Cracking the critical flavor number of QED₃ with conformal bootstrap

Zhijin Li

Shing-Tung Yau Center of Southeast University

October 20, 2022

Based on arXiv:1812.09281 (*ZL*), 2005.01721 (*ZL and Poland*), 2006.05119 (*ZL*), 2107.09020 (*ZL*), 2112.02106 (*Albayrak, Erramilli, ZL, Poland and Xin*)

Background: IR phases of QED₃

Three dimensional Quantum Electrodynamics (QED₃) coupled to N_f flavors of massless two-component Dirac fermions ψ^i :

$$\mathcal{L}=rac{1}{4e^2}\mathcal{F}_{\mu
u}\mathcal{F}^{\mu
u}+\sum_{i=1}^{N_{\mathrm{f}}}ar{\psi}_i\sigma^\mu(\partial_\mu+iA_\mu)\psi^i,$$

Interesting facts about this theory:

- The flavor number $N_f \in 2\mathbb{Z}$ to avoid parity anomaly (*Witten 2016*)
- QED₃ is asymptotically free (gauge coupling e^2 has mass unit)
- Its IR phase is solvable with large N_f or in 4ϵ dimension
- Large N_f : IR fixed point at $e_*^2 = 6\pi^2/N_f$ (Appelquist et al 1988)
- Small N_f: Spontaneous fermion mass generalization and chiral symmetry breaking (*Appelquist et al 1985*)

A long-standing problem: what is the critical N_f^* which separates the conformal and chiral symmetry breaking phases?

Critical value N_f^* of $U(1)/\mathbb{R}$ QED₃ (*Gukov 2016* +...)

N_f^* (2-component Dirac fermion)	Method	Year and Reference
6.5	Schwinger-Dyson equations	1984-88 Pisarski,Appelquist et al
8.6	Schwinger-Dyson equations	1996-97 Maris,Aitchison, et al
≤ 3	thermal free energy	1999-2004 Appelquist et al
<u>≤</u> 4	Hybrid Monte Carlo	2002-04 Hands et al
4.3	divergence of the chiral susceptibility	2002 Franz et al
8	covariant solutions for propagators	2004 Fischer et al
12	perturbative RG in the large-N _f limit	2004 Kaveh et al
1013	comparison to the Thirring model	2007-12 Christofi, Janssen, et al
3	lattice simulations	2008 Strouthos et al
$8 pprox N_f^{\chi SB} \le N_f^{conf} \le 20$	functional RG	2014 Braun et al
<u>≤</u> 8	F-theorem	2015 Giombi et al
<u>≤</u> 4	one-loop ϵ -expansion	2015 DiPietro et al
5.7	$1/N_f$ expansion	2016 Gusynin et al
5.8	ϵ -expansion	2016 Herbut et al
< 2	lattice simulations	2017 Qin et al
< 2	lattice simulations	2015-2020 Karthik et al

Zhijin Li (Yau Center-SEU)

October 20, 2022

3/33

• A typical strong coupling problem!

Perturbative approaches find at the IR fixed point of QED₃, the gauge coupling is $e_*^2 = 6\pi^2/N_f$, so the theory is strongly coupled for small $N_f \sim 10!$ Hard to estimate the contributions from higher order terms. A non-perturbative approach is needed!

- Why is it challenging for lattice simulation?
 - Computation demanding for fermionic systems
 - Near the critical flavor number N_f^* , hard to distinguish the continuous phase transition from the weakly first order phase transition

4/33

• Not strict estimation on the errors

An efficient non-perturbative approach with strict control on the errors? Conformal bootstrap can shed new light for this problem!

- **1** Conformality of $N_f = 2 \text{ QED}_3$ and O(4)/SO(5) DQCPs
- 2 A surprise in O(N) vector bootstrap: new family of kinks
- 3 A novel algebraic structure in 4pt crossing equations
- 4 Towards the bootstrap island for the $N_f = 4 \text{ QED}_3$
- 5 Outlook: towards a comprehensive understanding of conformal QED_3

UV symmetry of compact QED₃ coupled to N_f 2-component fermions:

 $SU(N_f)_f \times U(1)_t$

where $U(1)_t$ is generated by the conserved current $j_t^{\mu} = \epsilon^{\mu\nu\rho}F_{\nu\rho}$. $N_f = 2 \text{ QED}_3$: a remarkably simple example for symmetry enhancement and dualities without SUSY? (*Chong Wang's lecture in the workshop*)

• Symmetry enhancement:

$$SU(2)_f \times U(1)_t \rightarrow SU(2)_f \times SU(2)_t \sim O(4)$$

• Bosonization:

fermionic $N_f=2~{\rm QED}_3 \iff$ bosonic easy-plane $N_f=2~{\rm QED}_3$

6/33

SO(5) symmetric DQCP: $N_f = 2 \text{ QED}_3$ coupled with a critical boson.

$N_f = 2$ QED3 and DQCPs: first or second order phase transitions?

- $N_f = 2 \text{ QED}_3$:
 - Spontaneous chiral symmetry breaking (*Hands et al. 2002; Strouthos and Kogut, 2008*)
 - Continuous phase transition and the critical indices support an enhanced O(4) symmetry (*Qin et al, 2017; Karthik, Narayanan, 2015-2020*)
- *SO*(5) symmetric DQCP:

Unusual behavior in large-scale *SO*(5) DQCP lattice simulation: drift of critical indices with scales. (*Nahum et al 2015*) Finite size effect? Weakly first order phase transition? Another relevant singlet scalar needs to be fine-tuned? etc...

Conformal bootstrap: nonperturbative approach with strict control on errors. (*Andreas Stergiou's lecture in the workshop*)

Bootstrap bounds on $N_f = 2 \text{ QED}_3$ and O(4) DQCP

Singlet bound coincidence: O(4) vector $= SU(2)_f \times U(1)_t$ monopole bootstrap Irrelevance of lowest singlet $\Delta_S > 3$ leads to: $\Delta_{\mathcal{M}_1} \ge 0.876$ (*Poland, ZL*) Why irrelevant Δ_S :

- Extra fine tuning is needed with a relevant singlet scalar
- A relevant scalar could generate RG flow dissolving IR fixed point.

Bootstrap bounds on SO(5) DQCP

Blue dashed line: upper bound on the lowest scalar in the SO(5) T sector; **Blue shadowed:** allowed region with an assumption $\Delta_S \ge 3.0$.

Refs	Sandvik, 2007	Melko, 2008	Pujari, 2013	Nahum,2015	Dyer,2015	Dupuis,2021	Boyack,2018
Δ_{ϕ}	0.630 ¹⁵	0.675 ¹⁵	0.64 ⁴	0.625^{15}	0.63	0.65	0.59/0.65
Δ_T	1.716 ⁵⁰	1.52 ⁹	1.11 ²⁰	1.39 ³	1.50		<u>1.42/1.51</u> ∽ ∝
Zhijin	Li (Yau Center-S	SEU) Cra	acking the critica	l flavor number o	f QED ₃	October 20,	2022 9/3

Bootstrap results on O(4)/SO(5) DQCPs:

- The SO(5)/O(4) DQCP CFT data obtained from lattice simulations is inconsistent with the bootstrap bounds associated with an irrelevant assumption, indicating the phase transitions observed in lattice simulations are not truly continuous. See also (Nakayama, Poland, Simmons-Duffin, Ilisiu and Pufu, et al.)
- A possible explanation is that the phase transitions are weakly first order, which are hard to be distinguished from second order phase transitions on finite size lattice system.
- More precise lattice simulations are useful to verify above conclusions: CFT data of presumed $N_f = 2 \text{ QED}_3$ with higher precision? Fine tune a possible relevant singlet scalar in SO(5) DQCP?

Is this a bitter end for the fantastic adventure of $N_f = 2$ QED₃?

2. A surprise in O(N) vector bootstrap: new family of kinks

Kinks (type I) deformed from free boson : 3D O(N) vector models! (Kos, Poland, Simmons-Duffin 2013) Kinks (type II) deformed from free fermion bilinear: fermionic gauge theories? (ZL 2018)

Are the new kinks related to the DQCPs with larger symmetries?

Interesting properties of the type II kinks:

- In the large N limit, they approach free fermion theory, it is natural to expect their finite N analogies relate to **fermionic gauge theories**.
- Strongly coupled theories: The family of kinks distributed in a wide range with large anomalous dimensions! In contrast the kinks of O(N) vector models are near free boson $\Delta_{\phi} \sim 0.5$.
- **Solution** Conformal window: $N \ge 6$: The SO(5)/O(4) DQCP is just below the window of this family of kinks, consistent with the expectation that they are of weakly first order phase transition.
- **4** Merger and annihilation of FPs: Near N = 6, the kinks approach the marginality condition $\Delta_S = 3$ and disappear after crossing the marginality condition. Mechanism for the loss of conformality?
- **Solution Bound coincidence:** $O(N_f^2 1)$ vector bootstrap bounds coincide with the $SU(N_f)$ adjoint \mathcal{O}_{ad} bootstrap bounds. For different $N_f s$ the kinks have $\Delta_{\mathcal{O}_{ad}}$ close to the large N_f results of QED₃.
- More interesting properties. (ZL and Poland; He, Rong and Su, 2020)

3. A novel algebraic structure in 4pt crossing equations

How can different crossing equations generate the same bounds? Hidden O(N) symmetric structure in the non-O(N) crossing equations!

Let us consider $SU(N_f)$ fundamental bootstrap. There are 6 $SU(N_f)$ irreps in the crossing equations, which can be written into a 6×6 matrix

$$\mathcal{M}_{SU(N_f)} \equiv \begin{pmatrix} 0 & 0 & F_{Adj}^+ & -F_{Adj}^- & F_T^+ & -F_A^- \\ 0 & 0 & H_{Adj}^+ & -H_{Adj}^- & -H_T^+ & H_T^- \\ F_S^+ & F_S^- & \left(1 - \frac{1}{N_f}\right)F_{Adj}^+ & \left(1 - \frac{1}{N_f}\right)F_{Adj}^- & 0 & 0 \\ H_S^+ & H_S^- & -\left(1 + \frac{1}{N_f}\right)H_{Adj}^+ & -\left(1 + \frac{1}{N_f}\right)H_{Adj}^- & 0 & 0 \\ F_S^+ & -F_S^- & -\frac{1}{N_f}F_{Adj}^+ & \frac{1}{N_f}F_{Adj}^- & F_T^+ & F_A^- \\ H_S^+ & -H_S^- & -\frac{1}{N_f}H_{Adj}^+ & \frac{1}{N_f}H_{Adj}^- & -H_T^+ & -H_T^- \end{pmatrix}$$

In contrast, the SO(N) vector crossing equations are

$$\mathcal{M}_{SO(N)} \equiv \begin{pmatrix} 0 & F_T^+ & -F_A^- \\ F_S^+ & (1 - \frac{2}{N}) F_T^+ & F_A^- \\ H_S^+ & -(1 + \frac{2}{N}) H_T^+ & -H_A^- \end{pmatrix}.$$

Zhijin Li (Yau Center-SEU)

A novel algebraic structure in the 4pt crossing equations

 $\mathcal{M}_{SU(N_f)}$ and $\mathcal{M}_{SO(2N_f)}$ are related through a linear map! (ZL, Poland 2020)

$$\mathscr{T}_{SU(N_f)} \equiv \left(\begin{array}{cccc} 1 & 0 & \frac{1}{1-2N_f} & 0 & \frac{1}{2N_f-1} & 0 \\ 0 & 0 & \frac{1}{2N_f-1} + 1 & 0 & \frac{1}{1-2N_f} + 1 & 0 \\ 0 & \frac{2}{2N_f-1} & 0 & \frac{1}{1-2N_f} + 1 & 0 & \frac{1}{2N_f-1} + 1 \end{array} \right).$$

$$\begin{aligned} \mathscr{T}_{SU(N_{f})} \cdot \mathcal{M}_{SU(N_{f})} &= \\ & \begin{pmatrix} 0 & -F_{S}^{-} & F_{Adj}^{+} & -F_{Adj}^{-} & F_{T}^{+} & -F_{A}^{-} \\ F_{S}^{+} & F_{S}^{-} & \left(1 - \frac{1}{N_{f}}\right) F_{Adj}^{+} & F_{Adj}^{-} & \left(1 - \frac{1}{N_{f}}\right) F_{T}^{+} & F_{A}^{-} \\ H_{S}^{+} & -H_{S}^{-} & -\left(1 + \frac{1}{N_{f}}\right) H_{Adj}^{+} & -H_{Adj}^{-} & -\left(1 + \frac{1}{N_{f}}\right) H_{T}^{+} & -H_{A}^{-} \end{pmatrix} \\ & \times \operatorname{diag}\{\mathbf{1}, \mathbf{y}_{1}, \mathbf{x}_{1}, \mathbf{y}_{2}, \mathbf{x}_{2}, \mathbf{y}_{3}\} \end{aligned}$$

$$(y_1, x_1, y_2, x_2, y_3) = \left(\frac{1}{2N_f - 1}, \frac{N_f - 1}{2N_f - 1}, \frac{N_f^2 - 1}{N_f(2N_f - 1)}, \frac{N_f}{2N_f - 1}, \frac{N_f - 1}{2N_f - 1}\right).$$

A novel algebraic structure in the 4pt crossing equations

 $\begin{array}{c} SO(2N_f) \to SU(N_f) \text{ branching rules in } \mathscr{T}_{SU(N_f)} \cdot \mathcal{M}_{SU(N_f)} \to \mathcal{M}_{SO(2N_f)} \\ \\ SO(2N) \qquad \qquad SU(N) \end{array}$

S	\longrightarrow	5,
Т	\longrightarrow	$Adj \oplus T \ (imes \mathbf{x_i}),$
Α	\longrightarrow	$S \oplus \operatorname{Adj} \oplus A \ (\times \mathbf{y_i}).$

Positivity: The coefficients y_i , x_i are all positive!

Conclusion: The $SU(N_f)$ crossing equations $\mathcal{M}_{SU(N_f)}$ have an $SO(2N_f)$ symmetric positive structure!

Similar linear transformations between G-symmetric crossing equations and the SO(N) vector's can be found for general G, case by case.(ZL 2020, Manenti, Reehorst et al. 2020)

The new algebraic structure and $N_f = 2 \text{ QED}_3$ self-duality

O(4) positive structure in the $SU(2) \times U(1)$ crossing equations of \mathcal{M}_1 :

$$\begin{array}{cccc} O(4) \sim SU(2)_f \times SU(2)_t & SU(2)_f \times SO(2)_t \\ S \sim (\mathbf{0}, \mathbf{0}) & \longrightarrow & (\mathbf{0}, A), \\ T \sim (\mathbf{1}, \mathbf{1}) & \longrightarrow & (\mathbf{1}, S) \oplus (\mathbf{1}, T), \\ A \sim (\mathbf{1}, \mathbf{0}) \oplus (\mathbf{0}, \mathbf{1}) & \longrightarrow & (\mathbf{1}, A) \oplus (\mathbf{0}, S) \oplus (\mathbf{0}, T). \end{array}$$

Fun fact: matches $N_f = 2$ QED₃ self-duality: $SU(2)_f \times U(1)_t \rightarrow O(4)$. (*Wang, Nahum, Xu, Son, Hsin, Seiberg, et al.*)

- O(4) V scalar: \mathcal{M}_1 in $(\frac{1}{2}, V)$ of $SU(2)_f \times SO(2)_t \to V$ of O(4).
- O(4) T scalar: (1, S) fermion mass + (1, T) monopole.
- O(4) current $J^{\mu}_{A=(1,0)+(0,1)}$: $J^{\mu}_{(1,0)} = j^{\mu}_{SU(2)_f}$, $J^{\mu}_{(0,1)} = (j^{\mu}_t, \mathcal{M}_2^*)$, where the monopole \mathcal{M}_2^* has quantum numbers: $SU(2)_f \times SO(2)_t : (\mathbf{0}, T)$; $\Delta_{\mathcal{M}_2^*} = 2$ $\ell = 1$. Can we find such a monopole in the perturbative results?

How is the non-O(N) symmetric conformal bootstrap affected by the O(N) positive structure in the crossing equations?

The crossing equations do NOT "know" the non-O(N) symmetry! How to bootstrap these non-O(N) symmetric CFTs with conformal bootstrap?

- A straightforward method: Introduce gap assumptions in the different representations which break the O(N) symmetry explicitly. —Will be discussed with more details for $N_f = 4$ QED₃ bootstrap!
- Mixing with non-O(N) symmetric conserved currents, which could introduce more constraints due to the Wald identities.
- Other possibilities?

Bootstrap lsing/O(N) vector models: get something out of nothing! Bootstrap non-O(N) CFTs: get sth out of sth—inputs are necessary!

4. Towards the bootstrap island for the $N_f = 4 \text{ QED}_3$

- How to break the enhanced *SO*(*N*) symmetry in crossing equations and implement the proper symmetry of QED₃?
- How to distinguish QED₃ from QCD₃?

Consider the $SU(N_f)$ adjoint 4pt correlator: $\langle \mathcal{O}_{\rm ad} \mathcal{O}_{\rm ad} \mathcal{O}_{\rm ad} \mathcal{O}_{\rm ad} \rangle$. Its crossing equations can be mapped to the $SO(N_f^2 - 1)$ vector crossing equations, associated with the branching rules

$$\begin{array}{ccc} SO(N_f^2-1) & & SU(N_f) \\ & \mathrm{Sig} & \longleftrightarrow & \mathbf{1} \; , \\ & T & \longleftrightarrow & \mathrm{Ad}^+ \oplus A\bar{A} \oplus T\bar{T} \; , \\ & A & \longleftrightarrow & \mathrm{Ad}^- \oplus T\bar{A} \; . \end{array}$$

To bootstrap QED₃, the $SO(N_f^2 - 1)$ symmetry needs to be broken. QED₃ physical spectrum (*Gracey*, Xu, Chester & Pufu, et al.)

$$egin{array}{rl} (\Delta_{{
m Ad}^+},\Delta_{Aar{A}},\Delta_{Tar{T}}) &\simeq & (4-rac{185}{3\pi^2N_f},4-rac{64}{\pi^2N_f},4+rac{64}{3\pi^2N_f}) \ & (\Delta_{{
m Ad}^-},\Delta_{Tar{A}}) &\simeq & (2,\;5+{\cal O}(rac{1}{N_f})) \end{array}$$

Kinks in the $SU(N_f)$ adjoint fermion bilinear bootstrap

Bootstrap condition: $(\Delta_{\mathrm{Ad}^+}, \Delta_{A\bar{A}}, \Delta_{T\bar{T}}) \ge (\Delta_4 - \frac{185}{3\pi^2 N_f}, \Delta_4 - \frac{64}{\pi^2 N_f}, \Delta_4 + \frac{64}{3\pi^2 N_f})$

Prediction: $\Delta_{T\bar{A}} = 5 - \frac{|c|}{N_f}!$ More precise matches for larger $N_f = 50, 100, 200 \cdots$.

 $SU(N_f)$ -ad fermion bilinear bootstrap: can generate sharp kinks but not enough to produce closed island!

- By introducing the information on physical QED₃ spectrum which breaks the $O(N_f^2 1)$ symmetry explicitly, bootstrap bounds are nearly saturated by QED₃ with sharp kinks.
- The four-fermion scalar operators break the $SO(N_f^2 1)$ symmetry weakly—only at the subleading order corrections.

Question: Are there 4pt correlators in QED_3 in which the physical spectrum strongly breaks the hidden O(N) symmetry?

This could help us to get strong bootstrap results using physically reliable assumptions.

Monopole crossing equations and parity symmetry

Parity: U(1) flux q changes its sign under parity $P: P\mathcal{M}_qP \to \mathcal{M}_{-q}$. Monopoles \mathcal{M}_q have no definite parity charges.

Monopole OPE: $SU(4)_f \times SO(2)_t$ irreps in $\mathcal{M}_1 \times \mathcal{M}_1$ (*Chester and Pufu*)

$$\begin{aligned} SU(4): & (110)\otimes(110) = (000)\oplus(211)\oplus(220) \ ,\\ SO(2): & V\otimes V = {\color{black}{\textbf{S}}} \oplus {\color{black}{\textbf{A}}} \oplus {\color{black}{\textbf{T}}} \ , \end{aligned}$$

Crossing equations of $\langle M_1 M_1 M_1 M_1 \rangle$ can be mapped to the SO(12) vector crossing equations $M_{SO(12)}$ associated with the branching rules

 $SO(12) \qquad SU(4) \times SO(2)$ $S \qquad \longleftrightarrow \qquad S_{(000)},$ $T \qquad \longleftrightarrow \qquad S_{(220)} \oplus A_{(211)} \oplus T_{(000)} \oplus T_{(220)},$ $\Delta : 4 + \dots 1.4 + \dots 2.5 + \dots$ $A \qquad \longleftrightarrow \qquad S_{(211)} \oplus A_{(000)} \oplus A_{(220)} \oplus T_{(211)}.$

ヘロト 人間ト ヘヨト ヘヨト

Some perturbative spectrum of $N_f = 4 \text{ QED}_3$

<i>SO</i> (2)	<i>SU</i> (4) rep	Δ_1 -leading	Δ_1 -sub	Δ_2 -leading	Refs
А	(211) (Adj)	2	-0.540	4	Gracey
S	(000) (Sig)	4	-0.349	5	Chester & Pufu
S	(211) (Adj)	4	-1.563	5	Chester& Pufu
S	(220) (AĀ)	4	-1.621	6	Xu, Chester& Pufu
S	(422) (SĪS)	4	+0.540	6	Xu
V	(110) (Anti)	1.060	+0.038	3.888	Pufu, Dupuis et al.
Т	(000) (Sig)	4.424		6.156	Pufu, Dupuis et al.
Т	(220) (AĀ)	2.693	-0.194	6.156	Pufu, Dupuis et al.

- Four-fermion scalars: large subleading corrections at N_f = 4! (Away from physical value?)
- One sectors: weak subleading order corrections. (Close to the physical value?)

Nonperturbative checks?

Zhijin Li (Yau Center-SEU)

Nonperturbative check of perturbative spectrum of QED₃

Another conclusion on QED₃ from bootstrap: *perturbative result of* 4-fermion scalar $(S\bar{S})$ at the subleading order can be excluded for $N_f = 4$. (Kinks appear with gaps related to QED₃ spectrum!)

Peninsula structure in the monopole bootstrap

- Gap in (220) $A\overline{A}$ sector is important! Large N_f : 2.4 —but not reliable!
- $\Delta_{\mathcal{M}_2'} \sim 6.16$. Subleading order corrections are mild in monopole sectors.
- Lattice data $\Delta_{M_1} = 1.252(84)$ is from Karthik and R. Narayanan, 2019.

Peninsula to islands of the $N_f = 4 \text{ QED}_3$

Bootstrap islands for $(\Delta_{\mathcal{M}_1}, \Delta_{\mathcal{O}_{ad}=r})$ from peninsula structure with "interval positivity" conditions $\Delta_{\mathcal{M}_2} \leq 2.5, 2.6$. (Albayrak, Erramilli, ZL, Poland, Xin 2021)

Zhijin Li (Yau Center-SEU)

Will the island disappear with high precision? Like in 5D

Island size can be reduced significantly with higher numerical precision.

Perturbative predictions: $(\Delta_{\mathcal{M}_1}, \Delta_{\mathcal{M}_2}) \simeq (1.022, 2.499)$. After imposing the condition $\Delta_{\mathcal{M}_2} \leqslant 2.5$, the bootstrap island shrinks to $\Delta_{\mathcal{M}_1} \in [1.02, 1.04]$ remarkably close the perturbative results!

QED₃ or QCD₃: central charges

How do we know the island realted to QED₃ instead of QCD₃-like theories?

- Similar low-lying spectrum in QED₃ and QCD₃: $\psi_i \bar{\psi}^j$ vs $\psi_i^c \bar{\psi}_c^j$.
- Monopoles appear both in QED₃ and QCD₃: $U(1) \times SU(N_c)$.

Central charges $c_{J,J^t,T}$: useful to distinguish QED₃ and QCD₃:

 $QED_3: \psi_i, A^{\mu}; QCD_3: \psi_i^a, A^{\mu}_{ab}, a, b are color indices.$ Central charges in QED₃ (*Giombi et al. 2016*):

$$c_J = c_{J0} \left(1 + \frac{0.1429}{N_f} + O(1/N_f^2) \right),$$

$$c_T = c_{T0} \left(1 + \frac{0.7193}{N_f} + O(1/N_f^2) \right).$$

Central charges in QCD₃ (Giombi et al. 2016):

$$c_{J} = N_{c}c_{J0}\left(1 + \frac{0.1429}{N_{f}}\frac{N_{c}^{2}-1}{N_{c}} + O(1/N_{f}^{2})\right),$$

$$c_{T} = N_{c}c_{T0}\left(1 + \frac{0.7193}{N_{f}}\frac{N_{c}^{2}-1}{N_{c}} + O(1/N_{f}^{2})\right).$$

Zhijin Li (Yau Center-SEU)

Cracking the critical flavor number of QED_3

Bootstrap results of the $N_f = 4 \text{ QED}_3$: a summary

- Fermion bilinear bootstrap: the enhanced SO(N) symmetry in the crossing equations is mildly broken by QED₃ spectrum. With this information the fermion bilinear bootstrap can generate sharp kinks nearly saturated by conformal QED₃.
- Monopole bootstrap: the enhanced SO(N) symmetry in the crossing equations is strongly broken by QED₃ spectrum. With gaps inspired by the perturbative CFT data, the parameters can be isolated into a closed region which shows strong connection with QED₃!
 The results suggest: the N_f = 4 QED₃ monopole CFT data provides a unitary solution to the crossing equations, and crucially, this solution can be captured by bootstrap!

Our $N_f = 4 \text{ QED}_3$ island is different from the celebrated islands of 3D lsing and O(N) vector models, as it does not provide a numerical solution to the theory. Nevertheless, our bootstrap results have been shown closely contacted with the strongly coupled QED₃ dynamics, therefore provide a substantial pivot for future studies.

Outlook: towards a comprehensive understanding of conformal QED_3

Questions towards a comprehensive understanding of conformal QED₃:

- What is the critical flavor number N^{*}_f of QED₃?
- 2 Near N_f^* by which mechanism the conformality is lost?
- How to precisely estimate critical indices of strongly coupled QED₃?

Problem 1: Bootstrap has provided a new estimate for $N_f^* \in (2, 4)$:

- Bootstrap + lattice: $N_f = 2 \text{ QED}_3$ critical indices from lattices simulations are inconsistent with bootstrap bounds associated with suitable assumptions. The phase transitions are not truly continuous.
- Indirect evidence: The proposed SO(5)/O(4) DQCPs are just below a new family of bootstrap kinks, indicating the SO(5)/O(4) DQCPs are slightly below the conformal window.
- Bootstrap + large N_f : $N_f = 4$ QED₃ CFT data can be isolated into a closed island using bootstrap, which supports the theory provides a unitary solution to crossing equations.

30 / 33

N_f^* (2-component Dirac fermion)	Method	Year and Reference	
$\frac{64}{\pi^2} \approx 6.5$	Schwinger-Dyson equations	1984-88 Pisarski,Appelquist et al	
8.6	Schwinger-Dyson equations	1996-97 Maris,Aitchison, et al	
≤ 3	thermal free energy	1999-2004 Appelquist et al	
≤ 4	hybrid Monte Carlo	2002-04 Hands et al	
4.3	divergence of the chiral susceptibility	2002 Franz et al	
8	covariant solutions for propagators	2004 Fischer et al	
12	perturbative RG in the large-N _f limit	2004 Kaveh et al	
1013	comparison to the Thirring model	2007-12 Christofi, Janssen, et al	
3	lattice simulations	2008 Strouthos et al	
$8 pprox N_f^{\chi SB} \le N_f^* \le 20$	functional RG	2014 Braun et al	
≤ 8	F-theorem	2015 Giombi et al	
≤ 4	one-loop ϵ -expansion	2015 DiPietro et al	
5.7	$1/N_f$ expansion	2016 Gusynin et al	
5.8	ϵ -expansion	2016 Herbut et al	
< 2	lattice simulations	2017 Qin et al	
< 2	lattice simulations	2015-2020 Karthik et al	
$2 < N_f^* < 4$	conformal bootstrap $+\cdots$	2018-2021 Li & Yale Group	

イロト イヨト イヨト イヨト

Ξ.

Problem 2: Near N_f^* by which mechanism the conformality is lost? The Type II kinks disappear slightly above N = 5 when approaching the marginality condition $\Delta_S = 3$. A signal of the "merger and annihilation mechanism" (*Kubota and Terao, Kaveh and Herbut, Gies and Jaeckel, Kaplan, Lee, Son, Gorbenko, Rychkov, Zan et al.*). More precise CFT data is needed for a solid answer!

Problem 3: How to precisely estimate critical indices of strongly coupled QED₃? This question relates to reducing the size of our $N_f = 4$ QED₃ bootstrap island. Next step: mixing with conserved currents.

- The conserved currents are generators of global symmetries. Their Wald identities could help to fix the non-O(N) global symmetries.
- Our results have shown that the bootstrap bounds on the current central charges are rather restrictive. By mixing with conserved currents, these constraints could be exploited further.

With a much smaller island, we could verify our gap assumptions further and provide more characteristic properties of QED_3 .

Outlook: towards a comprehensive understanding of conformal $\ensuremath{\mathsf{QED}}_3$

	Conformal bootstrap	Lattice simulation	Large N_f
Non-perturbative			×
Theory-specified	×		
Strict errors		×	×
Many spectrum		×	
Computation eff	\checkmark	×	×

Properties of different approaches to study conformal QED₃:

Conformal bootstrap + lattice + large N_f = a systematical study of QED₃ with strict control on the errors!

Thank You!