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Outline of Lectures

I Lecture I: Basics of Monte Carlo methods, the event
generator strategy, matrix elements, LO/NLO, . . .

I Lecture II: Parton showers, initial/final state,
(matching/merging), hadronization, decays. . . .

I Lecture III: Minimum bias, multi-parton interactions,
pile-up, summary of general purpose event generators, . . .

I Lecture IV: Protons vs. heavy ions, Glauber calculations,
initial/final-state interactions, . . .

Buckley et al. (MCnet collaboration), Phys. Rep. 504 (2011) 145.
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Outline of Lecture II

Final-State Showers
Angular Ordering
Evolution Variables

Initial-State Showers
Parton densities
Backwards Evolution

The Veto Algorithm

Hadronization
Local Parton–Hadron Duality
Cluster Hadronization
String Hadronization

Particle Decays
Standard Hadronic Decays
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Tutorials/Slides

Tutorials:
% git clone https://gitlab.com/hepcedar/mcnet-schools/zakopane-2022.git
% git clone https://gitlab.com/Pythia8/tutorials.git

Slides
http://home.thep.lu.se/ leif/talks/GGI23-1.pdf
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The purpose of parton showers is to generate real exclusive
events on parton level down to a very low (almost
non-perutbative) jet resolution scale µ.

Starting from an initial hard scattering eg. e+e− → qq̄ or
qq̄→ Z 0, we basically need

σ+0 = σ0(1 + C01αs + C02α
2
s + C03α

3
s + . . .)

σ+1 = σ0(C11αs + C12α
2
s + C13α

3
s + . . .)

σ+2 = σ0(C22α
2
s + C23α

3
s + C24α

4
s + . . .)

...

Tree-level generators only gives us inclusive events.

NLO generators only gives us one extra parton.
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The tree-level matrix element for
an n-parton state can be
approximated by a product of
splitting functions corresponding to
a sequence of one-parton
emissions from the zeroth order
state.
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We can then order the emissions acording to some resolution
scale, ρ, so that ρ1 � ρ2 � ρ3 � . . .
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We have the standard DGLAP splitting kernels

Pq→qg(ρ, z)dρdz =
αs

2π
dz

dρ
ρ

CF
1 + z2

1− z

Pg→gg(ρ, z)dρdz =
αs

2π
dz

dρ
ρ

NC
(1− z(1− z))2

z(1− z)

Pg→qq̄(ρ, z)dρdz =
αs

2π
dz

dρ
ρ

TR (z2 + (1− z)2)

where ρ is the squared invariant mass or transverse
momentum, and z is the energy (or light-cone) fraction taken by
one of the daugthers. (We ignore the φ-dependence here).

Where is the +-description: 1/(1− z)+ ?
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We now to make the events exclusive. This is done by saying
that the first emission at some ρ1 is given by the splitting kernel
multiplied by the probability that there has been no emission
above that scale.

In a given interval dρ we have the no-emission probability

1− dρ
∑
bc

∫
dz Pa→bc(z, ρ)

Integrating from ρ1 up to some maximum scale, ρ0 we get

∆(ρ0, ρ1) = exp

(
−
∑
bc

∫ ρ0

ρ1

dρ
∫

dz Pa→bc(z, ρ)

)

(a.k.a. Sudakov form factor)
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In the same way we get the probability to have the nth emission
at some scale ρn

P(ρn) =
∑
abc

∫
dz Pa→bc(ρn, z)×

exp

(
−
∑
abc

∫ ρn−1

ρn

dρ′
∫

dz ′ Pa→bc(z ′, ρ′)

)
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Integrating we get schematically

σ+0 = σ0∆S0 = σ0(1 + CPS
01αs + CPS

02α
2
s + . . .)

σ+1 = σ0CPS
11αs∆S1 = σ0(CPS

11αs + CPS
12α

2
s + CPS

13α
3
s + . . .)

σ+2 = σ0CPS
22α

2
s ∆S2 = σ0(CPS

22α
2
s + CPS

23α
3
s + CPS

24α
4
s + . . .)

...

We still need a cutoff, ρcut, and the coefficients CPS
nn diverges as

log2n ρmax/ρcut

but the no-emission probabilities corresponds to the an
approximate resummation of all virtual terms and makes things
finite, and we can use ρcut ∼ 1 GeV.
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The divergencies comes from the soft and collinear poles in the
splitting kernels, eg.∫ ρ0

ρc

dρ
∫

dz Pq→qg(ρ, z) ∼
∫ ρ0

ρc

αsdρ
ρ

ln(ρ0/ρ) ∼ αs ln2(ρ0/ρc)

Parton showers systematically resums all orders of
αn

s ln2n(ρ0/ρc) which is the main part of the higher order
corrections.
(Also important terms ∼ αn

s ln2n−1(ρ0/ρc) are resummed.)

However if there is no strong ordering, ρ1 � ρ2 � ρ3 � . . ., the
PS approximation breaks down

Parton showers cannot model several hard jets very well.
Especially the correlations between hard jets are poorly
described.
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Angular Ordering

The splitting probabilities means that coherence effects are not
taken into account

2

+

+

22

Most coherence effects can be taken into account by
angular ordering.

Some angular correlations can also be taken into account by
adjusting the azimuthal angles after a shower is generated.
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Coherence effects can be included directly, by considering
gluon radiation from colour dipoles between colour-connected
partons.

=

2

+

2

=

2

+

2

Rather than iterating 1→ 2 parton splitting we iterate 2→ 3
splittings. Each emission from a dipole will create two new
dipoles, each of which may continue radiating.

This was first implemented in the ARIADNE generator.
Recently similar schemes have been implemented in
PYTHIA, HERWIG, SHERPA and VINCIA.
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Evolution Variables

How do we choose the evolution variable, ρ?

The most natural choice is to choose a variable which isolates
both the soft and collinear poles in the splitting kernel. This is
the case for ρ = p2

⊥ as used in eg. ARIADNE.

In old versions of PYTHIA and SHERPA the evolution variable is
the virtuality Q2 which in principle is fine except that αs(p2

⊥)
may diverge for any given Q2. Also angular ordering needs to
be imposed in separately.

In HERWIG the ordering is in angle, which ensures angular
ordering, but does not isolate the soft pole, and an additional
cutoff is needed.
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Transverse
momentum
ρ = p2

⊥

Virtuality
ρ = Q2 ∼ p2

⊥
z(1−z)

Angle
ρ ∼ E2θ2 ∼ p2

⊥
z2(1−z)2

ln p⊥

y

ln p⊥

y

ln p⊥

y
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Final-state parton showers did really well at LEP
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Initial-State Showers

For incoming hadrons, we need to consider the evolution of the
parton densities. Using collinear factorization and DGLAP
evolution we have (with t = log k2

⊥/Λ2)

dfb(x , t)
dt

=
∑

a

∫
dx ′

x ′
fa(x ′, t)

αs

2π
Pa→b

( x
x ′
)

We can interpret this as during a small increase dt there is a
probability for parton a with momentum fraction x ′ to become
resolved into parton b at x = zx ′ and another parton c at
x ′ − x = (1− z)x ′.

Event Generators II 17 Leif Lönnblad Lund University
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In a backward evolution scenario we start out with the hard
sub-process at some scale tmax

σ0 ∝ σ̂ab→X fa(xa, tmax)fb(xb, tmax)

and we get the relative probability for the parton a to be
unresolved into parton c during a decrease in scale dt

dPa =
dfa(xa, t)
fa(xa, t)

= |dt |
∑

c

∫
dx ′

x ′
fc(x ′, t)
fa(xa, t)

αs

2π
Pc→a

(xa

x ′
)

Summing up the cumulative effect of many small changes dt ,
the probability for no radiation exponentiates and we get a
no-emission probabilities

∆S+a (xa, tmax, t) = exp

{
−
∫ tmax

t
dt ′
∑

c

∫
dx ′

x ′
fc(x ′, t ′)
fa(xa, t ′)

αs(t ′)
2π

Pc→a

(xa

x ′
)}
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This now gives us the probability for the first backwards
initial-state splitting

dPca =
αs

2π
Pac(z)

fc(xa/z, t)
fa(xa, t)

dt
dz
z
×∆S+a(xa, tmax, t)

In a hadronic collision we first generate the hard scattering,
then evolve the incoming partons backward to lower scales.

This is like undoing the evolution of the PDFs

Then alow for a final-state shower from all partons from the
hard scattering and from the initial-state shower.
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Questions!
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How do we generate a parton shower emission?

P(t) = P(t) exp

(
−
∫ tmax

t
dt ′P(t ′)

)
P(t) is a probability distribution, so we can do the standard
transformation method

1− r =

∫ 1

r
dt pR(t) =

∫ tmax

t
dtP(t) = 1− exp

(
−
∫ tmax

t
dt ′P(t ′)

)
So if P has a simple primitive function F we get

t = F−1(F (tmax)− ln r)

but P is never simple. . .
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Assume g is a simple function with a simple primitive function G
such that g(t) ≥ P(t), ∀t . Then we can use the following
algorithm

I start with t0 = tmax;
I select ti = G−1(G(ti−1)− ln R),
I compare a (new) R with the ratio P(ti)/g(ti); if

P(ti)/g(ti) ≤ R, then return to point 2 for a new try,
i → i + 1;

I otherwise ti is retained as final answer.

If ti < tcut, there is no emission and the shower is done.

Event Generators II 23 Leif Lönnblad Lund University
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Consider the various ways in which one can select a specific
scale t . The probability that the first try works, t = t1, i.e. that no
intermediate t values need be rejected, is given by

p0(t) = e−
∫ tmax

t g(t′) dt′ g(t)
P(t)
g(t)

= P(t)e−
∫ tmax

t g(t′) dt′

The probability that we have thrown away one intermediate
value t1

p1(t) =

∫ tmax

t
dt1e−

∫ tmax
t1

g(t′) dt′g(t1)

[
1− P(t1)

g(t1)

]
×

×e−
∫ t1

t g(t′) dt′g(t)
P(t)
g(t)
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p1(t) = p0(t)
∫ tmax

t
dt1 [g(t1)− P(t1)]

Similarly we get

p2(t) = p0(t)
∫ tmax

t
dt1 [g(t1)− P(t1)]

∫ t1

t
dt2 [g(t2)− P(t2)]

= p0(t)
1
2

(∫ tmax

t
[g(t ′)− P(t ′)] dt ′

)2

ptot (t) =
∞∑

n=0

pn(t) = p0(t)
∞∑

n=0

1
n!

(∫ tmax

t
[g(t ′)− P(t ′)] dt ′

)n

= P(t)e−
∫ tmax

t g(t′) dt′e
∫ tmax

t [g(t′)−P(t′)]dt′

= P(t)e−
∫ tmax

t P(t′) dt′
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Also if several things may happen, P1(t), P2(t), P3(t), . . . the
probability of i happening first is

Pi(t)×
∏

j

e−
∫ tmax

t Pj (t ′) dt ′

Simply generate a scale for each i according to

Pi(t)× e−
∫ tmax

t Pi (t ′) dt ′

and pick the process with the largest scale.

Event Generators II 26 Leif Lönnblad Lund University
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Hadronization

Now that we are able to generate partons, both hard, soft,
collinear and from multiple scatterings, we need to convert
them to hadrons.

This is a non-perturbative process, and all we can do is to
construct models, and try to include as much as possible of
what we know about non-perturbative QCD.

Event Generators II 27 Leif Lönnblad Lund University
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Local Parton–Hadron Duality

An analytic approach ignoring non-perturbative difficulties.

Run shower down to scales ∼ ΛQCD ∼ mπ.

Each parton corresponds to one (or 1.something ) hadron.

Can describe eg. momentum spectra surprisingly well.

Can be used to calculate power corrections to NLO predictions
for event shapes,

I 〈1− T 〉 = c1αs(Ecm) + c2α
2
s (Ecm) + cp/Ecm

Cannot generate real events with this though.
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Cluster Hadronization

Close to local parton–hadron duality in spirit. Based on the idea
of Preconfinement:

The pattern of perturbative gluon radiation is such that gluons
are emitted mainly between colour-connected partons. If we
emit enough gluons the colour-dipoles will be small.

After the shower, force g → qq̄
splittings giving low-mass,
colour-singlet clusters

Decay clusters isotropically into
two hadrons according to phase
space weight
∼ (2s1 + 1)(s2 + 1)(2p/m)
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Cluster hadronization is very simple and clean.
Maybe too simple. . .

I Cluster masses can be large (finite
probability for no gluon emission):
Introduce string-like decays of heavy
clusters into lighter ones
(with special treatment of proton
remnant).

I In clusters including a heavy quark
(or a di-quark) the heavy meson (or
baryon) should go in this direction:
introduce anisotropic cluster decays.

I . . .
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String Hadronization

What do we know about non-perturbative QCD?

0

V
(r
)

r

Coulomb
linear
total

I At small distances we
have a Coulomb-like
asymptotically free
theory

I At larger distances we
have a linear confining
potential

For large distances, the field lines are compressed to vortex
lines like the magnetic field in a superconductor

1+1-dimensional object ∼ a massless relativistic string

Event Generators II 31 Leif Lönnblad Lund University



The Veto Algorithmˆ
Hadronization

Particle Decays

Local Parton–Hadron Duality
Cluster Hadronization
String Hadronization

As a qq̄-pair moves apart, they are slowed down and more and
more energy is stored in the string.

If the energy is small, the qq̄-pair will eventually stop and move
together again. We get a “YoYo”-state which we interpret as a
meson.

If high enough energy, the string will break as the energy in the
string is large enough to create a new qq̄-pair.

The energy in the string is given by the string tension

κ =

∣∣∣∣dE
dz

∣∣∣∣ =

∣∣∣∣dE
dt

∣∣∣∣ =

∣∣∣∣dpz

dz

∣∣∣∣ =

∣∣∣∣dpz

dt

∣∣∣∣ ∼ 1GeV/fm
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The quarks obtain a mass and a transverse momentum in the
breakup through a tunneling mechanism

P ∝ e−
πm2

q⊥
κ = e−

πm2
q
κ e−

πp2
⊥
κ

Gives a natural supression of heavy quarks
dd̄ : uū : ss̄ : cc̄ ∼ 1 : 1 : 0.3 : 10−11
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The break-ups starts in the middle and spreads outward, but
they are causually disconnected. So we should be able to start
anywhere.

In particular we could start from either end and go inwards.

Requiring left-right symmetry we obtain a unique fragmentation
function for a hadron taking a fraction z of the energy of a string
end in a breakup

p(z) ∝ (1− z)a

z
e−bm2

⊥/z

The Lund symmetric fragmentation function.
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Gluons complicates the picture somewhat. They can be
interpreted as a “kinks” on the string carrying energy and
momentum

g(b̄r)

q(b) q̄(r̄)

The gluon carries twice the charge (NC/CF → 2 for NC →∞)

A bit tricky to go around the gluon corners, but we get a
consistent picture of the energy–momentum structure of an
event with no extra parameters.
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The Lund string model predicted the string effect measured by
Jade.

In a three-jet event there are more energy between the g− q
and g− q̄ jets than between q− q̄.
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For the flavour structure the picture becomes somewhat messy.

Baryons can be produced by having qq− q̄q̄-breakups (diquarks
behaves like an anti-colour), but more complicated mechanisms
(“popcorn”) needed to describe baryon correlations.

We also need special suppression of strange mesons, baryons.
Parameters for different spin states, . . .

There are lots of parameters i PYTHIA.
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Strings vs. Clusters

Model string (PYTHIA) cluster (HERWIG)
energy–momentum powerful, predictive simple, (unpredictive)
picture few parameters more parameters

flavour composition messy, unpredictive simple,
reasonably predictive

many parameters few parameters

There will always be parameters. . .

Most hadronization parameters have been severely constrained
by LEP data. Does this mean we can use the models directly at
LHC?
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Jet universality

There may be problems with flavour and meson/baryon issues.

Also at LEP there were mainly quark jets, gluon jets are softer
and not very well measured.

At LHC there will be very hard gluon jets.

We need to check that jet universality works.

Event Generators II 39 Leif Lönnblad Lund University



The Veto Algorithmˆ
Hadronization

Particle Decays

Local Parton–Hadron Duality
Cluster Hadronization
String Hadronization

Event Generators II 40 Leif Lönnblad Lund University



The Veto Algorithmˆ
Hadronization

Particle Decays
Standard Hadronic Decays

The PDG decay tables

The Particle Data Group has machine-readable tables of decay
modes.

But they are not complete and cannot be used directly in an
event generator.

I Branching ratios need to add up to unity.
I Some decays are listed as B?0 → µ+νµX .
I . . .

Most decays need to be coded by hand
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Particle Decays

Not the most sexy part of the event generators,
but still essential.

B?0 → γ B0

↪→ B
0 → e−ν̄e D?+

↪→ π+ D0

↪→ K− ρ+

↪→ π+ π0

↪→ e+e−γ

∫ 2
9
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Particle Decays

Not the most sexy part of the event generators,
but still essential.

B?0 → γ B0

↪→ B
0 → e−ν̄e D?+

↪→ π+ D0

↪→ K− ρ+

↪→ π+ π0

↪→ e+e−γ

∫ 2
9 EM decays
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Particle Decays

Not the most sexy part of the event generators,
but still essential.

B?0 → γ B0

↪→ B
0 → e−ν̄e D?+

↪→ π+ D0

↪→ K− ρ+

↪→ π+ π0

↪→ e+e−γ

∫ 2
9 Weak mixing
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Particle Decays

Not the most sexy part of the event generators,
but still essential.

B?0 → γ B0

↪→ B
0 → e−ν̄e D?+

↪→ π+ D0

↪→ K− ρ+

↪→ π+ π0

↪→ e+e−γ

∫ 2
9 Weak decay, displaced vertex, |M|2 ∝ (pB̄pν̄)(pepD?)

Event Generators II 42 Leif Lönnblad Lund University



The Veto Algorithmˆ
Hadronization

Particle Decays
Standard Hadronic Decays

Particle Decays

Not the most sexy part of the event generators,
but still essential.

B?0 → γ B0

↪→ B
0 → e−ν̄e D?+

↪→ π+ D0

↪→ K− ρ+

↪→ π+ π0

↪→ e+e−γ

∫ 2
9 Strong decay
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Particle Decays

Not the most sexy part of the event generators,
but still essential.

B?0 → γ B0

↪→ B
0 → e−ν̄e D?+

↪→ π+ D0

↪→ K− ρ+

↪→ π+ π0

↪→ e+e−γ

∫ 2
9 Weak decay, displaced vertex, ρ mass smeared
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Particle Decays

Not the most sexy part of the event generators,
but still essential.

B?0 → γ B0

↪→ B
0 → e−ν̄e D?+

↪→ π+ D0

↪→ K− ρ+

↪→ π+ π0

↪→ e+e−γ

∫ 2
9 ρ polarized, |M|2 ∝ cos2 θ in ρ rest frame
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Particle Decays

Not the most sexy part of the event generators,
but still essential.

B?0 → γ B0

↪→ B
0 → e−ν̄e D?+

↪→ π+ D0

↪→ K− ρ+

↪→ π+ π0

↪→ e+e−γ

∫ 2
9 Dalitz decay, me+e− peaked
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Summary II

Parton showers corresponds to an approximate all order
resummation of the perturbative series in αS. The correctness
of the resummation is quantified by the number of powers of
logarithms correctly reproduced for each order in αS.

Most parton shower programs are correct to (N)LL.

The interplay between matrix elements and partons showers, is
the key to understand and improve the formal precision of event
generators.
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Questions!
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Outline of Lectures

I Lecture I: Basics of Monte Carlo methods, the event
generator strategy, matrix elements, LO/NLO, . . .

I Lecture II: Parton showers, initial/final state,
(matching/merging), hadronization, decays. . . .

I Lecture III: Minimum bias, multi-parton interactions,
pile-up, summary of general purpose event generators, . . .

I Lecture IV: Protons vs. heavy ions, Glauber calculations,
initial/final-state interactions, . . .

Buckley et al. (MCnet collaboration), Phys. Rep. 504 (2011) 145.
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