

WOMEN IN THEORETICAL PHYSICS Premio Nazionale "Milla Baldo Ceolin" 2021

Fully Relativistic Magnetohydrodynamic Simulations of Spinning Massive Black Hole Binaries

Relatrice: **Sofia MAGGIONI**

METODI

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

ASTRONOMIA MULTI-MESSENGER

Astronomia basata sull'osservazione coordinata e sull'interpretazione di diversi segnali astronomici

GRMHD Simulations of Spinning SMBHB

1/15

METODI

SETUP

RISULTATI

CONCLUSIONI

Astronomia basata sull'osservazione coordinata e sull'interpretazione di diversi segnali astronomici

ONDE GRAVITAZIONALI

Università degli studi di Milano Bicocca

GRMHD Simulations of Spinning SMBHB

ASTRONOMIA MULTI-MESSENGER

Sofia Maggioni

1/15

METODI

SETUP

RISULTATI

CONCLUSIONI

Astronomia basata sull'osservazione coordinata e sull'interpretazione di diversi segnali astronomici

ONDE GRAVITAZIONALI

Università degli studi di Milano Bicocca

ASTRONOMIA MULTI-MESSENGER

GRMHD Simulations of Spinning SMBHB

Sofia Maggioni

1/15

METODI

SETUP

RISULTATI

CONCLUSIONI

ASTRONOMIA MULTI-MESSENGER

Astronomia basata sull'osservazione coordinata e sull'interpretazione di diversi segnali astronomici

ONDE GRAVITAZIONALI

campo forte, test di GR, cosmologia.

Università degli studi di Milano Bicocca

SEGNALI ELETTROMAGNETICI

• Perchè? Informazioni su oggetti compatti, dinamica del gas in regime di

GRMHD Simulations of Spinning SMBHB

Sofia Maggioni

1/15

METOD

SETUP

RISULTATI

CONCLUSIONI

ASTRONOMIA MULTI-MESSENGER

Astronomia basata sull'osservazione coordinata e sull'interpretazione di diversi segnali astronomici

ONDE GRAVITAZIONALI

- campo forte, test di GR, cosmologia.
- per raggi γ)

Università degli studi di Milano Bicocca

SEGNALI ELETTROMAGNETIC

• Perchè? Informazioni su oggetti compatti, dinamica del gas in regime di

• Ad oggi: GW/GRB170817 (Interferometri ground-based + telescopi spaziali

METODI

SETUP

RISULTATI

CONCLUSIONI

ASTRONOMIA MULTI-MESSENGER

Astronomia basata sull'osservazione coordinata e sull'interpretazione di diversi segnali astronomici

ONDE GRAVITAZIONALI

- campo forte, test di GR, cosmologia.
- per raggi γ)

Università degli studi di Milano Bicocca

SEGNALI ELETTROMAGNETIC

• Perchè? Informazioni su oggetti compatti, dinamica del gas in regime di

• Ad oggi: GW/GRB170817 (Interferometri ground-based + telescopi spaziali

• Il futuro: detector space-based (LISA), nuove sorgenti: SMBHBs

METODI

SETUP

RISULTA

CONCLUSIONI

ASTRONOMIA MULTI-MESSENGER

Predizioni per SMBHBs per LISA:

- Risultato di merger di galassie gerarchici
- Masse: $10^5 10^7 M_{\odot}$
- Ambiente: gas-rich

Università degli studi di Milano Bicocca

GRMHD Simulations of Spinning SMBHB

METODI

SETUP

RISULTA

CONCLUSIONI

ASTRONOMIA MULTI-MESSENGER

Predizioni per SMBHBs per LISA:

- Risultato di merger di galassie gerarchici
- Masse: $10^5 10^7 M_{\odot}$
- Ambiente: gas-rich
- Controparte EM: ???

Università degli studi di Milano Bicocca

GRMHD Simulations of Spinning SMBHB

METOD

SETUP

RISULT

CONCLUSIONI

ASTRONOMIA MULTI-MESSENGER Predizioni per SMBHBs per LISA: • Risultato di merger di galassie gerarchici

- Masse: $10^5 10^7 M_{\odot}$
- Ambiente: gas-rich
- Controparte EM: ???

Università degli studi di Milano Bicocca

OBIETTIVO: Identificare proprietà del segnale EM correlate all'evento gravitationale

GRMHD Simulations of Spinning SMBHB

METOD

SETUP

RISULTA

CONCLUSIONI

ASTRONOMIA MULTI-MESSENGER Predizioni per SMBHBs per LISA: • Risultato di merger di galassie gerarchici

- Masse: $10^5 10^7 M_{\odot}$
- Ambiente: gas-rich
- Controparte EM: ???

Università degli studi di Milano Bicocca

OBIETTIVO: Identificare proprietà del segnale EM correlate all'evento gravitationale

- in che condizioni?
- caratteristiche?
- come è correlato alla GW?

GRMHD Simulations of Spinning SMBHB

METODI

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

IN QUESTA TESI:

Obiettivo: modellizzare un merger di SMBH immersi in gas magnetizzato

GRMHD Simulations of Spinning SMBHB

METOD

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

IN QUESTA TESI:

Obiettivo: modellizzare un merger di SMBH immersi in gas magnetizzato Ruolo dell'inclinazione dello spin

GRMHD Simulations of Spinning SMBHB

METODI

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

IN QUESTA TESI:

- Obiettivo: modellizzare un merger di SMBH immersi in gas magnetizzato
- Ruolo dell'inclinazione dello spin
- Come? simulazioni numeriche

GRMHD Simulations of Spinning SMBHB

METODI

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

IN QUESTA TESI:

- Obiettivo: modellizzare un merger di SMBH immersi in gas magnetizzato
- Ruolo dell'inclinazione dello spin
- Come? simulazioni numeriche

Team Bicocca/Insubria:

- Bruno Giacomazzo (Prof. Associato, Bicocca)
- Monica Colpi (Prof. Ordinaria, Bicocca)
- Federico Cattorini (Dottorando, Insubria)
- Francesco Haardt (Prof. Ordinario, Insubria)

METODI

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

RELATIVITA' NUMERICA

FISICA

 $R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$

GRMHD Simulations of Spinning SMBHB

FISICA

METODI

INTRO

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

RELATIVITA' NUMERICA

Curvatura

GRMHD Simulations of Spinning SMBHB

RELATIVITA' NUMERICA

Curvatura

Ramo della GR incentrato sulla soluzione delle equazioni di Einstein per gli spazi-tempo per i quali non esiste soluzione analitica e non sono valide approssimazioni Post-Newtoniane

Università degli studi di Milano Bicocca

SIMULAZIONI

FISICA

METODI

INTRO

SETUP

RISULT

CONCLUSIONI

GRMHD Simulations of Spinning SMBHB

RELATIVITA' NUMERICA:

METODI

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

RELATIVITA' NUMERICA

EQUAZIONI FISICHE

GRMHD Simulations of Spinning SMBHB

EQUAZIONI NUMERICAMENTE **INTEGRABLI**

METODI

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

RELATIVITA' NUMERICA

EQUAZIONI FISICHE

Spazio-tempo

GRMHD Simulations of Spinning SMBHB

EQUAZIONI NUMERICAMENTE **INTEGRABLI**

METODI

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

RELATIVITA' NUMERICA

EQUAZIONI FISICHE

Spazio-tempo

EQUAZIONI NUMERICAMENTE INTEGRABLI

FOLIAZIONE SPAZIOTEMPO

GRMHD Simulations of Spinning SMBHB

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

RELATIVITA' NUMERICA

EQUAZIONI FISICHE

Spazio-tempo Equazioni di Einstein

EQUAZIONI NUMERICAMENTE INTEGRABLI

FOLIAZIONE SPAZIOTEMPO

GRMHD Simulations of Spinning SMBHB

METODI

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

RELATIVITA' NUMERICA

EQUAZIONI FISICHE

Spazio-tempo Equazioni di Einstein

 $R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$

EQUAZIONI NUMERICAMENTE INTEGRABLI

FOLIAZIONE SPAZIOTEMPO

FORMULAZIONE BSSNOK

GRMHD Simulations of Spinning SMBHB

SETUP

RISULTATI

CONCLUSIONI

EQUAZIONI

FISICHE

Spazio-tempo Equazioni di Einstein

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

Magnetoidrodinamica

$$\begin{aligned}
7_{\mu}(\rho u^{\mu}) &= 0 \\
\nabla_{\nu} T^{\mu\nu} &= 0 \\
\nabla_{\nu} F^{*\mu\nu} &= 0
\end{aligned}$$

Università degli studi di Milano Bicocca

RELATIVITA' NUMERICA

EQUAZIONI NUMERICAMENTE INTEGRABLI

FOLIAZIONE SPAZIOTEMPO

FORMULAZIONE BSSNOK

GRMHD Simulations of Spinning SMBHB

SETUP

RISULTATI

CONCLUSIONI

EQUAZIONI FISICHE

Spazio-tempo Equazioni di Einstein

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

Magnetoidrodinamica

$$\begin{aligned} \nabla_{\mu} \left(\rho u^{\mu} \right) &= 0 \\ \nabla_{\nu} T^{\mu\nu} &= 0 \\ \nabla_{\nu} F^{*\mu\nu} &= 0 \end{aligned}$$

Università degli studi di Milano Bicocca

RELATIVITA' NUMERICA

EQUAZIONI NUMERICAMENTE INTEGRABLI

FOLIAZIONE SPAZIOTEMPO

FORMULAZIONE BSSNOK

FORMULAZIONE 3+1 MHD

GRMHD Simulations of Spinning SMBHB

SETUP

RISULTATI

CONCLUSIONI

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

EQUAZIONI

FISICHE

Magnetoidrodinamica

$$\nabla_{\mu} \left(\rho u^{\mu} \right) = 0$$

$$\nabla_{\nu} T^{\mu\nu} = 0$$

$$\nabla_{\nu} F^{*\mu\nu} = 0$$

Università degli studi di Milano Bicocca

RELATIVITA' NUMERICA

EQUAZIONI NUMERICAMENTE INTEGRABLI

FOLIAZIONE SPAZIOTEMPO

FORMULAZIONE BSSNOK

FORMULAZIONE 3+1 MHD

GRMHD Simulations of Spinning SMBHB

SETUP

RISULTATI

CONCLUSIONI

RELATIVITA' NUMERICA

EQUAZIONI FISICHE

Spazio-tempo Equazioni di Einstein

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

Magnetoidrodinamica

$$\nabla_{\mu} (\rho u^{\mu}) = 0$$
$$\nabla_{\nu} T^{\mu\nu} = 0$$
$$\nabla_{\nu} F^{*\mu\nu} = 0$$

INPUT

FILE DI PARAMETERI

Università degli studi di Milano Bicocca

GRMHD Simulations of Spinning SMBHB

EQUAZIONI NUMERICAMENTE INTEGRABLI

FOLIAZIONE SPAZIOTEMPO

FORMULAZIONE BSSNOK

FORMULAZIONE 3+1 MHD

SETUP

RISULTATI

CONCLUSIONI

RELATIVITA' NUMERICA

EQUAZIONI FISICHE

Spazio-tempo Equazioni di Einstein

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

Magnetoidrodinamica

$$\nabla_{\mu} (\rho u^{\mu}) = 0$$
$$\nabla_{\nu} T^{\mu\nu} = 0$$
$$\nabla_{\nu} F^{*\mu\nu} = 0$$

INPUT

FILE DI PARAMETERI

Università degli studi di Milano Bicocca

GRMHD Simulations of Spinning SMBHB

EQUAZIONI NUMERICAMENTE INTEGRABLI

FOLIAZIONE SPAZIOTEMPO

FORMULAZIONE BSSNOK

FORMULAZIONE 3+1 MHD

SETUP

RISULTATI

CONCLUSIONI

RELATIVITA' NUMERICA

EQUAZIONI FISICHE

Spazio-tempo Equazioni di Einstein

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

Magnetoidrodinamica

$$\nabla_{\mu} (\rho u^{\mu}) = 0$$
$$\nabla_{\nu} T^{\mu\nu} = 0$$
$$\nabla_{\nu} F^{*\mu\nu} = 0$$

INPUT

FILE DI PARAMETERI

Università degli studi di Milano Bicocca

GRMHD Simulations of Spinning SMBHB

EQUAZIONI NUMERICAMENTE INTEGRABLI

FOLIAZIONE SPAZIOTEMPO

FORMULAZIONE BSSNOK

FORMULAZIONE 3+1 MHD

SETUP

INTRO

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

• Pari massa: $m_1 = m_2 = M/2$

GRMHD Simulations of Spinning SMBHB

INTRO

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

- Pari massa: $m_1 = m_2 = M/2$

• Materia intorno ai BHs: "gas cloud", $\rho_0 = \text{const}, \overline{v} = 0$

GRMHD Simulations of Spinning SMBHB

INTRO

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

- Pari massa: $m_1 = m_2 = M/2$
- Materia intorno ai BHs: "gas cloud", $\rho_0 = \text{const}, \overline{v} = 0$
- Campo magnetico uniforme $\beta_0^{-1} \equiv p_{\text{mag}}/p_{\text{fluid}} = 0.31$

GRMHD Simulations of Spinning SMBHB

INTRO

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

SETUP INIZIALE • Pari massa: $m_1 = m_2 = M/2$

- Campo magnetico uniform

Materia intorno ai BHs: "gas cloud", $\rho_0 = \text{const}, \overline{v} = 0$

ne
$$\beta_0^{-1} \equiv p_{\text{mag}}/p_{\text{fluid}} = 0.31$$

2012 Kelly at al. 2017

GRMHD Simulations of Spinning SMBHB

INTRO

SETUP

RISULT

CONCLUSIONI

- Pari massa: $m_1 = m_2 = M/2$
- Materia intorno ai BHs: "gas cloud", $\rho_0 = {
 m const}, \, \overline{\upsilon} = 0$
- Campo magnetico uniforme $\beta_0^{-1} \equiv p_{mag}/p_{fluid} = 0.31$ • Magnitudine dello spin: $a = S/m^2 = 0.6$

Università degli studi di Milano Bicocca

GRMHD Simulations of Spinning SMBHB

INTRO

SETUP

RISULT

CONCLUSIONI

SETUP INIZIALE • Pari massa: $m_1 = m_2 = M/2$

- Campo magnetico uniform
- Magnitudine dello spin: a \bullet

Università degli studi di Milano Bicocca

Materia intorno ai BHs: "gas cloud", $\rho_0 = \text{const}, \overline{v} = 0$

ne
$$\beta_0^{-1} \equiv p_{mag}/p_{fluid} = 0.31$$

= $S/m^2 = 0.6$

Cattorini et al. 2021

GRMHD Simulations of Spinning SMBHB

INTRO

SETUP

RISULT

CONCLUSIONI

- Pari massa: $m_1 = m_2 = M/2$
- Materia intorno ai BHs: "gas cloud", $\rho_0 = \text{const}, \overline{v} = 0$
- Campo magnetico uniforme $\beta_0^{-1} \equiv p_{mag}/p_{fluid} = 0.31$
- Magnitudine dello spin: $a = S/m^2 = 0.6$
- **Inclinazione spin-momento angolare orbitale**

Università degli studi di Milano Bicocca

GRMHD Simulations of Spinning SMBHB

INTRO

SETUP

RISUL

CONCLUSIONI

- Pari massa: $m_1 = m_2 = M/2$
- Materia intorno ai BHs: "gas cloud", $\rho_0 = \text{const}, \overline{v} = 0$
- Campo magnetico uniforme $\beta_0^{-1} \equiv p_{\text{mag}}/p_{\text{fluid}} = 0.31$
- Magnitudine dello spin: $a = S/m^2 = 0.6$
- **Inclinazione spin-momento angolare orbitale**
- Separazione iniziale $d \sim 12M$ (ultime ~ 10 orbite)

Università degli studi di Milano Bicocca

GRMHD Simulations of Spinning SMBHB

INTRO

SETUP

RISUL

CONCLUSIONI

- Pari massa: $m_1 = m_2 = M/2$
- Materia intorno ai BHs: "gas cloud", $\rho_0 = {
 m const}, \, \overline{\upsilon} = 0$
- Campo magnetico uniforme $\beta_0^{-1} \equiv p_{\text{mag}}/p_{\text{fluid}} = 0.31$
- Magnitudine dello spin: $a = S/m^2 = 0.6$
- **Inclinazione spin-momento angolare orbitale**
- Separatione initiale $d \sim 12M$ (ultime ~ 10 orbite)

Università degli studi di Milano Bicocca

GRMHD Simulations of Spinning SMBHB

INTRO

SETUP

RISULT

CONCLUSIONI

- Pari massa: $m_1 = m_2 = M/2$
- Materia intorno ai BHs: "gas cloud", $\rho_0 = {
 m const}, \, \overline{\upsilon} = 0$
- Campo magnetico uniforme $\beta_0^{-1} \equiv p_{\text{mag}}/p_{\text{fluid}} = 0.31$
- Magnitudine dello spin: $a = S/m^2 = 0.6$
- **Inclinazione spin-momento angolare orbitale**
- Separatione initiale $d \sim 12M$ (ultime ~ 10 orbite)

Università degli studi di Milano Bicocca

GRMHD Simulations of Spinning SMBHB

INTRO

SETUP

RISUL

CONCLUSIONI

- Pari massa: $m_1 = m_2 = M/2$
- Materia intorno ai BHs: "gas cloud", $\rho_0 = {
 m const}, \, \overline{\upsilon} = 0$
- Campo magnetico uniforme $\beta_0^{-1} \equiv p_{\text{mag}}/p_{\text{fluid}} = 0.31$
- Magnitudine dello spin: $a = S/m^2 = 0.6$
- **Inclinazione spin-momento angolare orbitale**
- Separazione iniziale $d \sim 12M$ (ultime ~ 10 orbite)

Università degli studi di Milano Bicocca

GRMHD Simulations of Spinning SMBHB

INTRO

SETUP

RISUL

CONCLUSIONI

- Pari massa: $m_1 = m_2 = M/2$
- Materia intorno ai BHs: "gas cloud", $\rho_0 = {
 m const}, \, \overline{\upsilon} = 0$
- Campo magnetico uniforme $\beta_0^{-1} \equiv p_{\text{mag}}/p_{\text{fluid}} = 0.31$
- Magnitudine dello spin: $a = S/m^2 = 0.6$
- **Inclinazione spin-momento angolare orbitale**
- Separatione initiale $d \sim 12M$ (ultime ~ 10 orbite)

Università degli studi di Milano Bicocca

GRMHD Simulations of Spinning SMBHB

INTRO

METODI

SETUP

Università degli studi di Milano Bicocca

DINAMICA DEI BH

GRMHD Simulations of Spinning SMBHB

Sofia Maggioni

SETUP

INTRO

METODI

CONCLUSIONI

Università degli studi di Milano Bicocca

GRMHD Simulations of Spinning SMBHB

DINAMICA DEI BH

Sofia Maggioni

SETUP

INTRO

METODI

CONCLUSIONI

Università degli studi di Milano Bicocca

GRMHD Simulations of Spinning SMBHB

DINAMICA DEI BH

• Precessione di orbita e spin durante l'inspiral

Sofia Maggioni

SETUP

INTRO

METODI

CONCLUSIONI

Università degli studi di Milano Bicocca

GRMHD Simulations of Spinning SMBHB

DINAMICA DEI BH

- Precessione di orbita e spin durante l'inspiral
 - BHB+45-45: kick lungo asse z

Sofia Maggioni

SETUP

INTRO

METODI

CONCLUSIONI

Università degli studi di Milano Bicocca

DINAMICA DEI BH

- Precessione di orbita e spin durante l'inspiral
 - BHB+45-45: kick lungo asse z
 - BHB+45-135: kick lungo asse *x*, *y*, *z*

Università degli studi di Milano Bicocca

INTRO

SETUP

DINAMICA DEI BH

- Precessione di orbita e spin durante l'inspiral
 - BHB+45-45: kick lungo asse z
 - BHB+45-135: kick lungo asse *x*, *y*, *z*

DOPO IL MERGER:

	$t_{\rm merger}[M]$	$M_{\rm rem}[M]$	<i>a</i> _{rem}	$v_{\rm kick}[k]$
-45	2402	0.93	0.81	17
135	2018	0.95	0.69	76

Sofia Maggioni

7/15

BICOCCA

DINAMICA GAS E CAMPO MAGNETICO

METOD

SETUP

RISULTATI

Università degli studi di Milano Bicocca

GRMHD Simulations of Spinning SMBHB

DINAMICA GAS E CAMPO MAGNETICO

METODI

SETUP

RISULTATI

Università degli studi di Milano Bicocca

BHB+45-45

GRMHD Simulations of Spinning SMBHB

DINAMICA GAS E CAMPO MAGNETICO

METODI

SETUP

RISULTATI

Università degli studi di Milano Bicocca

BHB+45-45

DINAMICA GAS E CAMPO MAGNETICO

METODI

SETUP

RISULTATI

Università degli studi di Milano Bicocca

BHB+45-45

DINAMICA GAS E CAMPO MAGNETICO

METODI

SETUP

RISULTATI

Università degli studi di Milano Bicocca

BHB+45-45

DINAMICA GAS E CAMPO MAGNETICO

METODI

SETUP

RISULTATI

Università degli studi di Milano Bicocca

BHB+45-45

GRMHD Simulations of Spinning SMBHB

DINAMICA GAS E CAMPO MAGNETICO

METODI

SETUP

RISULTATI

Università degli studi di Milano Bicocca

BHB+45-45

GRMHD Simulations of Spinning SMBHB

DINAMICA GAS E CAMPO MAGNETICO

METODI

SETUP

RISULTATI

Università degli studi di Milano Bicocca

BHB+45-45

DINAMICA GAS E CAMPO MAGNETICO

METODI

SETUP

RISULTATI

Università degli studi di Milano Bicocca

BHB+45-45

METODI

SETUP

RISULTATI

CONCLUSIONI

DINAMICA GAS E CAMPO MAGNETICO

• BH inizialmente circondati da sovradensità di materia inclinate rispetto al piano orbitale. Dopo la fusione, il BH finale è circondato da una distribuzione a disco sottile e ad alta densità di materiale in accrescimento

Università degli studi di Milano Bicocca

BHB+45-45

METODI

SETUP

RISULTATI

CONCLUSIONI

DINAMICA GAS E CAMPO MAGNETICO

- BH inizialmente circondati da sovradensità di materia inclinate rispetto al piano orbitale. Dopo la fusione, il BH finale è circondato da una distribuzione **a disco** sottile e ad alta densità di materiale in accrescimento
- Il campo magnetico viene "trascinato" attorno a ciascun BH. La regione polare, dopo la fusione, è magneticamente dominata. L'intensità del campo magnetico è aumentata di un fattore 10^2

Università degli studi di Milano Bicocca

BHB+45-45

METODI

SETUP

RISULTATI

DINAMICA GAS E CAMPO MAGNETICO

- BH inizialmente circondati da sovradensità di materia inclinate rispetto al piano orbitale. Dopo la fusione, il BH finale è circondato da una distribuzione a disco sottile e ad alta densità di materiale in accrescimento
- Il campo magnetico viene "trascinato" attorno a ciascun BH. La regione polare, dopo la fusione, è magneticamente dominata. L'intensità del campo magnetico è aumentata di un fattore 10^2
- La velocità del gas è maggiore nelle aree magneticamente dominate. Il gas magnetizzato mostra turbolenze nelle regioni vicine ai BH.

Università degli studi di Milano Bicocca

BHB+45-45

DINAMICA GAS E CAMPO MAGNETICO

METODI

SETUP

RISULTATI

Università degli studi di Milano Bicocca

BHB+45-135

10/15

METODI

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

DINAMICA GAS E CAMPO MAGNETICO

• Inspiral: più turbolento, asimmetrico

BHB+45-135

10/15

METODI

SETUP

RISULTATI

CONCLUSIONI

DINAMICA GAS E CAMPO MAGNETICO

• Inspiral: più turbolento, asimmetrico

• **Post-merger:** analogo a BHB+45-45

Università degli studi di Milano Bicocca

BHB+45-135

10/15

METODI

SETUP

RISULTATI

CONCLUSIONI

DINAMICA GAS E CAMPO MAGNETICO

• Inspiral: più turbolento, asimmetrico

• **Post-merger:** analogo a BHB+45-45

Giacomazzo et al 2012

Time = 470.016 M

Università degli studi di Milano Bicocca

BHB+45-135

10/15

t = -1099 M

SETUP

METODI

RISULTATI

Università degli studi di Milano Bicocca

EMISSIONE EM

GRMHD Simulations of Spinning SMBHB

Sofia Maggioni

MASS ACCRETION RATE M: Meccanismi dissipativi scaldano il gas, il quale può emettere radiazione sotto forma di accretion luminosity:

 $L = \eta c^2 M$

METODI

INTRO

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

EMISSIONE EM

GRMHD Simulations of Spinning SMBHB

Sofia Maggioni

MASS ACCRETION RATE M: Meccanismi dissipativi scaldano il gas, il quale può emettere radiazione sotto forma di accretion luminosity:

 $L = \eta c^2 M$

METODI

INTRO

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

EMISSIONE EM

GRMHD Simulations of Spinning SMBHB

MASS ACCRETION RATE M: Meccanismi dissipativi scaldano il gas, il quale può emettere radiazione sotto forma di accretion luminosity:

 $L = \eta c^2 M$

METOD

INTRO

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

EMISSIONE EM

GRMHD Simulations of Spinning SMBHB

MASS ACCRETION RATE M: Meccanismi dissipativi scaldano il gas, il quale può emettere radiazione sotto forma di accretion luminosity:

 $L = \eta c^2 M$

METOD

INTRO

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

EMISSIONE EM

modulazioni quasi - periodiche

GRMHD Simulations of Spinning SMBHB

di Accretion Luminosity:

$$L = \eta c^2 \dot{M}$$

Università degli studi di Milano Bicocca

INTRO

METOD

SETUP

RISULTATI

CONCLUSIONI

MASS ACCRETION RATE M: Meccanismi dissipativi scaldano il gas, il quale può emettere radiazione sotto forma di Accretion Luminosity:

$$L = \eta c^2 \dot{M}$$

CONCLUSIONI

INTRO

METODI

SETUP

RISULTATI

Università degli studi di Milano Bicocca

EMISSIONE EM

GRMHD Simulations of Spinning SMBHB

Sofia Maggioni

MASS ACCRETION RATE M: Meccanismi dissipativi scaldano il gas, il quale può emettere radiazione sotto forma di Accretion Luminosity:

$$L = \eta c^2 \dot{M}$$

Università degli studi di Milano Bicocca

RISULTATI

CONCLUSIONI

METODI

INTRO

SETUP

EMISSIONE EM

GRMHD Simulations of Spinning SMBHB

Sofia Maggioni

MASS ACCRETION RATE M: Meccanismi dissipativi scaldano il gas, il quale può emettere radiazione sotto forma di Accretion Luminosity:

$$L = \eta c^2 \dot{M}$$

Università degli studi di Milano Bicocca

RISULTATI

CONCLUSIONI

METODI

INTRO

SETUP

EMISSIONE EM

GRMHD Simulations of Spinning SMBHB

Sofia Maggioni

MASS ACCRETION RATE M: Meccanismi dissipativi scaldano il gas, il quale può emettere radiazione sotto forma di Accretion Luminosity:

$$L = \eta c^2 \dot{M}$$

Università degli studi di Milano Bicocca

RISULTATI

CONCLUSIONI

METODI

INTRO

SETUP

EMISSIONE EM

GRMHD Simulations of Spinning SMBHB

Sofia Maggioni

MASS ACCRETION RATE M: Meccanismi dissipativi scaldano il gas, il quale può emettere radiazione sotto forma di Accretion Luminosity:

$$L = \eta c^2 \dot{M}$$

Università degli studi di Milano Bicocca

RISULTATI

CONCLUSIONI

METODI

INTRO

SETUP

EMISSIONE EM

Simmetrica

GRMHD Simulations of Spinning SMBHB

Sofia Maggioni

MASS ACCRETION RATE M: Meccanismi dissipativi scaldano il gas, il quale può emettere radiazione sotto forma di Accretion Luminosity:

$$L = \eta c^2 \dot{M}$$

Università degli studi di Milano Bicocca

RISULTATI

CONCLUSIONI

METODI

INTRO

SETUP

EMISSIONE EM

GRMHD Simulations of Spinning SMBHB

Sofia Maggioni

MASS ACCRETION RATE M: Meccanismi dissipativi scaldano il gas, il quale può emettere radiazione sotto forma di Accretion Luminosity:

 $L = \eta c^2 M$

POYNTING LUMINOSITY L_{Povn}:

l'interazione con l'ambiente magnetizzato fa si che parte dell'energia rotazionale del BH venga convertita in energia EM, nella forma di un flusso di Poynting collimato (meccanismo di Blandford Znajek)

Università degli studi di Milano Bicocca

INTRO

METODI

SETUP

RISULTATI

CONCLUSIONI

EMISSIONE EM

GRMHD Simulations of Spinning SMBHB

Sofia Maggioni

MASS ACCRETION RATE *M*: Meccanismi dissipativi scaldano il gas, il quale può emettere radiazione sotto forma di Accretion Luminosity:

 $L = \eta c^2 M$

POYNTING LUMINOSITY L_{Povn}:

l'interazione con l'ambiente magnetizzato fa si che parte dell'energia rotazionale del BH venga convertita in energia EM, nella forma di un flusso di Poynting collimato (meccanismo di Blandford Znajek)

Università degli studi di Milano Bicocca

INTRO

METODI

SETUP

RISULTATI

CONCLUSIONI

EMISSIONE EM

GRMHD Simulations of Spinning SMBHB

MASS ACCRETION RATE M: Meccanismi dissipativi scaldano il gas, il quale può emettere radiazione sotto forma di Accretion Luminosity:

 $L = \eta c^2 M$

→ POYNTING LUMINOSITY L_{Povn}:

l'interazione con l'ambiente magnetizzato fa si che parte dell'energia rotazionale del BH venga convertita in energia EM, nella forma di un flusso di Poynting collimato (meccanismo di Blandford Znajek)

Università degli studi di Milano Bicocca

INTRO

METODI

SETUP

RISULTATI

CONCLUSIONI

EMISSIONE EM

Poynting flux L_{Poyn} BHB+45-45: *L*_{Poyn, z} BHB+45-135: *L*_{Poyn, z} 40 35 30 \sum_{20}^{25} **N** 15 10 5 -1010 -100 10 [M] [M] X

GRMHD Simulations of Spinning SMBHB

EMISSIONE MULTI-MESSENGER

METODI

INTRO

RISULTATI

SETUP

CONCLUSIONI

GRMHD Simulations of Spinning SMBHB

Sofia Maggioni

EMISSIONE MULTI-MESSENGER

METODI

INTRO

RISULTATI

SETUP

CONCLUSIONI

GRMHD Simulations of Spinning SMBHB

Sofia Maggioni

EMISSIONE MULTI-MESSENGER

METODI

INTRO

RISULTATI

SETUP

CONCLUSIONI

GRMHD Simulations of Spinning SMBHB

INTRO

METODI

SETUP

RISULTATI

CONCLUSIONI

EMISSIONE MULTI-MESSENGER

GRMHD Simulations of Spinning SMBHB

INTRO

METODI

SETUP

RISULTATI

CONCLUSIONI

EMISSIONE MULTI-MESSENGER

GRMHD Simulations of Spinning SMBHB

METODI

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

 \bullet

CONCLUSIONI

Risultati consistenti con letteratura \rightarrow dinamica del gas influenzata da campo magnetico.

GRMHD Simulations of Spinning SMBHB

METODI

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

- **Risultati consistenti con letteratura** \rightarrow dinamica del gas influenzata da campo magnetico.
- Spin significative durante l'inspiral \rightarrow influenza dinamica dei BH causando precessione e inclinando le regioni di sovradensità.

METODI

SETUP

RISULTAT

CONCLUSIONI

- **Risultati consistenti con letteratura** \rightarrow dinamica del gas influenzata da campo magnetico.
- Spin significative durante l'inspiral \rightarrow influenza dinamica dei BH causando precessione e inclinando le regioni di sovradensità.
- **Distribuzione gas e campo magnetico post merger** \rightarrow stessa di configurazioni senza spin o con spin allineato a momento angolare orbitale

Università degli studi di Milano Bicocca

METODI

SETUP

RISULTA

CONCLUSIONI

- **Risultati consistenti con letteratura** \rightarrow dinamica del gas influenzata da campo magnetico.
- Spin significative durante l'inspiral \rightarrow influenza dinamica dei BH causando precessione e inclinando le regioni di sovradensità.
- **Distribuzione gas e campo magnetico post merger** \rightarrow stessa di configurazioni senza spin o con spin allineato a momento angolare orbitale
- **Emissione EM** \rightarrow legata ad inclinazione dello spin, mostra **modulazione coerente con l'emissione** gravitazionale. Possibile collegamento tra un segnale gravitazionale e un segnale EM.

Università degli studi di Milano Bicocca

METODI

SETUP

RISULTAT

CONCLUSIONI

- **Risultati consistenti con letteratura** \rightarrow dinamica del gas influenzata da campo magnetico.
- Spin significative durante l'inspiral \rightarrow influenza dinamica dei BH causando precessione e inclinando le regioni di sovradensità.
- **Distribuzione gas e campo magnetico post merger** \rightarrow stessa di configurazioni senza spin o con spin allineato a momento angolare orbitale
- **Emissione EM** \rightarrow legata ad inclinazione dello spin, mostra **modulazione coerente con l'emissione** gravitazionale. Possibile collegamento tra un segnale gravitazionale e un segnale EM.
- Articolo "Misaligned Spinning Binary Black Hole Mergers in Hot Magnetized Plasma" (Cattorini, Maggioni, Giacomazzo, Haardt, Colpi e Covino, 2022, Astrophysical Journal Letter)

Università degli studi di Milano Bicocca

METODI

SETUP

RISULTAT

CONCLUSIONI

- **Risultati consistenti con letteratura** \rightarrow dinamica del gas influenzata da campo magnetico.
- Spin significative durante l'inspiral \rightarrow influenza dinamica dei BH causando precessione e inclinando le regioni di sovradensità.
- **Distribuzione gas e campo magnetico post merger** \rightarrow stessa di configurazioni senza spin o con spin allineato a momento angolare orbitale
- **Emissione EM** \rightarrow legata ad inclinazione dello spin, mostra **modulazione coerente con l'emissione** gravitazionale. Possibile collegamento tra un segnale gravitazionale e un segnale EM.
- Articolo "Misaligned Spinning Binary Black Hole Mergers in Hot Magnetized Plasma" (Cattorini, Maggioni, Giacomazzo, Haardt, Colpi e Covino, 2022, Astrophysical Journal Letter)

ULTERIORI SVILUPPI

Università degli studi di Milano Bicocca

METODI

SETUP

RISULTAT

CONCLUSIONI

- Spin significative durante l'inspiral \rightarrow influenza dinamica dei BH causando precessione e inclinando le regioni di sovradensità.
- **Distribuzione gas e campo magnetico post merger** \rightarrow stessa di configurazioni senza spin o con spin allineato a momento angolare orbitale
- **Emissione EM** \rightarrow legata ad inclinazione dello spin, mostra **modulazione coerente con l'emissione** gravitazionale. Possibile collegamento tra un segnale gravitazionale e un segnale EM.
- Articolo "Misaligned Spinning Binary Black Hole Mergers in Hot Magnetized Plasma" (Cattorini, Maggioni, Giacomazzo, Haardt, Colpi e Covino, 2022, Astrophysical Journal Letter)

ULTERIORI SVILUPPI

Condizioni iniziali \rightarrow coprire una spazio dei parametri più ampio

Università degli studi di Milano Bicocca

CONCLUSIONI

Risultati consistenti con letteratura \rightarrow dinamica del gas influenzata da campo magnetico.

METODI

SETUP

RISULTATI

CONCLUSIONI

- Spin significative durante l'inspiral \rightarrow influenza dinamica dei BH causando precessione e inclinando le regioni di sovradensità.
- **Distribuzione gas e campo magnetico post merger** \rightarrow stessa di configurazioni senza spin o con \bullet spin allineato a momento angolare orbitale
- **Emissione EM** \rightarrow legata ad inclinazione dello spin, mostra **modulazione coerente con l'emissione** gravitazionale. Possibile collegamento tra un segnale gravitazionale e un segnale EM.
- Articolo "Misaligned Spinning Binary Black Hole Mergers in Hot Magnetized Plasma" (Cattorini, Maggioni, Giacomazzo, Haardt, Colpi e Covino, 2022, Astrophysical Journal Letter)

ULTERIORI SVILUPPI

- **Condizioni iniziali** \rightarrow coprire una spazio dei parametri più ampio
- **Distribuzione del gas** \rightarrow Considerare distribuzioni più realistiche (es. disco circumbinario)

Università degli studi di Milano Bicocca

CONCLUSIONI

Risultati consistenti con letteratura \rightarrow dinamica del gas influenzata da campo magnetico.

METODI

SETUP

RISULTATI

CONCLUSIONI

- Risultati consistenti con letteratura \rightarrow dinamica del gas influenzata da campo magnetico.
- Spin significativo durante l'inspiral \rightarrow influenza dinamica dei BH causando precessione e inclinando le regioni di sovradensità.
- Distribuzione gas e campo magnetico post merger \rightarrow stessa di configurazioni senza spin o con spin allineato a momento angolare orbitale
- Emissione EM \rightarrow legata ad inclinazione dello spin, mostra modulazione coerente con l'emissione gravitazionale. Possibile collegamento tra un segnale gravitazionale e un segnale EM.
- Articolo "Misaligned Spinning Binary Black Hole Mergers in Hot Magnetized Plasma" (Cattorini, Maggioni, Giacomazzo, Haardt, Colpi e Covino, 2022, Astrophysical Journal Letter)

ULTERIORI SVILUPPI

- Condizioni iniziali \rightarrow coprire una spazio dei parametri più ampio
- **Distribuzione del gas** \rightarrow Considerare distribuzioni più realistiche (es. disco circumbinario)
- Tenere conto dell'emissione di radiazioni da parte del plasma \rightarrow determinerebbe l'entità della accretion luminosity e la forma degli spettri.

Università degli studi di Milano Bicocca

METODI

SETUP

RISULTATI

CONCLUSIONI

- Spin significativo durante l'inspiral \rightarrow influenza dinamica dei BH causando precessione e inclinando le regioni di sovradensità.
- **Distribuzione gas e campo magnetico post merger** \rightarrow stessa di configurazioni senza spin o con \bullet spin allineato a momento angolare orbitale
- **Emissione EM** \rightarrow legata ad inclinazione dello spin, mostra **modulazione coerente con l'emissione** gravitazionale. Possibile collegamento tra un segnale gravitazionale e un segnale EM.
- Articolo "Misaligned Spinning Binary Black Hole Mergers in Hot Magnetized Plasma" (Cattorini, Maggioni, Giacomazzo, Haardt, Colpi e Covino, 2022, Astrophysical Journal Letter)

ULTERIORI SVILUPPI

- **Condizioni iniziali** \rightarrow coprire una spazio dei parametri più ampio
- **Distribuzione del gas** \rightarrow Considerare distribuzioni più realistiche (es. disco circumbinario)
- Tenere conto dell'emissione di radiazioni da parte del plasma \rightarrow determinerebbe l'entità della Accretion Luminosity e la forma degli spettri.

Università degli studi di Milano Bicocca

CONCLUSIONI

Risultati consistenti con letteratura \rightarrow dinamica del gas influenzata da campo magnetico.

GRAZIE PER L'ATTENZIONE

BICOCCA

METODI

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

ALLEGATI

GRMHD Simulations of Spinning SMBHB

METODI

SETUP

RISULTATI

CONCLUSIONI

Università degli studi di Milano Bicocca

FATTORI DI CONVERSIONE

$[M] = 2 \cdot 10^{39} M_6 g$ $[L] = G/c^2[M] = 1.48 \cdot 10^{11} M_6 \text{cm}$ $[T] = G/c^3[M] = 4.94M_6s$

- $M = 2 \times 10^6 M_{\odot}$ $\rho = 10^{-11} \text{gcm}^{-3}$ $t_{merg} \sim 6h$
- $M_{\rm cgs} = 6.6 \times 10^{21} M_{\rm C.u.} \rho_{-11} M_6^2 {\rm gs}^{-1}$ $L_0 \equiv 2.347 \times 10^{43} \rho_{-11} M_6^2 \text{ergs}^{-1}$

METODI Э

SETUP

INTRO

RISULTATI

CONCLUSIONI

GRMHD Simulations of Spinning SMBHB

INTRO

METODI

SETUP

RISULTATI

CONCLUSIONI

BH FINALE

GRMHD Simulations of Spinning SMBHB

