x,D_y)

$$D_x = \frac{1}{N} \sum_{x,y} (-1)^x \mathbf{S}_{x,y} \cdot \mathbf{S}_{x+1,y}$$
$$D_y = \frac{1}{N} \sum_{x,y} (-1)^y \mathbf{S}_{x,y} \cdot \mathbf{S}_{x,y+1}$$

Emergent SO(5) symmetry has also been detected (3D loop model) (Nahum et al, PRL 2015)

- emergent U(1) VBS combines with O(3) AFM

What happens in a columnar J-Q_n model with large n?

- will nucleation of VBS order (strong first-order transition) happen?

J-Q6 model (J. Takahashi, AWS, PRR 2020)

Detection of coexistence; long-distance correlations

- a coexistence state should have long-ranged spin and dimer correlations

J-Q₃ and J-Q₄ have first-order transitions

(unpublished)

- very weak for J-Q₃; detectable only for L>200
- likely first-order also in J-Q₂, but not completely clear

Consistency of "quasi exponents" between models?

Are exponents extracted at a weak first-order transition really meaningful? - critical exponents of some nearby critical point

The $J-Q_2$ and $J-Q_3$ models are presumably close to the same DQCP Q-Q correlations for both models

$$C_Q(r) \sim \frac{1}{r^{2\Delta}} \rightarrow C_Q(r)r^{2\Delta} \rightarrow \text{constant} \ (L \rightarrow \infty) \quad 2\Delta \approx 1.6$$

Showing for r=L/2 -1 versus L/2-1 (T=0 projector QMC, unpublished results)

J-Q₃ model exhibits same criticality as J-Q₂ before "running away" from DQCP

Dynamic signatures of deconfined quantum criticality

PHYSICAL REVIEW B 98, 174421 (2018)

Editors' Suggestion

Dynamical signature of fractionalization at a deconfined quantum critical point

Nvsen Ma,¹ Guang-Yu Sun,^{1,2} Yi-Zhuang You,^{3,4} Cenke Xu,⁵ Ashvin Vishwanath,³ Anders W. Sandvik,^{1,6} and Zi Yang Meng^{1,7,8}

Planar J-Q model:
$$H_{JQ} = -J \sum_{\langle ij \rangle} \left(P_{ij} + \Delta S_i^z S_j^z \right) - Q \sum_{\langle ijklmn \rangle} P_{ij} P_{kl} P_{mn} \quad P_{ij} = \frac{1}{4} - \mathbf{S}_i \cdot \mathbf{S}_j$$

Spin structure factor $S(q,\omega)$ at the transition point (weak 1st order transition)

QMC + analytic continuation Good agreement with mean-field calculation of fermionic parton theory; N_f =4 compact QED₃ π -flux square-lattice model

$$H_{\rm MF} = \sum_{i} i(f_{i+\hat{x}}^{\dagger} f_i + (-)^x f_{i+\hat{y}}^{\dagger} f_i) + \text{H.c.}$$
$$S_i = \frac{1}{2} f_i^{\dagger} \sigma f_i$$

Spinon deconfinment manifested on large length scales close to the phase transition

$$\epsilon_k = 2(\sin^2(k_x) + \sin^2(k_y))^{1/2}$$

DQCP phenomenology applies even for weak first-order transitions

Multi-Critical DQCP Scenario

Identified a second symmetric relevant operator

summed over all lattice positions

$$H(\delta) = H_c + \delta Z$$

No change in symmetry

Compute scaling dimension of the Z perturbation in the (near) critical J-Q2 model

- ZZ Correlations at δ=0 decay with a power corresponding to Δz ≈ 1.40 different from Δ_Q ≈ 0.80
- Bootstrap bound assumed a single relevant scalar
- Why is C_Z(r) not contaminated by ∆_Q?

The Q term may be slightly contaminated by Δ_Z - reason for weak 1st-order?

- agrees with theoretical analysis of Z interaction; Lu, You, Xu, PRB 2021
- in J-Q_n model, "contamination" increases with n (stronger first-order)
- Multi-critical scenario goes beyond original DQC proposal

Plaquette-singlet (PS) state and the Shastry-Sutherland model

Realized in the quasi-2D quantum magnet SrCu₂(BO₃)₂

Corboz & Mila, PRB 2013 (tensors)

- T=0: weak first-order Neel to PS transition

Lee, You, Vishwanath, Sachdev PRX 2020 (DMRG)

- continuous DQCP transition with emergent O(4) symmetry

2D Checker-board J-Q (CBJQ) model

B. Zhao, P. Weinberg, AWS, Nature Physics 2019

Replace frustrated SS bonds by 4-spin Q terms

$$\mathcal{H} = -J \sum_{\langle ij \rangle} P_{ij} - Q \sum_{ijkl \in \Box'} (P_{ij}P_{kl} + P_{ik}P_{jl})$$

Allows 2-fold degenerate PS state

- Z₂ symmetry breaking

QMC results vs 1/L, g = J/Q

(a) AF-PS transition, (b) $g_c = 0.2175(1)$, (c) coexisting orders

→ clearly first-order transition

Emergent O(4) symmetry: Combined AF,PS vector order parameter $\vec{m} = (m_x, m_y, m_z, m_p)$

$$g = 0.21900$$
AFM

At transition: order parameter lives on surface of O(4) sphere

- fluctuating radius due to finite size

Further demonstration (arXiv:2204.08133)

- cross-correlations of the order params

$$C = \frac{\langle m_z^2 m_p^2 \rangle}{\langle m_z^2 \rangle \langle m_p^2 \rangle}$$

O(4) value is C=2/3

- approached vs L at the transition point

Revisiting the Shastry-Sutherland model

CPL 2022 (arXiv:2205.02476) Level spectrum \rightarrow locate quantum phase transitions Yang, Sandvik, Wang, PRB 2022 quasi-degenerate singlet ground state Q_1 of the plaquette-singlet-solid (PSS) E \mathcal{G}_r \mathcal{G}_{r} σ_1 σ_1 Singlets S₁, S₂ Triplets T₁, T₂ \mathcal{G}_y \mathcal{G}_y T_2 Quintuplet Q + T_1 S_2 S_1 σ_2 σ_2

Wang, Zhang, Sandvik,

Gaps: $\Delta(S_2) = E(S_2) - E(S_1) \quad \Delta(T_1) = E(T_1) - E(S_1)$

Composite gaps: $\delta_T = E(T_2) - E(S_2)$ $\delta_Q = E(Q_1) - E(T_1)$

Gap criteria for PSS and AFM ordered phases

PSS: $\Delta(S_2) < \Delta(T_1)$ doubly-degenerate ground state, triplet gapped AFM: $\Delta(Q_1) < \Delta(S_2)$, $\delta_T < \Delta(S_2)$ $E_S \propto S(S+1)/N$ S₂ gapped; amplitude mode Gap crossings vs g to detect quantum phase transitions

Lanczos calculations for periodic small clusers, N up to 36 DMRG for cylinders, up to N=12*24 (slightly different crossing arguments)

Clusters and symmetries

Gapless spin liquid phase for g ∈ (0.79,0.83)? DMRG gives compatible results.

Unified phase diagram for quantum magnets with DQCPs

Original DQCP scenario: generic transition vs one parameter

Alternative scenario

The DQCP is a fine-tuned multi-critical point

- separating first-order line and a gapless spin-liquid
- g, h are relevant fields at the DQCP, tuned by two parameters in a lattice model

B. Zhao, J. Takahashi, Sandvik (PRL 2020) J. Yang, Sandvik, L. Wang (PRB 2022)

Does not exclude 1st-order transitions

There can be a multi-critical end point of the generic critical line, followed by 1st-order line

The continuous transitions may even be unreachable

- non-unitary CFT (Senthil et al. PRX 2017,...)
- but we can at least get close enough to observe critical scaling

Experiments: Shastry-Sutherland material SrCu₂(BO₃)₂

PHYSICAL REVIEW LETTERS 124, 206602 (2020)

Quantum Phases of $SrCu_2(BO_3)_2$ from High-Pressure Thermodynamics

Jing Guo[®],¹ Guangyu Sun[®],^{1,2} Bowen Zhao[®],³ Ling Wang[®],^{4,5} Wenshan Hong,^{1,2} Vladimir A. Sidorov,⁶ Nvsen Ma,¹ Qi Wu,¹ Shiliang Li,^{1,2,7} Zi Yang Meng[®],^{1,8,7,*} Anders W. Sandvik[®],^{3,1,†} and Liling Sun[®],^{1,2,7,‡}

consistent with the SS model

Spin liquid phase between PS and AFM?

Experimental limitations for P > 2.6 GPa, T < 1.5 K

arXiv:2204.08133v1 [cond-mat.str-el] 18 Apr 2022

Proximate deconfined quantim-critical point in SrCu₂(BO₂)₃

Yi Cui,^{1, *} Lu Liu,^{2, *} Huihang Lin,^{1, *} Kai-Hsin Wu,³ Wenshan Hong,² Xuefei Liu,¹ Cong Li,¹ Ze Hu,¹ Ning Xi,¹ Shiliang Li,^{2,4,5} Rong Yu,^{1,†} Anders W. Sandvik,^{3,2,‡} and Weiqiang Yu^{1,§}

Suppression of PS phase by magnetic field, NMR (¹¹B) measurements

Common PS and AFM transition at $T_{\rm c}$ ~ 0.07 K, H_0 ~6 T

• Unusually low Tc for a first-order transition

AFM order parameter: NMR line splitting

Theoretical scenario

Picture emerging from models and experiments

