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Scope

Quantum
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* Condensed matter usually studies equilibrium many-body systems:
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* |R phases & phase transitions emerging from microscopic lattice models
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Book: Sachdev (2011)



Scope

* Quantum simulators — programmable lattice quantum systems
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Platforms: cold atoms, trapped ions,
Rydberg atoms, superconducting
qubits...

Unitary evolutions + measurements

A review: E. Altman et al. (2021)



What to Do with Quantum Simulators?

e Simulating quantum hamiltonians

* e.g. Bose Hubbard model, Fermi Hubbard model, frustrated spin models...

e Quantum dynamics with unitaries and measurements

* Preparing interesting quantum states
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Resource States

e Resource state: 1d Cluster state (Z2 x Z2 SPT)

2N spins, periodic boundary condition ZZ —1 XZ Z’H‘ 1 ‘ ¢> — | w>

* Constraints (Ssymmetries) Hf;leXgn = ]

* This state can be generated from a product state by a finite depth unitary.

[Y) = H CZnn+1 |+>®2N



Preparing 1d Symmetry Breaking States

* Greenberger—Horne—Zeilinger (GHZ) state in 1 spatial dimension

1
GHZ) = — DA+
GHZ) = (1 1)+ | L 1)
e Starting point: 1d Cluster state Constraints

Zi-1XiZiv1 =1

MY Xo, =1

2N spins, periodic boundary condition

* Measurement X on even sites and post-select +1 outcomes

Px = 1:[ 1+2X% P 7, 171 =1 wmip Px|y) ~|GHZ)

(Pxv|ZiZ;|Px))
(Px¥|Px)
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Preparing 2d Symmetry Breaking States
2d GHZ state

e (Cluster state on Lieb lattice

Vertex(v)

Edge (e
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* Measure X on the edges, post-select the +1 outcome
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Preparing 2d Long-Range Entangled States

2d toric code state

e (Cluster state on Lieb lattice

Vertex(v) Z Z
= — X/ X/ — X
Edge (e Z Z
79 0-form: g = [ X,
Constraints 2 ok g 1:[
(symmetries) 70 1-form: h., 1 x.
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* Measure X on vertices, post-select the +1 outcome

X: Toric code ground state

PX:H1+X » Z—I—Z — 1 & XXX — 1 ‘Wa>vefun|ction >
” Pl ~ |T.C.




More on State Preparation

Some remarks

e Unitaries + measurements can prepare states that are not reachable
with only unitaries.

* The cluster state is equivalent to a product state evolved by a shallow
unitary evolution. Combined with the measurement, the whole circuit

effectively implements a Kramers-Wannier duality (gauging).
| ]
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* Recently, many non-abelian topological order states are also shown to be
constructed within the unitary+measurement scheme.



Outline

Motivations - Prepare Exotic States in Quantum Simulators

Measurement-prepared Quantum Ciritical States (with
Post-selections)

No Post-selection — Randomness — 2d Random bond
[sing model — Nishimori Line



A Trivial Limit of the Measurements

Symmetric product state

* Consider the 1d cluster state, now measure all spins on the even sites along
the Z direction and post-select +1 outcomes.

From Li_1X;4;401 =1
i ] » Xop—1 =1

& measurement outcome Zgn =

* The resulting state is a symmetric product state

Pzl) ~ |+ 4+ + +...)

(ZiZj)\pyyy =0

e Q:what if we measure along an intermediate angle? Will there

be a transition?



Decorated Domain Wall States

A closer look to the 1d cluster state

I Xop_ 1 =1

2N spins, periodic boundary condition N _
pins, p y ----n:1X2n — 1

Py ~ [T ) HE )
HA =4 L=+t HI =T+t =L+

* Measuring X operators on the even sites —> fixing a unique domain wall
configuration — the zero temperature limit of a classical Ising model.

<ZiZj>|7DX¢> = 1

* Measuring Z operators on the even sites —> fluctuating all configurations of
domain walls — the high-temperature limit.

(ZiZj)\pyyy =0



Mapping to Stat. Mech. Model

Measurement angle as effective temperature

* A tensor network rep. of the cluster state l — §::.
= 0i;

AN AN
LHLHLHLH l H:%h —11]_%()”2)

/\ Projection to the +1 state
O+ T X cosf + Zsin

* The resulting wavefunction

1 sin 6
Polrp) ~ ®7{\;1\ﬁ (\/1 + cos 0| Zoi—1Z2i41 = +1) + Vign COSH|ZQ7;—1Z27;+1 - —1>)
~ € B/2> . 1 Zas—1Z2i+41 ®7{\L1 ’—|—>2i—1 Where ta,nhﬁ — COSH

* The amplitude of the wave function is mapped to the Boltzmann weight of
a classical Ising model.



Mapping to Stat. Mech. Model

Can we get a phase transition?

* Turns out that the 1d case, at any small #, long-range order is destroyed as
at any finite temperature 1d Ising model is thermally disordered.

7.7, ~ 11 I1/€ with & = |Incosd|™*
7/ Pel|t)

* Preparations of 1d GHZ states are not robust against measurement angle error.

Preparation of GHZ state

Symmetric state
: unstable GHZ state except at 8 =0
—_—
=0 0 =

D=1

7
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 Situations will be different in higher dimensions.



2 Dimensions

* Measuring the vertices — 2d classical Ising gauge theory at finite temperature

Pol) ~ e 2H @, |4), with H=->[[2

v e&ewv

* No finite temperature transition

~ S|
* 1-form symmetry restored for 0 < 6§ < 7/2 < H Ze)poly) ~ (cos0)

ecoS

* Measuring the edges — 2d classical Ising model at finite temperature

Pyt ~ e 20 @, +)y With H=-Y 22,

(%,7)

* Symmetry breaking state is stable up to a finite temperature
* We get a transition in the behavior of the projected wave function



Properties of the Critical States

Spatial correlation functions

P@|¢> ~ €_§H ®’U ‘—|—>U With H = — Z ZZZJ

(1,5)

D> 0 SSB state : Symmetric
- stable GHZ state for 8 < 6. * state
v
0=0 Critical Ising 0 = —
model at D-dim 2
e For D=2 B. =+v2—1, ie. 6. ~ 65°

* At the critical measurement angle, the spatial correlation function
maps to the correlation function of D-dimensional Ising CFT.
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Properties of the Critical States

Parent hamiltonians

* There is a general way to construct a parent hamiltonian (certain
quantum dimer models) such that the critical wave function is the
ground state.

* The quantum hamiltonian so constructed will have a dynamical
exponent which is exactly equal to the dynamical exponent of the
classical relaxation dynamics of the classical Ising model.
72=2.16067(5).



3 Dimensional Generalizations

e 3d cluster state with z$” x z5¥ symmetry

* Measure vertices — 3d classical 2-form Ising ® )
gauge theory — no transition

* Measure edges — 3d classical Ising model — transition at 6. =~ 78°

e 3d cluster state with Z3" x z" symmetry

Polt)) ~ e 27 @, |+).
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* Thermal transition of 3d Ising gauge theory at 6, ~ 50°



Phase Diagrams
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Outline

Motivations - Prepare Exotic States in Quantum Simulators

Measurement-prepared Quantum Ciritical States (with
Post-selections)

No Post-selection — Randomness — 2d Random bond
[sing model — Nishimori Line



Random Outcomes

* Let us focus on the 2d case measuring along an angle

L] L] L]
* In general, the outcome can be +1 or -1.
[ ] L]
Se = x1 X.cos0 + Z,sinf = s, = +1
[ H ]

e After many rounds, we will get a density matrix.

Pyt) (Py
|¢><¢|—>PHE;PS|¢)(¢|P8 ZP ) :fﬁlg%z;p)'

* Q: Are there structures in this density matrix? How can we extract them?



Random Outcomes

* Looking at the state with a specific set of measurement outcomes.

* Mapping to the classical stat. mech. model is still valid with modified coupling.
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~e Pl rese B2 @ | X, =] sedo With  tanh 8 = cos @
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Se sin 6

Pslth) ~ @7 +
¥ =1 Vv 1+s.cos6

<\/1 + Secos0|(Z2)e = +1) (Z2). = —1>>

* Looks like a 2d classical random bond Ising model at finite temperature
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2d Random Bond Ising Model

2D RBIM phase diagram
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—— Nishimori line

paramagnet

H = — Z 547040
(3,5)
* Different bonds are
independent of each other.

* P- is the probability of having
antiferromagnetic coupling for a
given bond.

* The Nishimori line is a special
manifold in the phase diagram,
where an exact solution of the
free energy is known.

* Q: which part of the phase diagram is related to our measurement model?



Correlated Randomness

* The random outcomes are actually correlated.

* Consider the limit of @ = 0, i.e. measure the X operators. Each outcome
is random. But the product of X along a loop is a stabilizer of the
original state and we have the following constraint.

[[x. -1 mpp T[o -1

ecry ecry

* This means that the random bond Ising model we obtained at 6 = ()
is frustration-free.

H = — Z SijZiZj = — Z :szjZZZJ
(2,7) (2,9)

tz' = +1 2 = t;4; §7;j — Sijtitj =1

* The Mattis model — by gauge transformations it can be brought into a
ferromagnetic Ising model



For Generic Angles

* At a generic angle, we can calculate the expectation value of the loop of
measurement outcome.

E[H 86] — ZPS(S) H Se = (Cosg)h’loopl

ee'Yloop S CE'YIOOp

* The measurement angle also controls the level of frustration.

* Q: can we relate this correlated randomness to the random bond Ising model?

* Key: The probability distribution is invariant under gauge
transformation. i.e. two configurations {s} and {s’} have the same
probability if they are related by gauge transformation.

* Under gauge transformation, one can actually map the correlated
distribution to the independent distribution.



Relating to 2d RBIM

* Gauge invariance

1 500
Ps(s) — <P8¢|Ps¢> — IN 7, Z 652“3') A
o==1

1
L —52 i,j Si'tit'O‘iO" . /
— 2NZO Zj: (& (i,5) °®37"J J — PS(S,) With S’L] p— Sthzt]
to==1

* The correlated distribution is equivalent to a gauge symmetrized
random bond Ising model.

1 | ,
N Z HpRBIM(tiSijtj) = Ps(s) where pRBIM (o) _ + 82(303
ti==x1 (ij)

* Gauge invariant quantities — expectations of loops — will be the same
for the two distributions.

]E[H se] e (COS 9)|’Yloc>p|

eE'YIOOp
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On the Nishimori Line

2D RBIM phase diagram

—— Nishimori line

paramagnet

1 —cost
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e

(-,8) = ( tanh ™ (cos 6))

p+/p—

* Tuning the measurement angle
turns out to be exactly moving
along the Nishimori line.



Decoding the Hidden Order

* Consider the ferromagnetic susceptibility (x(s)); = %Z

1 o
) 005" 2 7550
o

= | Zsls]
We know <X(s))BRBIM =) PFBM(s) (x(s)),
N (in FM phase)
X const (in PM phase)

* Notice this quantity is not gauge invariant. If we calculate this with
the correlated distribution, it will give zero identically.

* But we can tease out this hidden order by doing some post-editing.

e Inthe case of 6 = () (Mattis model) we already know how to do this:

— SZZZZ = — §’LZ’LZ
@Z% Y @Zﬁ Y (Z:iZ)ra = titi(ZiZ;) Mattis

t, = +1 Z; =t;2; 57;3' = Sijtitj =1

H




Decoding the Hidden Order

An algorithm to decode the ferromagnetic order

* Do a round of measurements on the bonds with outcome {S}, then
measure all the vertex spins {o}.
* The gauge-invariant information is the distribution of frustrated

plaquettes — flux configurations. A stochastic sampling of {S’}

conditioned on the same flux configuration under a decoder’s probability
distribution. In our case, the decoder’s probability is the 2d RBIM.

* Find the gauge transformation {t} from {S} to {S’}.

decode _ 1 n n
C- (s,0) = T Z t; (S)tj (8)0io;.
tneTl

* Repeat and average the correlation function above.

* One can prove the result is the same as the susceptibility in 2d RBIM



Decoding the Hidden Order

A fast decoder

* To just know whether there will be a ferromagnetic tendency, we don'’t
need stochastic sampling. We only need to transform the configuration {s}
to the minimal number of antiferromagnetic bonds that give the same
flux configurations. This will amplify the ferromagnetic ordering.
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Edwards-Anderson Order Parameter

1.00

0.75F a7

0.25 r

0.00

0=m/2 =0

*in the presence of symmetry-breaking field

See: 220811136 by G. Zhu, et al.



Discussion

(C) 2D RBIM phase diagram

] Nishimori line
 Random outcome +some post-selections s paramagnet
Q: can we explore other parts of the phase e
diagram with this? "
| SG
00— e
0.0 ;_1: - p£2
(a) 3D RBIM (b) 3D RPGM
°7 —— Nishimori iine 1.4 " —— Nishimori line
e (Generalization to 3-dimensions. 5 I
0.00 0.0i ~ p(-)+_0(40) 0.06

 How to generalize this scheme to continuous symmetry? Can we
get O(n) critical point?



