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ulti-boundary amplitudes: important to understand very late
explain the Page curve. [Almheiri, Hartman, Maldacena,... '19]

Equation of motion: R = —2 = the local geometry is
fixed

The path integral runs over all distinct ways of embedding a
non-self-intersecting S in EAdS..
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However:
@ Zaisk cannot be dual to a single quantum mechanics on the boundary

@ it can be interpreted as an average over an ensamble of Hamiltonians
[Saad, Shenker, Stanford '19]

Double scaled matrix model:

Z(v, N):/m exp(=Ntr V(H))

where one both scales N — oo and V to obtain the desidered spectral density
(p(E)), = e™sinh(2nVE)/4r>.
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What about putting gravity in a finite box?

o T T-deformation of 2D CFTs is dual to a sharp radial cutoff in AdSs.
[McGough, Mezei, Verlinde '16]

@ A dimensional reduction of the above duality relates a deformed Schwarzian theory
to JT gravity at finite cutoff. [Gross, Kruthoff, Rolph, Shaghoulian '19]

There are two branches for the deformed Schwarzian spectrum (t = 4¢?)

Ei(t) = % (1= Vi)

however, only the branch EL(t) reproduces the expected undeformed limit.

The deformed partition function should read [lliesiu, Kruthoff, Turiaci, Verlinde '20]
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Complexification of the spectrum: the integral is ill defined!
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Our method: resurgence theory

We take the above as a formal expression encoding the perturbative expansion

Z= iwn(ﬁ) t" Z e SiB)/t iwn(i)(/ﬁ) t",
=0 ' "~

The result carries instanton corrections that appear as trans-series terms.

Power of resurgence:

@ the information on the instantonic completions can be extracted and unambiguously
fixed with just the perturbative expansion at t = 0 as input.

@ the nonperturbative terms naturally carry the information of the H_ branch.

The full result for the disk

—Zﬂ/t 2
disk __ B
SN 2(? 52”%)
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General topologies

The path integral factorizes w.r.t. a topological decomposition. [Saad, Shenker, Stanford
'19]

Example: Z;:

N
In general:

zg,n(ﬁl,...,ﬁn):/ dblbl.../ dby by Vn(by,. .., by)
0 0

x Z"(B1, b1) ... Z"(Bn, bn) ,
where Vg (b1, ..

., bn) is the volume of the moduli space of bordered hyperbolic Riemann
surfaces.
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Topological recursion formula(Eynard—Orantin)

Double scaled matrix model: one can use the loop equations to recursively compute
any correlator starting from Zp1(51) and Zo2(f1, B2).
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Our results for general topologies satisfy the Eynard—Orantin recursion relations
for a double scaled matrix model!
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Coming back to the T T deformation

An irrelevant deformation of

uv
two-dimensional theories triggered by
“det T
t+4t
d 2 pnv I po t
&5 = [ d°x €up€ra TH'T

IR
@ preserves the integrability of theory [Smirnov, Zamolodchikov '16]

opens the possibility to explore non-trivial UV fixed points. [Cavaglia, Negro,
Szécsényi, Tateo '16]

rooted in geometry: realized by integrating over random flat geometries [Cardy]

equivalent to coupling the theory to JT gravity [Dubovski, Gorbenko,
Hernandez-Chifflet; Tolley; .. .]
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e t >0 (“good” sign): the density of states in a deformed CFT interpolates between
Cardy log p ~ V'E and Hagedorn log p ~ E (nonlocal QFT).

o t < 0 ("bad" sign): typically characterized by nonperturbative ambiguities;
complexification of the spectrum: should we remove a portion of it?

Our goal: investigate a simple example of T T-deformed QFT,, YM,

_a QR
Z(aaT) = Z(dlm R)2_2g e 2N 1-7G(R)/N3
R

Puzzle:
@ For any 7 # 0: the partition function diverges for g < 2 !

@ The Hamiltonian is pathological at ¢, (R) — N; as H — o0
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Result for 7 > 0

5] 2
/ = Z e_%l—lﬁz
=1L

=

Observations:
@ The final result is similar to what one would write by using the naive prescription but
the deformed spectrum has a cutoff.

@ The deformation acts on the spectrum by “inflating” it and only a finite number of
energy levels survive.

@ The truncation of the spectrum has been dynamically genarated through a
deconstructive interference between instanton sectors.

Jacopo Papalini (Galileo Galilei Institute)
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Observations:
@ Dinamical emergence of an additional term, which is an instanton-like correction non
perturbative in 7.

@ The new term ensures the convergence of the above.

@ For general group U(N), the structure of the subtraction terms becomes more
involved, with their number growing ~ N?
[L. Griguolo, J. Papalini, R. Panerai and D. Seminara]

What about the fate of these non perturbative terms at large N7
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Yang-Mills theory at large N

@ Weak phase:
For a < m only the O-instanton sector is not suppressed and yields the following
free energy

«

@ _a
24

Fo (o, 0) = +24—%|ogo¢ Fi (a,0) = Fo(a,0)=0n>2

W

o At a = 72 the theory undergoes a third order phase transition.
[Douglas, Kazakov '93]

o Strong phase: the theory enters a phase of strong-coupling, where its large N-limit
is described by a closed string theory [Gross, Taylor '93].

@ The transition is induced by a-instantons [Gross, Matitsyn '93].
In fact the ratio

Z10,...0(c) 22N 5 z 1+V1—-2z
|0 S ~ — R — 1— _7|o L e
g S a/r) () = VImz - G log Yt

vanishes for & = 72 and the one-instanton sector is no longer suppressed.
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The end

Thank you!
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