Women in Theoretical Physics
Premio Nazionale “Milla Baldo Ceolin” 2021

Viviana Viggiano
University of Bari & INFN Bari
viviana.viggiano@ba.infn.it

Award Ceremony - Arcetri, Florence
October 21, 2022
About me

• June 2021: Master’s Degree in Theoretical Physics at the University of Bari
  Thesis: “Cooperative effects in single photon emission” under the supervision of
  Prof. Saverio Pascazio

• July 2021: Master’s Degree in Piano at the Conservatory of Music of Matera

• October 2021- at present: PhD student at the University of Bari, working on
  cooperative effects in atom-photon interactions in macroscopic quantum systems

  Joint work with Fabio D. Cunden, Paolo Facchi, Saverio Pascazio, Francesco V. Pepe
  (Bari University) and Robin Kaiser (Nice University) in the framework of the
  QuantERA Project PACE-IN
Cooperative scattering by a cold atomic cloud

N identical two-level atoms with fixed positions $\mathbf{r}_j, j=1,...,N$, sampled from a 3D Gaussian distribution with zero mean and variance $\sigma^2$.

Huge number of atoms interacting with the quantized electromagnetic field: collective effects.

Subradiance and superradiance: suppression and enhancement of the decay rate of the cloud with respect to the case of an isolated atom.

Cooperativity parameter $b_0 = \frac{N}{(k_a \sigma)^2}$

Wavefunction in the linear regime of weak excitation

$$|\Psi(t)\rangle = \alpha(t) |g\rangle \otimes |\text{vac}\rangle + \sum_{j=1}^{N} \beta_j(t) |j\rangle \otimes |\text{vac}\rangle + \sum_k \gamma_k(t) |g\rangle \otimes |k\rangle$$
Total excitation probability

\[ P(t) = \sum_{j=1}^{N} |\beta_j(t)|^2 = \beta^\dagger(t)\beta(t) \]
\[ \dot{P}(t) = -\Gamma \beta^\dagger(t)S\beta(t) \]

\( \Gamma \) decay rate of an isolated atom

\[ S_{jk} = \text{sinc} \left( \sqrt{\frac{N}{b_0}} x_{jk} \right) \quad \forall \ j, k = 1, \ldots, N \]
\[ x_{jk} = |\mathbf{x}_j - \mathbf{x}_k| \quad \mathbf{x}_j \sim \mathcal{N}(0, 1) \]

Spectrum of S:

- Subradiance \( 0 \leq \lambda < 1 \)
- Superradiance \( 1 < \lambda \leq N \)
- Normal decay rate \( \lambda = 1 \)

\begin{figure}
\centering
\includegraphics[width=\textwidth]{spectrum.png}
\caption{Eigenvalue distribution for \( b_0 = 1 \)}
\end{figure}

S is a Euclidean random matrix (ERM):

- \( N^2 \) entries but only \( O(N) \) random degrees of freedom

Universality of random matrix ensembles useful to simulate complex systems with a huge number of interacting components

Complication: few results available for ERMs

Numerical study of the matrix S with large size N using the ReCas Data Center in Bari
Study of the spectral properties of $S$

Study of the nearest neighbour spacing distribution (NNSD):
pdf of spacings between adjacent eigenvalues

**Brody distribution**

$$p_{br}(q, s) = \alpha(q + 1) s^q \exp(-\alpha s^{q+1})$$

$$\alpha = \left[ \Gamma\left(\frac{q+2}{q+1}\right) \right]^{q+1}$$

Interpolates between the two universality classes of NNSD:

$q=0$ is the **Poisson distribution**:
- Spacing for iid random variables
- Integrable systems
- Localized eigenstates

$q=1$ is the **Wigner-Dyson distribution**:
- Real random matrices
- Chaotic systems
- Delocalized eigenstates

**Result**

For the central part of the spectrum of $S$, the behaviour is chaotic close to Wigner-Dyson and with delocalized states
Localización propiedades de los eigenestados de $S$

Participation ratio
$$PR(Ψ) = \frac{1}{\sum_{i=1}^{N} |Ψ_i|^4} Ψ_i, \ i = 1, \ldots, N$$

Moments of the eigenstates
$$M_q = \left\langle \sum_{i=1}^{N} |Ψ_i|^{2q} \right\rangle \xrightarrow{N \to +\infty} C_q N^{-\tau(q)}$$

Fractal dimension
$$D_q = \frac{\tau(q)}{q-1}$$

$0 < D_q < 1$: sistemas con dimensión fractal no trivial

Results:
appropriate scaling $PR \sim N$
for random delocalized states!

Numerical study of higher moments and fractal dimension corroborates the delocalization of states

Localized state
$PR=1 \quad D_q=0$

Delocalized state
$PR=N \quad D_q=1$
Current work and perspectives

• Study of a non-Hermitian Euclidean random matrix ruling the dynamics of the system and its connections with the spectral properties of S

\[ \dot{\beta}(t) = -iM\beta(t) \]
\[ M'_{jk} = -\frac{2M_{jk}}{\Gamma} = \begin{cases} e^{i\sqrt{\frac{N}{b_0}}x_{jk}} & \text{if } j \neq k \\ \frac{1}{\sqrt{\frac{N}{b_0}}}x_{jk} & \text{if } j = k \end{cases} \]
\[ S = \text{Im}M' \]

• Deeper investigation of subradiance

• A combination of analytical results of random matrix theory and numerical simulations can be used to study a variety of systems with collective effects in atom-photon interactions
Thank you!