FLORENCE THEORY GROUP DAY

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

22/02/2023

FRANCESCA ACANFORA

Work in progress FA, R. Franceschini, A. Mastroddi, D. Redigolo

What?

What?

- What?
- Why?
- How?

- What?
- Why?
- How?
- **Results**

ALP DISCOVERY @ BELLE II - INVISIBLE CHANNEL

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

ALP DISCOVERY @ BELLE II - INVISIBLE CHANNEL

 $\mathscr{L}_{\mathsf{ALP}} = \frac{1}{2} (\partial a)^2 - \frac{1}{2} M_a^2 a^2 - \frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu}$

ALP DISCOVERY @ BELLE II - INVISIBLE CHANNEL $\mathscr{L}_{\mathsf{ALP}} = \frac{1}{2} (\partial a)^2 - \frac{1}{2} M_a^2 a^2 - \frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu}$

~3 I KARLUNU

ALP DISCOVERY @ BELLE II - INVISIBLE CHANNEL $\mathscr{L}_{\mathsf{ALP}} = \frac{1}{2} (\partial a)^2 - \frac{1}{2} M_a^2 a^2 - \frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu}$

ALL-91 KAHLANA

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

ALP DISCOVERY @ BELLE II - INVISIBLE CHANNEL $\mathscr{L}_{\mathsf{ALP}} = \frac{1}{2} (\partial a)^2 - \frac{1}{2} M_a^2 a^2 - \frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu}$

State of the art 1709.00009: Signal: $e^+e^- \rightarrow a\gamma$ (mono- γ) **Bg:** $\begin{cases} e^+e^- \to \gamma + n\gamma_{\text{inv}} \\ e^+e^- \to \gamma + e_{\text{inv}} + e_{\text{inv}}^+ + n\gamma_{\text{inv}} \end{cases}$

State of the art 1709.00009: Signal: $e^+e^- \rightarrow a\gamma$ (mono- γ) **Bg:** $\begin{cases} e^+e^- \to \gamma + n\gamma_{\text{inv}} \\ e^+e^- \to \gamma + e_{\text{inv}} + e_{\text{inv}}^+ + n\gamma_{\text{inv}} \end{cases}$

VBF: ■ Signal: $e^+e^- \rightarrow e^+e^-a$ Bg: $\begin{cases} e^+e^- \rightarrow e^+e^- + n\gamma_{\text{inv}} \\ e^+e^- \rightarrow \tau^+\tau^-, \tau \rightarrow e\nu\bar{\nu} \end{cases}$

State of the art 1709.00009: ■ Signal: $e^+e^- \rightarrow a\gamma$ (mono- γ) **– Bg:** $\begin{cases} e^+e^- \to \gamma + n\gamma_{\text{inv}} \\ e^+e^- \to \gamma + e_{\text{inv}} + e_{\text{inv}}^+ + n\gamma_{\text{inv}} \end{cases}$

ALP DOES NOT DECAY INTO PHOTONS WITHIN DETECTOR!

VBF:
Signal:
$$e^+e^- \rightarrow e^+e^-a$$

Bg:
$$\begin{cases} e^+e^- \rightarrow e^+e^- + n\gamma_{in} \\ e^+e^- \rightarrow \tau^+\tau^-, \tau \rightarrow e^- \end{cases}$$

INVISIBLE PARTICLE

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

Strong CP problem

Strong CP problem

Dark Matter

Strong CP problem

- **Dark Matter**
- Smoking gun of BSM Theories (String Theory, Supersymmetry...)

- Strong CP problem
- **Dark Matter**
- Smoking gun of BSM Theories (String Theory, Supersymmetry...)
- Cosmological problems (over-efficient cooling of some stars, the transparency of the
 - Universe to very high-energy γ-rays, 3.55 keV line from Andromeda...)

WHY BELLE I?

WHY BELLE II?

- Works on intensity frontier (50 ab^{-1})

WHY BELLE II?

- Works on intensity frontier (50 ab^{-1})

Is complementary to high energy machine (LHC)

WHY BELLE I?

- Works on intensity frontier (50 ab^{-1})
- Is complementary to high energy machine (LHC)

Can explore MeV-GeV scale where many BSM particles live $\sqrt{s} = 10.58$ GeV

WHY BELLE I?

- Works on intensity frontier (50 ab^{-1})
- Is complementary to high energy machine (LHC)

Can explore MeV-GeV scale where many BSM particles live $\sqrt{s} = 10.58$ GeV

- Is e^+e^- collider \rightarrow the initial state is known and invisible states can be reconstructed

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

Has been an important channel (for example Higgs)

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

- Has been an important channel (for example Higgs)
- Will be important at high energy colliders

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

- Has been an important channel (for example Higgs)
- Will be important at high energy colliders
- bigger

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

Is more important that the strahlung when the detector polar angle acceptance is

- Has been an important channel (for example Higgs)
- Will be important at high energy colliders
- bigger
- Is an independent alternative to strahlung

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

Is more important that the strahlung when the detector polar angle acceptance is

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

USENARROW WIDTH Γ_a **On** $M_a \sim 0.1$ GeV, $g_{a\gamma\gamma} \sim 10^{-4}$ GeV⁻¹, Γ_a

$$a = \frac{g_{a\gamma\gamma}^2 M_a^3}{64\pi}$$

$$a \sim 50 \mu eV$$

SMEARING

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

Monochromatic energy beam is seen as gaussian: $E \rightarrow \frac{1}{\sqrt{2\pi}\sigma_E} e^{\frac{-E^2}{2\sigma_E^2}}$

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

Polar angle heta and azimuthal angle ϕ are smeared too

Monochromatic energy beam is seen as gaussian: $E \rightarrow \frac{1}{\sqrt{2\pi}\sigma_E} e^{\frac{-E^2}{2\sigma_E^2}}$

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

Monochromatic energy beam is seen as

Polar angle heta and azimuthal angle ϕ are smeared too $m^2_{miss} = p^2_{m}$

s gaussian:
$$E \rightarrow \frac{1}{\sqrt{2\pi\sigma_E}} e^{\frac{-E^2}{2\sigma_E^2}}$$

$$\mathbf{hiss} = E_{\mathbf{miss}}^2 - \vec{p}_{\mathbf{miss}}^2$$

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

Polar angle heta and azimuthal angle ϕ are smeared too

$$m^2_{miss} = p^2_{n}$$

Monochromatic energy beam is seen as gaussian: $E \rightarrow \frac{1}{\sqrt{2\pi\sigma_E}} e^{\frac{-E^2}{2\sigma_E^2}}$

 $E_{\text{miss}}^2 = E_{\text{miss}}^2 - \vec{p}_{\text{miss}}^2$

 $(\delta m_{\text{miss}}^2)^2 = (\delta E_{\text{miss}}^2)^2 + (\delta \vec{p}_{\text{miss}}^2)^2$

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

Polar angle heta and azimuthal angle ϕ are smeared too

$$m^2_{miss} = p^2_{n}$$

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

Monochromatic energy beam is seen as gaussian: $E \rightarrow \frac{1}{\sqrt{2\pi\sigma_E}} e^{\frac{-E^2}{2\sigma_E^2}}$

 $E^2_{miss} = E^2_{miss} - \vec{p}^2_{miss}$

 $(\delta m_{\text{miss}}^2)^2 = (\delta E_{\text{miss}}^2)^2 + (\delta \vec{p}_{\text{miss}}^2)^2$

Polar angle heta and azimuthal angle ϕ are smeared too

$$m^2_{miss} = p^2_{n}$$

Monochromatic energy beam is seen as gaussian: $E \rightarrow \frac{1}{\sqrt{2\pi\sigma_E}} e^{\frac{-E^2}{2\sigma_E^2}}$

 $E^2 = E^2 - \vec{p}^2 = \vec{p}^2$ $(\delta m_{\rm miss}^2)^2 = (\delta E_{\rm miss}^2)^2 + (\delta \vec{p}_{\rm miss}^2)^2$

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

 $\eta = -\frac{1}{2}\log\frac{|\vec{p}| - p_L}{|\vec{p}| + p_L} \xrightarrow[m \to 0]{} - \log\left(\tan\frac{\theta}{2}\right)$

 $\eta = -\frac{1}{2}\log\frac{|\vec{p}| - p_L}{|\vec{p}| + p_L} \xrightarrow[m \to 0]{} - \log\left(\tan\frac{\theta}{2}\right)$

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

 $\eta = -\frac{1}{2}\log\frac{|\vec{p}| - p_L}{|\vec{p}| + p_L} \xrightarrow[m \to 0]{} - \log\left(\tan\frac{\theta}{2}\right)$

$$e^+e^- \rightarrow \tau^+\tau^-, \tau \rightarrow$$

$$e^+e^- \rightarrow \tau^+\tau^-, \tau \rightarrow$$

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

GONGLUSIONS

- The VBF was worth it and proved better than the strahlung
- **Original** selections were proposed:
 - High purity search
 - **Depend on signal and bg** topology **only:**
 - **Detector-independent**
 - **Theory-independent**
- **Future work:**
 - **Apply to other colliders**
 - **Apply to other BSM searches**

ALPS MILESTONES

- **Peccei-Quinn symmetry PhysRevLett.38.1440**
- Wilczeck PhysRevLett.40.279 and Weinberg PhysRevLett.40.223
- KSVZ ITEP-64-1979 and DFSZ models Print-81-0320 (IAS, PRINCETON)

ALPS COUPLED TO GAUGE BOSONS

$$\frac{dZ}{4} aZ_{\mu\nu} \tilde{Z}^{\mu\nu} - \frac{g_{aWW}}{4} aW_{\mu\nu} \tilde{W}^{\mu\nu},$$
$$\frac{\sin 2\theta_{W} \left(c_{W} - c_{B}\right)}{f_{a}}$$

EFFECT OF SMFARING ON MISS Missing mass intervals after smearing

QED PROOF SKETCH

- Claim: can not do $m_{miss} \sim 0$, $\eta_{miss} \sim 0$ with:
 - Low mass
 - High missing energy
 - Few invisible photons
- 1. A small mass needs all coplanar photons
- 2. High missing energy needs photons along the beam pipe
- 3. $\eta_{miss} = 0$ needs forward and backward photons
- 4. There is missing mass lower bound

$\tau \tau$ PROFSKETCH

- The $e^+e^- \rightarrow \tau^+\tau^-$ dynamics has one angular degree of freedom θ . Irrelevant for our aim.
- freedom θ^{\pm}
- Without loss of generality $M(N^{\pm}) = 0$
- Then $E(e^{\pm})$ only depend on θ^{\pm}
- τ^{\pm} are boosted $\rightarrow e^{\pm}$ collinear to parent $\tau \rightarrow |\theta^{+} \theta^{-}| \sim \pi$ in CoM
- Cigar asks for maximal $|\vec{p}_{miss}| \rightarrow$ at most one hard electron at a time

FRANCESCA ACANFORA - 22.02.2023 - THEORY GROUP DAY - FUSING PHOTONS INTO DARK MATTER AT BELLE II

- The $\tau \to e\nu\bar{\nu}$ dynamics has the $(\nu\bar{\nu})$ body mass $M(N^{\pm})$ and one angular degree of

SELECTIONS MORE EXPLICITLY: LOW MASS

- **Cigar:** 10.437*GeV* 1.155*E***miss** $\leq |\vec{p}$ **miss**| ≤ 12.437 *GeV* 1.155*E***miss**
- Hyperbole: $E_+^* > 0.50 GeV + \frac{1.06 GeV^2}{-0.54 GeV + E^*}$.
- Parabola: $m_{\text{miss}}^2 < -20.41(\eta_{\text{miss}} 1.4)(\eta_{\text{miss}} + 1.4)GeV^2$.

SELECTIONS MORE EXPLICITLY: HIGH MASS

Missing mass $\cos \theta(e^-, e^+)^* \ge 0.4$ $-0.5 \le \eta^*_{miss} \le 0.5$

SIMULATIONS DETAILS

- MG5_aMC (MadGraph) to simulate signal and backgrounds
- **Python analysis**
- **QED bg cross section:**
 - **Before cigar selection = 29.84 pb**
 - After= 14.76 pb
- $\tau\tau$ bg cross section:
 - **Before cigar selection = 19.86 pb**
 - After= 7.84 pb

Signal cross section on $M_a = 4.35 \cdot 10^{-5}$ pb

