Conformal Field Theory and Chiral Melting in 2D F. Mila Ecole Polytechnique Fédérale de Lausanne, Switzerland

Natalia Chepiga Delft

Jeanne Colbois Toulouse

Scope

A classical unsolved problem of the eighties \rightarrow C-IC transition in 2D period-3 systems Quantum 1D version: Rydberg chains (2017) \rightarrow DMRG investigation of constrained models \rightarrow Chiral transition Chiral 3-state Potts model in 2D \rightarrow CTMRG phase diagram Chiral transition and c-theorem Conclusions

Generalities on phase transitions

Scale invariance at critical point (1965) \rightarrow correlation length diverges with exponent ν Conformal invariance (1970) \rightarrow exponent v the same in all directions Conformal invariance in 2D (1984) \rightarrow minimal models with well defined exponents Classical physics in 2D <=> quantum physics in 1D \rightarrow quantum transitions in 1D belong to 2D universality classes

C-IC transition in adsorbed layers

3 types of domains \rightarrow 3-state Potts? Not so simple! $A B C \neq A C B$ Chiral perturbation Huse-Fisher, 1982

Chiral 3-state Potts in 2D

$$\mathscr{H} = -J_x \sum_{\langle ij \rangle}^{x} \cos\left[\frac{2\pi}{3} \left(n_i - n_j + \Delta\right)\right] - J_y \sum_{\langle ij \rangle}^{y} \cos\left[\frac{2\pi}{3} \left(n_i - n_j\right)\right]$$

n_i=0,1 or 2

 Huse-Fisher: possibility of a non-conformal chiral transition between a Potts point and a Lifshitz point

Anisotropic scaling

- $\rightarrow v_x \neq v_y$ (correlation length exponents)
- \rightarrow dynamical exponent z >1
- Intermediate (floating) critical phase beyond Lifshitz point

Huse-Fisher phase diagram

Chiral: Anisotropic scaling $\rightarrow v_x \neq v_y$ \rightarrow dynamical exponent z >1

Kosterlitz-Thouless

Pokrovsky-Talapov

Huse and Fisher, 1982

Landau-Ginsburg theory

Order parameter

$$\psi_j = \exp(2\pi i n_j / p)$$

Chiral term

$$\mathscr{H}[\psi(\vec{\mathbf{r}})] = \int d^d r \left[\frac{1}{2} |\vec{\nabla}\psi(\vec{\mathbf{r}})|^2 + u_2 |\psi(\vec{\mathbf{r}})|^2 + \Delta \left[\psi^*(\vec{\mathbf{r}}) \frac{\partial\psi(\vec{\mathbf{r}})}{\partial x} - \psi(\vec{\mathbf{r}}) \frac{\partial\psi^*(\vec{\mathbf{r}})}{\partial x} \right] - h_p[\psi^p(\vec{\mathbf{r}}) + \psi^{*p}(\vec{\mathbf{r}})] + \sum_{k=2}^{\infty} u_{2k} |\psi(\vec{\mathbf{r}})|^{2k} \right],$$

CFT point of view

3-state Potts universality class when there is no chiral pertubation

Operators with scaling dimensions (7/5,2/5) and (2/5,7/5), hence with overall scaling dimension 9/5 < 2
 → relevant perturbations

Difference between the 3 cases

• Δq : distance to $2\pi/3$; ξ : correlation length $\Box \Delta q \xi \rightarrow 0$ for Potts \rightarrow cst > 0 for chiral $\rightarrow + \infty$ for KT transition Monte Carlo simulations in the eighties \rightarrow systems too small to extract Δq with sufficient precision Selke and Yeomans, 1982

MC simulations of asymmetric Potts model

Selke and Yeomans, 1982

Field theory argument

Intermediate phase immediately away from Potts (mapping on quantum sine-Gordon model) Haldane, Bak, Bohr, 1983; Schulz, 1983

Not necessarily true if dislocations are allowed Huse-Fisher, 1984

Cardy's self dual model

$$S = -\sum_{x,y} \left(K_x \cos(\Delta_x \theta_{x,y} - \delta_x) + K_y \cos(\Delta_y \theta_{x,y} - \delta_y) \right)$$

$$\delta_y = \pm i \delta_x$$

Coupling to (7/5,2/5) operator only

$$\nu_1 = 1$$
 $\nu_2 = 2/3$

Cardy, Nuclear Phys B 1993

Si (113) 3 x 1

D. L. Abernathy, S. Song, K. I. Blum, R. J. Birgeneau, and S. G. J. Mochrie, PRB 1994 Evidence of anisotropic scaling $v_{\rm x}\simeq 0.6\overline{5}, v_{\rm y}\simeq 1.0\overline{6}$ $\beta \simeq 0.66$ (exponent of Δq) $z \simeq 1.6$

NB: $\beta \simeq \nu_x \Longrightarrow \Delta q \ \xi \rightarrow Cst \Longrightarrow$ Chiral transition

Rydberg atoms

$$\frac{\mathcal{H}}{\hbar} = \sum_{i} \frac{\Omega_{i}}{2} \sigma_{x}^{i} - \sum_{i} \Delta_{i} n_{i} + \sum_{i < j} V_{ij} n_{i} n_{j}$$

H. Bernien ... M. Lukin, Nature 2017

Commensurate phases

H. Bernien ... M. Lukin, Nature 2017

Kibble-Zurek exponent $\mu = \nu/(1+z\nu)$

A. Keesling ... M. Lukin, Nature 2019

Rydberg chains

$$H_{\mathrm{Ryd}} = \sum_{i} \left[-\frac{\Omega}{2} (d_{i}^{\dagger} + d_{i}) - \Delta n_{i} + \sum_{R=1}^{+\infty} V_{R} n_{i} n_{i+R} \right]$$

$$V_R = V\left(\frac{1}{R}\right)^6$$

■ Blockade model for period p phase: $\begin{cases}
V_R = \infty \text{ for } R < p-1 \\
V_{p-1} \neq 0 \\
V_R = 0 \text{ for } R \ge p
\end{cases}$

Hard boson model for period-3 phase

$$H_{\rm HB} = \sum_{j} \left[-w(d_j^{\dagger} + d_j) + Un_j + Vn_{j-1}n_{j+1} \right]$$

Two constraints $n_j(n_j-1) = 0$ $n_jn_{j+1} = 0$

Hilbert space: grows as Fibonacci number

Fendley, Sengupta, Sachdev 2004

Hard-bosons: phase diagram

Fendley et al, PRB 2004; Chepiga and FM, PRL 2019

Phase transitions

Transition out of period-2 phase: \rightarrow Ising \rightarrow Tricritical Ising point \rightarrow First order Disorder line: does not cross the boundaries of the ordered phases Transition out of period-3 phase: **Commensurate-Incommensurate transition**

Transition out of period 3

Fendley-Sengupta-Sachdev (2004) \rightarrow Intermediate phase for U \rightarrow - ∞ \rightarrow Probable intermediate phase up to Potts Samajdar, Choi, Pichler, Lukin, Sachdev (2018) \rightarrow Evidence of non-integer dynamical exponent between Potts and V $\rightarrow + \infty$ \rightarrow Chiral transition between Potts and V \rightarrow + ∞

DMRG

Algorithm that takes the constraint into account when building the MPS
 → Huge reduction of Hilbert space

$$\Omega_0(N_r) \approx \varphi^{N_r} \approx 1.6^{N_r}$$
 instead of $\Omega(N_r) \approx 8^{N_r}$

> Simulations up to 9'000 sites
 Δq: extremely precise results (third digit)
 ξ: access to values of several hundreds
 > meaningful evaluation of Δq ξ

Three cases

Just above Potts Far left from Potts Potts U = -15Potts (V = 3.3302)U = -2.7V + 80.03 0.03 ×10 (d)(a) (g) 0.4 10 $\nu'\approx 0.815$ $\nu' \approx 0.827$ 0.3 0.02 $\nu \approx 0.824$ 0.02 $\nu \approx 0.832$ $\sqrt{\nu'} \approx 0.467$ $1/\xi$ 5.28 5.26 5.27 0.2 0.01 0.01 * 1201 KT PT 0.1 3001 4801 0 2 0 0 5.26 5.28 5.3 5.32 -3 -2.95 -2.74-2.72 -2.7 -3.05 -2.76 0.72 0.6667 0.667 (e) (b) (h) 0.6665 0.66665 0.7 q/π PT $\overline{\beta}\approx 1.687$ 20 $\overline{\beta} \approx 0.616$ 0.666 $\overline{\beta}\approx 0.579$ 0.6666 0.68 0.6655 $\overline{\beta} \approx 0.847$ 0.66655 0.665 0.66 5.26 5.27 5.28 5.29 -3.04 -3.02 -3 -2.98 -2.96 -2.94 -2.74 -2.72 -2.7 0.4 200 0.015 ŝ (c) (i) (f) $2\pi/3|$ × æ 150 0.3 1 0.01 ۷¢ج 100 ⇔ 0.2 0.005 0.1 50 KT q0 0 5.26 5.27 5.28 5.29 -2.98 -2.96 -2.94 -2.72 -3.04 -3.02 -2.7 -3 -2.74UVU

Three cases

 Potts: Δq goes to zero with exponent 5/3, ξ diverges with exponent 5/6
 → Δq ξ → 0

Far from Potts: Two transitions : KT and PT, and intermediate critical phase in both directions
 Vicinity of Potts: consistent with single transition
 → Δq goes to zero with exponent smaller than 1
 → Δq ξ → constant

Hard-bosons: phase diagram

Chiral transition

Chepiga and FM, PRL 2019

Period-4 phase

N. Chepiga and FM, Nat. Commun. 2021

Ashkin-Teller point

Along commensurate line, the transition must be conformal → Ashkin-Teller universality class

What about the classical 2D case?

CTMRG for 2D classical systems

Corner Transfer Matrix Renormalization Group Nishino, 1995; Nishino and Okunishi, 1996

Benchmark: 3-state Potts model Effective exponents (instead of fit of finite window)

$$A \propto |t|^{-\theta} \qquad \theta(|t|) = -\frac{d \ln A}{d \ln |t|} \qquad \theta = \lim_{|t| \to 0} \theta(|t|)$$

Possible thanks to high precision

Chiral 3-state Potts model

 $E = -\sum_{\vec{r}} \cos[2\pi/3(n_{\vec{r}+\vec{x}} - n_{\vec{r}} + \Delta)] - \sum_{\vec{r}} \cos[2\pi/3(n_{\vec{r}+\vec{y}} - n_{\vec{r}})]$

S. Nyckees, J. Colbois, FM, Nuclear Phys B 2021

Chiral 3-state Potts model

$$E = -\sum_{\vec{r}} \cos[2\pi/3(n_{\vec{r}+\vec{x}} - n_{\vec{r}} + \Delta)] - \sum_{\vec{r}} \cos[2\pi/3(n_{\vec{r}+\vec{y}} - n_{\vec{r}})]$$

- Exponents similar to those of the self-dual version of the model with complex △ (Cardy, 1993)
- Consistent with the results on Si(113) 3 x 1
- Reasonable agreement with recent field theory results (Whitsitt, Samajdar, Sachdev, 2018)

S. Nyckees, J. Colbois, FM, Nuclear Phys B 2021

MC simulations of chiral Potts model

$$\mathscr{H} = -J_x \sum_{\langle ij \rangle}^{x} \cos\left[\frac{2\pi}{3} \left(n_i - n_j + \varDelta\right)\right] - J_y \sum_{\langle ij \rangle}^{y} \cos\left[\frac{2\pi}{3} \left(n_i - n_j\right)\right]$$

Selke and Yeomans, 1982

Period-4 case: Ashkin-Teller

$$H_0 = -\sum_{\langle i,j \rangle} \sigma_i \sigma_j + \tau_i \tau_j + \lambda \sigma_i \sigma_j \tau_i \tau_j$$

Chiral perturbation

$$\Delta \sum_{x,y} (\tau_{x+1,y} \sigma_{x,y} - \sigma_{x+1,y} \tau_{x,y})$$

S. Nyckees and FM, Phys Rev Research 2022

CFT and chiral transition

Chiral transition not conformal
 Yet, CFT might have something to say
 → Potts point: central charge c=4/5
 → Intermediate phase: c=1 (Luttinger liquid)

Can the Potts point touch the Luttinger liquid phase?

Huse-Fisher phase diagram

Chiral: Anisotropic scaling $\rightarrow v_x \neq v_y$ \rightarrow dynamical exponent z >1

Kosterlitz-Thouless

Pokrovsky-Talapov

Huse and Fisher, 1982

Chiral transition and c-theorem

c-theorem: c decreases along an RG flow
 Potts point unstable due to the chiral perturbation, which is relevant

 Naive conclusion: a direct transition between Potts (c=4/5) and intermediate phase (c=1) excluded by c-theorem

 Why naive? One of the hypotheses of the ctheorem not satisfied (Lorentz invariance is not preserverd along the flow)

Conclusions

Modern numerical approaches \rightarrow strong evidence of chiral transition Classical 2D models: CTMRG \rightarrow Chiral 3-state Potts model → Asymmetric Ashkin-Teller model Blockade models of Rydberg chains \rightarrow Chiral transition for period-3 and period-4 phases from DMRG

Open questions

CFT proof that there must be a chiral transition between the Potts point and the intermediate phase?
Nature of Lifshitz point?
Constant or variable exponents along the chiral transition?