

The Galileo Galilei Institute for Theoretical Physics

A phenomenological optical potential for the $n^{-12}C$ scattering

Post-Doc Day GGI

16 December 2022

Imane MOUMENE **Under the supervison of: Prof. Angela Bonaccorso**

Istituto Nazionale di Fisica Nucleare

oMotivation

oBasic equations of the model:

2.Nucleus-nucleus cross section

oResults

3. $n^{-12}C$ total cross sections

4.nucleus-¹²*C* reaction cross sections

oPerspective

oConclusion

1. Optical model potential for the n**-**¹²C **scattering**

Motivation

- o Breakup reaction is one of the main tools for the study of exotic nuclei.
- The single-folded nucleus- ${}^{9}Be$ imaginary optical potential is more accurate than the double-folded optical potential in reproducing the reaction cross section. • Why ${}^{12}C$???
 - \checkmark Most used target in the experiments. \checkmark Cluster physics (3 α cluster) \bigstar Astrophysics (¹²C+¹²C fusion) ☆ Nuclear reaction

▶In this work

E = 500 MeV.

potential.

via a single folding versus a double folding optical potential.

• A phenomenological optical model potential for the $n^{-12}C$ is introduced up to

A comparison of calculated neutron-target total reaction cross sections with the eikonal formalism through the phenomenological potential versus folded

• Comparison of calculated reaction cross sections of projectile on a ^{12}C target

Basic equations of the model Optical model potential for the n-¹²C scattering

• The $n^{-12}C$ phenomenological (AB) potential :

$$U_{AB}(r, E) = -\begin{bmatrix} V_{WS}(r, E) + \delta V(r, E) + iW_{AB}(r, E) \end{bmatrix}.$$
(1)
n-T real part: WS
The imaginary part
$$W_{AB}(r) = W^{vol}f(r, R^{I}, a^{I}) - 4a^{I}W^{sur}\frac{d}{dr}f(r, R^{I}, a^{I})$$
The correction term
Fitting data

Single folded n- ^{12}C potential:

 C.A. Bertulani, C. De Conti, Phys. Rev. C 81 (2010) 064603.

 Abu-Ibrahim, et al.PHYSICAL REVIEW C 77, 034607 (2008)

Energy-dependent nucleon-nucleon (nn) cross section

$$f(\mathbf{r}) = -\frac{1}{2}\hbar v(\sigma_{nn} - i\alpha_{nn})\rho_T(\mathbf{r})$$

Target Density: HFB

(2)

Basic equations of the model Optical model potential for the n-¹²*C* scattering

Basic equations of the model

The nucleus-nucleus scattering

The eikonal reaction cross section:

Where $\sigma_R = 2\pi \int_0^{\infty} S_{PT}(r)$

• The imaginary part of the eikonal phase shift: $\chi_I(\mathbf{b}) = -$

Single folding potential: $W_{s.f.}^{PT}(\mathbf{r}) = \int d\mathbf{b}_{1} W^{nT} \left(\mathbf{b}_{1} - \mathbf{b}, z \right) \int dz_{1} \rho_{P} \left(\mathbf{b}_{1}, z_{1} \right) \quad \textbf{(5.1)}$

> **n**+¹²*C* **phenomenological nucleon-target potential (AB)**

(Eq.(1))

• G.R. Satchler, W.G. Love, Phys. Rep. 55 (1979) 183.

$$bdb\left(1 - \left|S_{PT}(\mathbf{b})\right|^{2}\right)$$
(3)
(b)
$$\int_{-\infty}^{2} e^{2\chi_{I}(b)}$$
(4)

$$\frac{1}{\hbar v} \int dz W^{PT}(\mathbf{b}, z)$$
(5)

Double folding potential:

$$W_{d.f.}^{PT}(\mathbf{r}) = -\frac{1}{2}\hbar v \sigma_{nn} \int d\mathbf{b}_1 \rho_T \left(\mathbf{b}_1 - \mathbf{b}, z\right) \int dz_1 \rho_P \left(\mathbf{b}_1, z_1\right)$$

Densities: HFB code

Results: $n^{-12}C$ total cross section

Results: $n^{-12}C$ total cross section

	Densitties	HFB	HF	Wiringa	Narvatil	
Eq.(2)	$\sigma^{\rho}_{s.f.}[mb]$	273	270	273	262	
Eq.(1)	$\sigma^{AB}_{s.f.}[mb]$	257				
	$\sigma_{exp}[mb]$	254				

E=300 MeV

Results: $n^{-12}C$ total cross section

Target Densities

E=300 MeV

Results: nucleus- ${}^{12}C$ cross section

The ${}^{12}C + {}^{12}C$ scattering

$E_{inc}(MeV)$	model	r_s [fm]	$\sigma_{theo} \; [\mathrm{mb}]$	σ_{exp} [mb]
200	s.f.	1.20	947	864
	d.f.	1.11	847	
250	s.f.	1.18	935	873
	d.f.	1.11	835	
300	$\mathrm{s.f}$	1.18	936	858
	d.f.	1.11	832	

Results: nucleus- ${}^{12}C$ cross section

The ${}^{12}C + {}^{12}C$ scattering

$E_{inc}(MeV)$	model	$r_s[\mathrm{fm}]$	$\sigma_{theo} \; [\mathrm{mb}]$	σ_{exp} [mb]
200	s.f.	1.13	858	864
	d.f.	1.11	847	
250	s.f.	1.11	846	873
	d.f.	1.11	835	
300	$\mathrm{s.f}$	1.11	848	858
	d.f.	1.11	832	

r=1.2

Strong absorption radius

The strong absorption radius:

$$|S_{PT}(R_S)|^2 = \frac{1}{2}$$

With

$$R_{s} = r_{s} \left(E_{inc} \right) \left(A_{P}^{1/3} + A_{T}^{1/3} \right)$$

 r_{s} : Determine the range of impact parameters for which surface reacting dominate the core-target interaction from regions in which the strop absorption regime applies.

Reminder:

$$\sigma_R = 2\pi \int_0^\infty bdb \left(1 - \left| S_{PT}(\mathbf{b}) \right|^2 \right) \\ \left| S_{PT}(\mathbf{b}) \right|^2 = e^{2\chi_I(b)}$$

Results: nucleus- ${}^{12}C$ cross section

The ${}^{20}Ne + {}^{12}C$ scattering

$E_{inc}(MeV)$	model	$r_s[\mathrm{fm}]$	$\sigma_{theo} \; [\mathrm{mb}]$	$\sigma_{exp} \; [\mathrm{mb}]$
100	s.f.	1.27	1327	1161
	d.f.	1.21	1206	
200	s.f.	1.21	1193	1123
	d.f.	1.15	1079	
300	s.f.	1.21	1181	1168
	d.f.	1.13	1062	

Conclusion

- reproduction of the total cross sections.
- describing the reaction cross sections for nucleus-nucleus scattering.

The optical potential for n- ${}^{12}C$ is necessary in breakup models to calculate the S-matrices for the core-target and nucleon target scattering.

The constructed phenomenological optical potential for the n- ^{12}C scattering provides an excellent

At higher energies, the double folding model is more reliable than the single folding model in

Perspective: Breakup reactions

Breakup is a dissociation of the projectile into two or more fragments caused by the interaction with the target nucleus.

- Exclusive breakup: The breakup particle is measured in coincidence with the core origin
- Inclusive Breakup: Only the core is measured

a+A \longrightarrow **b+B*** (B* any possible configuration of x+A)

Elastic Breakup reaction (EBU)

Inelastic breakup reaction (NEB)

Perspective: Breakup reactions

The Breakup reaction cross sections:

$$\sigma_{\rm reac} = \sigma_{\rm EBU} + \sigma_{\rm NE}$$

Elastic Breakup (Diffraction)

$$\sigma_{EBU} = \int d^2 \mathbf{b}_c \left| S_{ct} \left(\mathbf{b}_c \right) \right|^2 \int d^2 \mathbf{r}_{\perp} \left| 1 \right|^2$$

Non Elastic Breakup (Stripping)

$$\sigma_{NEB} = \int d^2 \mathbf{b}_c \left| S_{ct} \left(\mathbf{b}_c \right) \right|^2 \int d^2 \mathbf{r}_{\perp} \left(1 \right)$$

EB

$1 - S_n\left(\mathbf{b}_n\right) \Big|^2 \left| \tilde{\phi}_0\left(\mathbf{r}_{\perp}\right) \right|^2$

$$\left|S_{n}\left(\mathbf{b}_{n}\right)\right|^{2}\left|\tilde{\phi}_{0}\left(\mathbf{r}_{\perp}\right)\right|^{2}$$

