Non perturbative aspects of JT gravity and $T \bar{T}$ deformation

Jacopo Papalini
Galileo Galilei Institute

Florence Theory Group Day GGI, February 22, 2023

Based on:
2106.01375, 2203.09683, 2207.05095, 2209.06222
in collaboration with L. Griguolo, R. Panerai and D. Seminara

JT gravity

A 2d theory of gravity coupled to a dilaton field ϕ [Teitelboim '83, Jackiw '85]

$$
I_{\mathrm{JT}}=-S_{0} I_{\mathrm{EH}}-\frac{1}{2} \int_{\Sigma} d^{2} x \sqrt{g} \phi(\mathrm{R}+2)-\int_{\partial \Sigma} d x \sqrt{h} \kappa
$$

JT gravity

A 2d theory of gravity coupled to a dilaton field ϕ [Teitelboim '83, Jackiw '85]

$$
I_{\mathrm{JT}}=-S_{0} I_{\mathrm{EH}}-\frac{1}{2} \int_{\Sigma} d^{2} x \sqrt{g} \phi(\mathrm{R}+2)-\int_{\partial \Sigma} d x \sqrt{h} \kappa
$$

Motivations:

- Solvable example of quantum gravity!

JT gravity

A 2d theory of gravity coupled to a dilaton field ϕ [Teitelboim '83, Jackiw '85]

$$
I_{\mathrm{JT}}=-S_{0} I_{\mathrm{EH}}-\frac{1}{2} \int_{\Sigma} d^{2} x \sqrt{g} \phi(\mathrm{R}+2)-\int_{\partial \Sigma} d x \sqrt{h} \kappa
$$

Motivations:

- Solvable example of quantum gravity!
- Near-horizon theory of near-extremal higher-dimensional black holes

JT gravity

A 2d theory of gravity coupled to a dilaton field ϕ [Teitelboim '83, Jackiw '85]

$$
I_{\mathrm{JT}}=-S_{0} I_{\mathrm{EH}}-\frac{1}{2} \int_{\Sigma} d^{2} x \sqrt{g} \phi(\mathrm{R}+2)-\int_{\partial \Sigma} d x \sqrt{h} \kappa
$$

Motivations:

- Solvable example of quantum gravity!
- Near-horizon theory of near-extremal higher-dimensional black holes
- Toy model for holography and black hole information paradox

JT gravity

A 2d theory of gravity coupled to a dilaton field ϕ [Teitelboim '83, Jackiw '85]

$$
I_{\mathrm{JT}}=-S_{0} I_{\mathrm{EH}}-\frac{1}{2} \int_{\Sigma} d^{2} x \sqrt{g} \phi(\mathrm{R}+2)-\int_{\partial \Sigma} d x \sqrt{h} \kappa
$$

Motivations:

- Solvable example of quantum gravity!
- Near-horizon theory of near-extremal higher-dimensional black holes
- Toy model for holography and black hole information paradox

Many developments:

- Exact quantum solution of correlators and their gravitational interpretation.

JT gravity

A 2d theory of gravity coupled to a dilaton field ϕ [Teitelboim '83, Jackiw '85]

$$
I_{\mathrm{JT}}=-S_{0} I_{\mathrm{EH}}-\frac{1}{2} \int_{\Sigma} d^{2} x \sqrt{g} \phi(\mathrm{R}+2)-\int_{\partial \Sigma} d x \sqrt{h} \kappa
$$

Motivations:

- Solvable example of quantum gravity!
- Near-horizon theory of near-extremal higher-dimensional black holes
- Toy model for holography and black hole information paradox

Many developments:

- Exact quantum solution of correlators and their gravitational interpretation.
- Higher genus and multi-boundary amplitudes: important to understand very late time correlators and explain the Page curve. [Almheiri, Hartman, Maldacena,... '19]

JT gravity

A 2d theory of gravity coupled to a dilaton field ϕ [Teitelboim '83, Jackiw '85]

$$
I_{\mathrm{JT}}=-S_{0} I_{\mathrm{EH}}-\frac{1}{2} \int_{\Sigma} d^{2} x \sqrt{g} \phi(\mathrm{R}+2)-\int_{\partial \Sigma} d x \sqrt{h} \kappa
$$

Motivations:

- Solvable example of quantum gravity!
- Near-horizon theory of near-extremal higher-dimensional black holes
- Toy model for holography and black hole information paradox

Many developments:

- Exact quantum solution of correlators and their gravitational interpretation.
- Higher genus and multi-boundary amplitudes: important to understand very late time correlators and explain the Page curve. [Almheiri, Hartman, Maldacena,... '19]

Equation of motion: $\mathrm{R}=-2 \Longrightarrow$ the local geometry is fixed

JT gravity

A 2d theory of gravity coupled to a dilaton field ϕ [Teitelboim '83, Jackiw '85]

$$
I_{\mathrm{JT}}=-S_{0} I_{\mathrm{EH}}-\frac{1}{2} \int_{\Sigma} d^{2} x \sqrt{g} \phi(\mathrm{R}+2)-\int_{\partial \Sigma} d x \sqrt{h} \kappa
$$

Motivations:

- Solvable example of quantum gravity!
- Near-horizon theory of near-extremal higher-dimensional black holes
- Toy model for holography and black hole information paradox

Many developments:

- Exact quantum solution of correlators and their gravitational interpretation.
- Higher genus and multi-boundary amplitudes: important to understand very late time correlators and explain the Page curve. [Almheiri, Hartman, Maldacena,... '19]

Equation of motion: $\mathrm{R}=-2 \Longrightarrow$ the local geometry is fixed

The path integral runs over all distinct ways of embedding a non-self-intersecting S^{1} in EAdS_{2}.

Infinite cutoff JT gravity and the Schwarzian theory

By picking the double scaling limit $\ell=\beta / \varepsilon$ and $\phi_{b}=\phi_{r} / \varepsilon$, one obtains as $\varepsilon \rightarrow 0$

Infinite cutoff JT gravity and the Schwarzian theory

By picking the double scaling limit $\ell=\beta / \varepsilon$ and $\phi_{b}=\phi_{r} / \varepsilon$, one obtains as $\varepsilon \rightarrow 0$

$$
I_{\mathrm{Sch}}=\frac{\phi_{r}}{2} \int_{0}^{\beta}\left(\frac{\varphi^{\prime \prime 2}}{\varphi^{\prime 2}}-\varphi^{\prime 2}\right) d \tau+\mathrm{O}\left(\varepsilon^{2}\right)
$$

the Schwarzian theory, which is one loop exact [Stanford, Witten '17]. In fact

Infinite cutoff JT gravity and the Schwarzian theory

By picking the double scaling limit $\ell=\beta / \varepsilon$ and $\phi_{b}=\phi_{r} / \varepsilon$, one obtains as $\varepsilon \rightarrow 0$

$$
I_{\mathrm{Sch}}=\frac{\phi_{r}}{2} \int_{0}^{\beta}\left(\frac{\varphi^{\prime \prime 2}}{\varphi^{\prime 2}}-\varphi^{\prime 2}\right) d \tau+\mathrm{O}\left(\varepsilon^{2}\right)
$$

the Schwarzian theory, which is one loop exact [Stanford, Witten '17]. In fact

$$
Z_{\text {disk }}=\frac{1}{4 \pi^{2}} \int_{0}^{+\infty} \mathrm{d} E \sinh (2 \pi \sqrt{E}) e^{-\beta E}
$$

However:

- $Z_{\text {disk }}$ cannot be dual to a single quantum mechanics on the boundary

Infinite cutoff JT gravity and the Schwarzian theory

By picking the double scaling limit $\ell=\beta / \varepsilon$ and $\phi_{b}=\phi_{r} / \varepsilon$, one obtains as $\varepsilon \rightarrow 0$

$$
I_{\mathrm{Sch}}=\frac{\phi_{r}}{2} \int_{0}^{\beta}\left(\frac{\varphi^{\prime \prime 2}}{\varphi^{\prime 2}}-\varphi^{\prime 2}\right) d \tau+\mathrm{O}\left(\varepsilon^{2}\right)
$$

the Schwarzian theory, which is one loop exact [Stanford, Witten '17]. In fact

$$
Z_{\text {disk }}=\frac{1}{4 \pi^{2}} \int_{0}^{+\infty} \mathrm{d} E \sinh (2 \pi \sqrt{E}) e^{-\beta E}
$$

However:

- $Z_{\text {disk }}$ cannot be dual to a single quantum mechanics on the boundary
- it can be interpreted as an average over an ensamble of Hamiltonians [Saad, Shenker, Stanford '19]

Infinite cutoff JT gravity and the Schwarzian theory

By picking the double scaling limit $\ell=\beta / \varepsilon$ and $\phi_{b}=\phi_{r} / \varepsilon$, one obtains as $\varepsilon \rightarrow 0$

$$
I_{\mathrm{Sch}}=\frac{\phi_{r}}{2} \int_{0}^{\beta}\left(\frac{\varphi^{\prime \prime 2}}{\varphi^{\prime 2}}-\varphi^{\prime 2}\right) d \tau+\mathrm{O}\left(\varepsilon^{2}\right)
$$

the Schwarzian theory, which is one loop exact [Stanford, Witten '17]. In fact

$$
Z_{\text {disk }}=\frac{1}{4 \pi^{2}} \int_{0}^{+\infty} \mathrm{d} E \sinh (2 \pi \sqrt{E}) e^{-\beta E}
$$

However:

- $Z_{\text {disk }}$ cannot be dual to a single quantum mechanics on the boundary
- it can be interpreted as an average over an ensamble of Hamiltonians [Saad, Shenker, Stanford '19]

Double scaled matrix model:

$$
Z(V, N)=\int \frac{\mathrm{d} H}{\operatorname{vol}(\mathrm{U}(N))} \exp (-N \operatorname{tr} V(H))
$$

where one both scales $N \rightarrow \infty$ and V to obtain the desidered spectral density $\langle\rho(E)\rangle_{0}=e^{S_{0}} \sinh (2 \pi \sqrt{E}) / 4 \pi^{2}$.

JT gravity at finite cutoff

What about putting gravity in a finite box?

JT gravity at finite cutoff

What about putting gravity in a finite box?

- $T \bar{T}$-deformation of 2D CFTs is dual to a sharp radial cutoff in AdS_{3}. [McGough, Mezei, Verlinde '16]

JT gravity at finite cutoff

What about putting gravity in a finite box?

- $T \bar{T}$-deformation of 2D CFTs is dual to a sharp radial cutoff in AdS_{3}. [McGough, Mezei, Verlinde '16]
- A dimensional reduction of the above duality relates a deformed Schwarzian theory to JT gravity at finite cutoff. [Gross, Kruthoff, Rolph, Shaghoulian '19]

JT gravity at finite cutoff

What about putting gravity in a finite box?

- $T \bar{T}$-deformation of 2D CFTs is dual to a sharp radial cutoff in AdS_{3}. [McGough, Mezei, Verlinde '16]
- A dimensional reduction of the above duality relates a deformed Schwarzian theory to JT gravity at finite cutoff. [Gross, Kruthoff, Rolph, Shaghoulian '19]

There are two branches for the deformed Schwarzian spectrum $\left(t=4 \epsilon^{2}\right)$

$$
E_{ \pm}(t)=\frac{2}{t}(1 \mp \sqrt{1-t E})
$$

however, only the branch $E_{+}(t)$ reproduces the expected undeformed limit.

JT gravity at finite cutoff

What about putting gravity in a finite box?

- $T \bar{T}$-deformation of 2D CFTs is dual to a sharp radial cutoff in AdS_{3}. [McGough, Mezei, Verlinde '16]
- A dimensional reduction of the above duality relates a deformed Schwarzian theory to JT gravity at finite cutoff. [Gross, Kruthoff, Rolph, Shaghoulian '19]

There are two branches for the deformed Schwarzian spectrum $\left(t=4 \epsilon^{2}\right)$

$$
E_{ \pm}(t)=\frac{2}{t}(1 \mp \sqrt{1-t E})
$$

however, only the branch $E_{+}(t)$ reproduces the expected undeformed limit.
The deformed partition function should read [Iliesiu, Kruthoff, Turiaci, Verlinde '20]

$$
Z=\int_{0}^{\infty} \mathrm{d} E \frac{\sinh (2 \pi \sqrt{E})}{4 \pi^{2}} e^{-\beta E_{+}(t, E)}
$$

JT gravity at finite cutoff

What about putting gravity in a finite box?

- $T \bar{T}$-deformation of 2D CFTs is dual to a sharp radial cutoff in AdS_{3}. [McGough, Mezei, Verlinde '16]
- A dimensional reduction of the above duality relates a deformed Schwarzian theory to JT gravity at finite cutoff. [Gross, Kruthoff, Rolph, Shaghoulian '19]

There are two branches for the deformed Schwarzian spectrum $\left(t=4 \epsilon^{2}\right)$

$$
E_{ \pm}(t)=\frac{2}{t}(1 \mp \sqrt{1-t E})
$$

however, only the branch $E_{+}(t)$ reproduces the expected undeformed limit.
The deformed partition function should read [Iliesiu, Kruthoff, Turiaci, Verlinde '20]

$$
Z=\int_{0}^{\infty} \mathrm{d} E \frac{\sinh (2 \pi \sqrt{E})}{4 \pi^{2}} e^{-\beta E_{+}(t, E)}
$$

Complexification of the spectrum: the integral is ill defined!

Our method: resurgence theory

Our method: resurgence theory

We take the above as a formal expression encoding the perturbative expansion

$$
Z=\sum_{n=0}^{\infty} \omega_{n}(\beta) t^{n}
$$

Our method: resurgence theory

We take the above as a formal expression encoding the perturbative expansion

$$
Z=\sum_{n=0}^{\infty} \omega_{n}(\beta) t^{n}+\sum_{i} e^{-s_{i}(\beta) / t} \sum_{n=0}^{\infty} \omega_{n}^{(i)}(\beta) t^{n}
$$

The result carries instanton corrections that appear as trans-series terms.

Our method: resurgence theory

We take the above as a formal expression encoding the perturbative expansion

$$
Z=\sum_{n=0}^{\infty} \omega_{n}(\beta) t^{n}+\sum_{i} e^{-s_{i}(\beta) / t} \sum_{n=0}^{\infty} \omega_{n}^{(i)}(\beta) t^{n}
$$

The result carries instanton corrections that appear as trans-series terms.

Power of resurgence:

Our method: resurgence theory

We take the above as a formal expression encoding the perturbative expansion

$$
Z=\sum_{n=0}^{\infty} \omega_{n}(\beta) t^{n}+\sum_{i} e^{-S_{i}(\beta) / t} \sum_{n=0}^{\infty} \omega_{n}^{(i)}(\beta) t^{n}
$$

The result carries instanton corrections that appear as trans-series terms.

Power of resurgence:

- the information on the instantonic completions can be extracted and unambiguously fixed with just the perturbative expansion at $t=0$ as input.

Our method: resurgence theory

We take the above as a formal expression encoding the perturbative expansion

$$
Z=\sum_{n=0}^{\infty} \omega_{n}(\beta) t^{n}+\sum_{i} e^{-S_{i}(\beta) / t} \sum_{n=0}^{\infty} \omega_{n}^{(i)}(\beta) t^{n}
$$

The result carries instanton corrections that appear as trans-series terms.

Power of resurgence:

- the information on the instantonic completions can be extracted and unambiguously fixed with just the perturbative expansion at $t=0$ as input.
- the nonperturbative terms naturally carry the information of the H_{-}branch.

Our method: resurgence theory

We take the above as a formal expression encoding the perturbative expansion

$$
Z=\sum_{n=0}^{\infty} \omega_{n}(\beta) t^{n}+\sum_{i} e^{-s_{i}(\beta) / t} \sum_{n=0}^{\infty} \omega_{n}^{(i)}(\beta) t^{n}
$$

The result carries instanton corrections that appear as trans-series terms.

Power of resurgence:

- the information on the instantonic completions can be extracted and unambiguously fixed with just the perturbative expansion at $t=0$ as input.
- the nonperturbative terms naturally carry the information of the H_{-}branch.

The full result for the disk

$$
Z^{\text {disk }}=\frac{\beta}{2 \sqrt{t}} \frac{e^{-2 \beta / t}}{\beta^{2}+\pi^{2} t} I_{2}\left(\frac{2}{t} \sqrt{\beta^{2}+\pi^{2} t}\right)
$$

General topologies

The path integral factorizes w.r.t. a topological decomposition. [Saad, Shenker, Stanford '19]

General topologies

The path integral factorizes w.r.t. a topological decomposition. [Saad, Shenker, Stanford '19]

Example: $Z_{1,1}$

General topologies

The path integral factorizes w.r.t. a topological decomposition. [Saad, Shenker, Stanford '19]

Example: $Z_{1,1}$

In general:

$$
\begin{gathered}
Z_{g, n}\left(\beta_{1}, \ldots, \beta_{n}\right)=\int_{0}^{\infty} \mathrm{d} b_{1} b_{1} \ldots \int_{0}^{\infty} \mathrm{d} b_{n} b_{n} V_{g, n}\left(b_{1}, \ldots, b_{n}\right) \\
\times Z^{\operatorname{tr}}\left(\beta_{1}, b_{1}\right) \ldots Z^{\operatorname{tr}}\left(\beta_{n}, b_{n}\right)
\end{gathered}
$$

where $V_{g, n}\left(b_{1}, \ldots, b_{n}\right)$ is the volume of the moduli space of bordered hyperbolic Riemann surfaces.

Topological recursion formula(Eynard-Orantin)

Double scaled matrix model: one can use the loop equations to recursively compute any correlator starting from $Z_{0,1}\left(\beta_{1}\right)$ and $Z_{0,2}\left(\beta_{1}, \beta_{2}\right)$.

Topological recursion formula(Eynard-Orantin)

Double scaled matrix model: one can use the loop equations to recursively compute any correlator starting from $Z_{0,1}\left(\beta_{1}\right)$ and $Z_{0,2}\left(\beta_{1}, \beta_{2}\right)$.

Our results for general topologies satisfy the Eynard-Orantin recursion relations for a double scaled matrix mode!!

Coming back to the $T \bar{T}$ deformation

Coming back to the $T \bar{T}$ deformation

An irrelevant deformation of two-dimensional theories triggered by $" \operatorname{det} T_{\mu \nu}^{(t)}$ ".

$$
\frac{\mathrm{d}}{\mathrm{~d} t} S=\int \mathrm{d}^{2} x \epsilon_{\mu \rho} \epsilon_{\nu \sigma} T^{\mu \nu} T^{\rho \sigma}
$$

IR

Coming back to the $T \bar{T}$ deformation

An irrelevant deformation of two-dimensional theories triggered by $" \operatorname{det} T_{\mu \nu}^{(t)}$ ".

$$
\frac{\mathrm{d}}{\mathrm{~d} t} S=\int \mathrm{d}^{2} x \epsilon_{\mu \rho} \epsilon_{\nu \sigma} T^{\mu \nu} T^{\rho \sigma}
$$

IR

- preserves the integrability of theory [Smirnov, Zamolodchikov '16]

Coming back to the $T \bar{T}$ deformation

An irrelevant deformation of two-dimensional theories triggered by $" \operatorname{det} T_{\mu \nu}^{(t)}$ ".

$$
\frac{\mathrm{d}}{\mathrm{~d} t} S=\int \mathrm{d}^{2} x \epsilon_{\mu \rho} \epsilon_{\nu \sigma} T^{\mu \nu} T^{\rho \sigma}
$$

- preserves the integrability of theory [Smirnov, Zamolodchikov '16]
- opens the possibility to explore non-trivial UV fixed points. [Cavaglià, Negro, Szécsényi, Tateo '16]

Coming back to the $T \bar{T}$ deformation

An irrelevant deformation of two-dimensional theories triggered by $" \operatorname{det} T_{\mu \nu}^{(t)}$ ".

$$
\frac{\mathrm{d}}{\mathrm{~d} t} S=\int \mathrm{d}^{2} x \epsilon_{\mu \rho} \epsilon_{\nu \sigma} T^{\mu \nu} T^{\rho \sigma}
$$

- preserves the integrability of theory [Smirnov, Zamolodchikov '16]
- opens the possibility to explore non-trivial UV fixed points. [Cavaglià, Negro, Szécsényi, Tateo '16]
- rooted in geometry: realized by integrating over random flat geometries [Cardy]

Coming back to the $T \bar{T}$ deformation

An irrelevant deformation of two-dimensional theories triggered by $" \operatorname{det} T_{\mu \nu}^{(t)}$ ".

$$
\frac{\mathrm{d}}{\mathrm{~d} t} S=\int \mathrm{d}^{2} x \epsilon_{\mu \rho} \epsilon_{\nu \sigma} T^{\mu \nu} T^{\rho \sigma}
$$

- preserves the integrability of theory [Smirnov, Zamolodchikov '16]
- opens the possibility to explore non-trivial UV fixed points. [Cavaglià, Negro, Szécsényi, Tateo '16]
- rooted in geometry: realized by integrating over random flat geometries [Cardy]
- equivalent to coupling the theory to JT gravity [Dubovski, Gorbenko, Hernandez-Chifflet; Tolley; ...]

Enigmatic features of $T \bar{T}$ deformation

The exact deformed finite volume spectrum can be computed, since the eigenvalues satisfy a Burger's type equation:

Enigmatic features of $T \bar{T}$ deformation

The exact deformed finite volume spectrum can be computed, since the eigenvalues satisfy a Burger's type equation:

- $t>0$ ("good" sign): the density of states in a deformed CFT interpolates between Cardy $\log \rho \sim \sqrt{E}$ and Hagedorn $\log \rho \sim E$ (nonlocal QFT).

Enigmatic features of $T \bar{T}$ deformation

The exact deformed finite volume spectrum can be computed, since the eigenvalues satisfy a Burger's type equation:

- $t>0$ ("good" sign): the density of states in a deformed CFT interpolates between Cardy $\log \rho \sim \sqrt{E}$ and Hagedorn $\log \rho \sim E$ (nonlocal QFT).
- $t<0$ ("bad" sign): typically characterized by nonperturbative ambiguities; complexification of the spectrum: should we remove a portion of it?

Enigmatic features of $T \bar{T}$ deformation

The exact deformed finite volume spectrum can be computed, since the eigenvalues satisfy a Burger's type equation:

- $t>0$ ("good" sign): the density of states in a deformed CFT interpolates between Cardy $\log \rho \sim \sqrt{E}$ and Hagedorn $\log \rho \sim E$ (nonlocal QFT).
- $t<0$ ("bad" sign): typically characterized by nonperturbative ambiguities; complexification of the spectrum: should we remove a portion of it?

Our goal: investigate a simple example of $T \bar{T}$-deformed $\mathrm{QFT}_{2}, \mathrm{YM}_{2}$

Enigmatic features of $T \bar{T}$ deformation

The exact deformed finite volume spectrum can be computed, since the eigenvalues satisfy a Burger's type equation:

- $t>0$ ("good" sign): the density of states in a deformed CFT interpolates between Cardy $\log \rho \sim \sqrt{E}$ and Hagedorn $\log \rho \sim E$ (nonlocal QFT).
- $t<0$ ("bad" sign): typically characterized by nonperturbative ambiguities; complexification of the spectrum: should we remove a portion of it?

Our goal: investigate a simple example of $T \bar{T}$-deformed $\mathrm{QFT}_{2}, \mathrm{YM}_{2}$

$$
Z(\alpha, \tau)=\sum_{R}(\operatorname{dim} R)^{2-2 g} e^{-\frac{\alpha}{2 N} \frac{C_{2}(R)}{1-\tau C_{2}(R) / N^{3}}}
$$

Enigmatic features of $T \bar{T}$ deformation

The exact deformed finite volume spectrum can be computed, since the eigenvalues satisfy a Burger's type equation:

- $t>0$ ("good" sign): the density of states in a deformed CFT interpolates between Cardy $\log \rho \sim \sqrt{E}$ and Hagedorn $\log \rho \sim E$ (nonlocal QFT).
- $t<0$ ("bad" sign): typically characterized by nonperturbative ambiguities; complexification of the spectrum: should we remove a portion of it?

Our goal: investigate a simple example of $T \bar{T}$-deformed $\mathrm{QFT}_{2}, \mathrm{YM}_{2}$

$$
Z(\alpha, \tau)=\sum_{R}(\operatorname{dim} R)^{2-2 g} e^{-\frac{\alpha}{2 N} \frac{C_{2}(R)}{1-\tau C_{2}(R) / N^{3}}}
$$

Puzzle:

Enigmatic features of $T \bar{T}$ deformation

The exact deformed finite volume spectrum can be computed, since the eigenvalues satisfy a Burger's type equation:

- $t>0$ ("good" sign): the density of states in a deformed CFT interpolates between Cardy $\log \rho \sim \sqrt{E}$ and Hagedorn $\log \rho \sim E$ (nonlocal QFT).
- $t<0$ ("bad" sign): typically characterized by nonperturbative ambiguities; complexification of the spectrum: should we remove a portion of it?

Our goal: investigate a simple example of $T \bar{T}$-deformed $\mathrm{QFT}_{2}, \mathrm{YM}_{2}$

$$
Z(\alpha, \tau)=\sum_{R}(\operatorname{dim} R)^{2-2 g} e^{-\frac{\alpha}{2 N} \frac{C_{2}(R)}{1-\tau C_{2}(R) / N^{3}}}
$$

Puzzle:

- For any $\tau \neq 0$: the partition function diverges for $g<2$!
- The Hamiltonian is pathological at $c_{2}(R) \rightarrow \frac{N^{3}}{\tau}$, as $H \rightarrow \pm \infty$

Result for $\tau>0$

Result for $\tau>0$

$$
Z=\sum_{\ell=-\left\lfloor\frac{1}{\sqrt{\tau}}\right\rfloor}^{\left\lfloor\frac{1}{\sqrt{\tau}}\right\rfloor} e^{-\frac{\alpha}{2} \frac{\ell^{2}}{1-\tau \ell^{2}}}
$$

Result for $\tau>0$

$$
Z=\sum_{\ell=-\left\lfloor\frac{1}{\sqrt{\tau}}\right\rfloor}^{\left\lfloor\frac{1}{\sqrt{\tau}}\right\rfloor} e^{-\frac{\alpha}{2} \frac{\ell^{2}}{1-\tau \ell^{2}}}
$$

Observations:

- The final result is similar to what one would write by using the naive prescription but the deformed spectrum has a cutoff.

Result for $\tau>0$

$$
Z=\sum_{\ell=-\left\lfloor\frac{1}{\sqrt{\tau}}\right\rfloor}^{\left\lfloor\frac{1}{\sqrt{\tau}}\right\rfloor} e^{-\frac{\alpha}{2} \frac{\ell^{2}}{1-\tau \ell^{2}}}
$$

Observations:

- The final result is similar to what one would write by using the naive prescription but the deformed spectrum has a cutoff.
- The deformation acts on the spectrum by "inflating" it and only a finite number of energy levels survive.

Result for $\tau>0$

$$
Z=\sum_{\ell=-\left\lfloor\frac{1}{\sqrt{\tau}}\right\rfloor}^{\left\lfloor\frac{1}{\sqrt{\tau}}\right\rfloor} e^{-\frac{\alpha}{2} \frac{\ell^{2}}{1-\tau \ell^{2}}}
$$

Observations:

- The final result is similar to what one would write by using the naive prescription but the deformed spectrum has a cutoff.
- The deformation acts on the spectrum by "inflating" it and only a finite number of energy levels survive.
- The truncation of the spectrum has been dynamically genarated through a deconstructive interference between instanton sectors.

Result for $\tau<0$

Result for $\tau<0$

$$
Z=\sum_{\ell=-\infty}^{\infty}\left(e^{-\frac{\alpha}{2} \frac{\ell^{2}}{1-\tau \ell^{2}}}-e^{\frac{\alpha}{2 \tau}}\right)
$$

Result for $\tau<0$

$$
Z=\sum_{\ell=-\infty}^{\infty}\left(e^{-\frac{\alpha}{2} \frac{\ell^{2}}{1-\tau \ell^{2}}}-e^{\frac{\alpha}{2 \tau}}\right)
$$

Observations:

- Dinamical emergence of an additional term, which is an instanton-like correction non perturbative in τ.

Result for $\tau<0$

$$
Z=\sum_{\ell=-\infty}^{\infty}\left(e^{-\frac{\alpha}{2} \frac{\ell^{2}}{1-\tau \ell^{2}}}-e^{\frac{\alpha}{2 \tau}}\right)
$$

Observations:

- Dinamical emergence of an additional term, which is an instanton-like correction non perturbative in τ.
- The new term ensures the convergence of the above.

Result for $\tau<0$

$$
Z=\sum_{\ell=-\infty}^{\infty}\left(e^{-\frac{\alpha}{2} \frac{\ell^{2}}{1-\tau \ell^{2}}}-e^{\frac{\alpha}{2 \tau}}\right)
$$

Observations:

- Dinamical emergence of an additional term, which is an instanton-like correction non perturbative in τ.
- The new term ensures the convergence of the above.
- For general group $U(N)$, the structure of the subtraction terms becomes more involved, with their number growing $\sim N^{2}$ [L. Griguolo, J. Papalini, R. Panerai and D. Seminara]

Result for $\tau<0$

$$
Z=\sum_{\ell=-\infty}^{\infty}\left(e^{-\frac{\alpha}{2} \frac{\ell^{2}}{1-\tau \ell^{2}}}-e^{\frac{\alpha}{2 \tau}}\right)
$$

Observations:

- Dinamical emergence of an additional term, which is an instanton-like correction non perturbative in τ.
- The new term ensures the convergence of the above.
- For general group $U(N)$, the structure of the subtraction terms becomes more involved, with their number growing $\sim N^{2}$
[L. Griguolo, J. Papalini, R. Panerai and D. Seminara]

What about the fate of these non perturbative terms at large N ?

Yang-Mills theory at large N

Yang-Mills theory at large N

- Weak phase:

For $\alpha<\pi^{2}$ only the 0 -instanton sector is not suppressed and yields the following free energy

$$
F_{0}(\alpha, 0)=\frac{3}{4}+\frac{\alpha}{24}-\frac{1}{2} \log \alpha \quad F_{1}(\alpha, 0)=-\frac{\alpha}{24} \quad F_{n}(\alpha, 0)=0 n \geq 2
$$

Yang-Mills theory at large N

- Weak phase:

For $\alpha<\pi^{2}$ only the 0 -instanton sector is not suppressed and yields the following free energy

$$
F_{0}(\alpha, 0)=\frac{3}{4}+\frac{\alpha}{24}-\frac{1}{2} \log \alpha \quad F_{1}(\alpha, 0)=-\frac{\alpha}{24} \quad F_{n}(\alpha, 0)=0 n \geq 2
$$

- At $\alpha=\pi^{2}$ the theory undergoes a third order phase transition. [Douglas, Kazakov '93]

Yang-Mills theory at large N

- Weak phase:

For $\alpha<\pi^{2}$ only the 0 -instanton sector is not suppressed and yields the following free energy

$$
F_{0}(\alpha, 0)=\frac{3}{4}+\frac{\alpha}{24}-\frac{1}{2} \log \alpha \quad F_{1}(\alpha, 0)=-\frac{\alpha}{24} \quad F_{n}(\alpha, 0)=0 n \geq 2
$$

- At $\alpha=\pi^{2}$ the theory undergoes a third order phase transition. [Douglas, Kazakov '93]
- Strong phase: the theory enters a phase of strong-coupling, where its large N -limit is described by a closed string theory [Gross, Taylor '93].

Yang-Mills theory at large N

- Weak phase:

For $\alpha<\pi^{2}$ only the 0 -instanton sector is not suppressed and yields the following free energy

$$
F_{0}(\alpha, 0)=\frac{3}{4}+\frac{\alpha}{24}-\frac{1}{2} \log \alpha \quad F_{1}(\alpha, 0)=-\frac{\alpha}{24} \quad F_{n}(\alpha, 0)=0 n \geq 2
$$

- At $\alpha=\pi^{2}$ the theory undergoes a third order phase transition. [Douglas, Kazakov '93]
- Strong phase: the theory enters a phase of strong-coupling, where its large N -limit is described by a closed string theory [Gross, Taylor '93].
- The transition is induced by α-instantons [Gross, Matitsyn '93].

Yang-Mills theory at large N

- Weak phase:

For $\alpha<\pi^{2}$ only the 0 -instanton sector is not suppressed and yields the following free energy

$$
F_{0}(\alpha, 0)=\frac{3}{4}+\frac{\alpha}{24}-\frac{1}{2} \log \alpha \quad F_{1}(\alpha, 0)=-\frac{\alpha}{24} \quad F_{n}(\alpha, 0)=0 n \geq 2
$$

- At $\alpha=\pi^{2}$ the theory undergoes a third order phase transition. [Douglas, Kazakov '93]
- Strong phase: the theory enters a phase of strong-coupling, where its large N -limit is described by a closed string theory [Gross, Taylor '93].
- The transition is induced by α-instantons [Gross, Matitsyn '93].

In fact the ratio

$$
\log \frac{Z_{(1,0, \ldots, 0)}(\alpha)}{Z_{(0,0, \ldots, 0)}(\alpha)} \sim-\frac{2 \pi^{2} N}{\alpha} \gamma\left(\alpha / \pi^{2}\right), \quad \gamma(z)=\sqrt{1-z}-\frac{z}{2} \log \frac{1+\sqrt{1-z}}{1-\sqrt{1-z}} .
$$

vanishes for $\alpha=\pi^{2}$ and the one-instanton sector is no longer suppressed.

The $T \bar{T}$ phase diagram at large N : a new tricritical point

Instatons in α active

The $T \bar{T}$ phase diagram at large N : a new tricritical point

The $T \bar{T}$ phase diagram at large N : a new tricritical point

The $T \bar{T}$ phase diagram at large N : a new tricritical point

The $T \bar{T}$ phase diagram at large N : a new tricritical point

The $T \bar{T}$ phase diagram at large N : a new tricritical point

Future directions

About JT gravity:

Future directions

About JT gravity:

- Ongoing project: localization of the partition function and a boundary anchored Wilson line expectation value.

Future directions

About JT gravity:

- Ongoing project: localization of the partition function and a boundary anchored Wilson line expectation value.
- semiclassical bulk computation of JT gravity at finite cutoff.

Future directions

About JT gravity:

- Ongoing project: localization of the partition function and a boundary anchored Wilson line expectation value.
- semiclassical bulk computation of JT gravity at finite cutoff.
- possible extension to higher-spin JT gravity or 3d gravity.

Future directions

About JT gravity:

- Ongoing project: localization of the partition function and a boundary anchored Wilson line expectation value.
- semiclassical bulk computation of JT gravity at finite cutoff.
- possible extension to higher-spin JT gravity or 3d gravity.

About $T \bar{T}$ deformation:

Future directions

About JT gravity:

- Ongoing project: localization of the partition function and a boundary anchored Wilson line expectation value.
- semiclassical bulk computation of JT gravity at finite cutoff.
- possible extension to higher-spin JT gravity or 3d gravity.

About $T \bar{T}$ deformation:

- explore the mixed phase of large N Yang-Mills.

Future directions

About JT gravity:

- Ongoing project: localization of the partition function and a boundary anchored Wilson line expectation value.
- semiclassical bulk computation of JT gravity at finite cutoff.
- possible extension to higher-spin JT gravity or 3d gravity.

About $T \bar{T}$ deformation:

- explore the mixed phase of large N Yang-Mills.
- generalize to other topologies, e.g. the torus.

Future directions

About JT gravity:

- Ongoing project: localization of the partition function and a boundary anchored Wilson line expectation value.
- semiclassical bulk computation of JT gravity at finite cutoff.
- possible extension to higher-spin JT gravity or 3d gravity.

About $T \bar{T}$ deformation:

- explore the mixed phase of large N Yang-Mills.
- generalize to other topologies, e.g. the torus.
- include the computation of observables like Wilson loops.

Future directions

About JT gravity:

- Ongoing project: localization of the partition function and a boundary anchored Wilson line expectation value.
- semiclassical bulk computation of JT gravity at finite cutoff.
- possible extension to higher-spin JT gravity or 3d gravity.

About $T \bar{T}$ deformation:

- explore the mixed phase of large N Yang-Mills.
- generalize to other topologies, e.g. the torus.
- include the computation of observables like Wilson loops.

About pure Yang-Mills:

Future directions

About JT gravity:

- Ongoing project: localization of the partition function and a boundary anchored Wilson line expectation value.
- semiclassical bulk computation of JT gravity at finite cutoff.
- possible extension to higher-spin JT gravity or 3d gravity.

About $T \bar{T}$ deformation:

- explore the mixed phase of large N Yang-Mills.
- generalize to other topologies, e.g. the torus.
- include the computation of observables like Wilson loops.

About pure Yang-Mills:

- Ongoing project: localization of the partition function and regularization of the one-loop determinant around higher critical points.

Future directions

About JT gravity:

- Ongoing project: localization of the partition function and a boundary anchored Wilson line expectation value.
- semiclassical bulk computation of JT gravity at finite cutoff.
- possible extension to higher-spin JT gravity or 3d gravity.

About $T \bar{T}$ deformation:

- explore the mixed phase of large N Yang-Mills.
- generalize to other topologies, e.g. the torus.
- include the computation of observables like Wilson loops.

About pure Yang-Mills:

- Ongoing project: localization of the partition function and regularization of the one-loop determinant around higher critical points.

The end

Thank you!

