

Work in progress
FA, R. Franceschini, A. Mastroddi, D. Redigolo

OUTLOOK

OUTLOOK

- What?
- What?
= Why?
- What?
= Why?
- How?

OUTLOOK

- What?
- Why?
- How?
- Results

WHili?

ALPDISCOVEPY@BELIIII-INISBILECHANWEL

ALPDISCOVEPY@BELIEII-INIISBLECHANWEL

$$
\mathscr{L}_{\text {ALP }}=\frac{1}{2}(\partial a)^{2}-\frac{1}{2} M_{a}^{2} a^{2}-\frac{g_{a r \gamma}}{4} a F_{\mu \nu} F^{\mu \nu}
$$

ALPDISCOVEPY@BELIIII-NIVIBILECHANEL

$$
\mathscr{L}_{\mathbf{A L P}}=\frac{1}{2}(\partial a)^{2}-\frac{1}{2} M_{a}^{2} a^{2}-\frac{g_{a \gamma \gamma}}{4} a F_{\mu \nu} \tilde{F^{\mu \nu}}
$$

ALP-STRAHLLUNG

ALPDISCOVEPY@BELIEII-INIISBLECHANWEL

$$
\mathscr{L}_{\mathrm{ALP}}=\frac{1}{2}(\partial a)^{2}-\frac{1}{2} M_{a}^{2} a^{2}-\frac{g_{a \gamma \gamma}}{4} a F_{\mu \nu} F^{\mu \nu}
$$

ALP-STRAHLUNG

VECTORBOSONFUSION

ALPDISCOVEPY@BELIEII-INIISBLECHANWEL

$$
\mathscr{L}_{\text {ALP }}=\frac{1}{2}(\partial a)^{2}-\frac{1}{2} M_{a}^{2} a^{2}-\frac{g_{a \gamma \gamma}}{4} a F_{\mu \nu} \tilde{F}^{\mu \nu}
$$

ALP-STRAHLLUNG

State of the art 1709.00009:
Signal: $e^{+} e^{-} \rightarrow a \gamma$ (mono- γ)

- Bg:

$$
\left\{\begin{array}{l}
e^{+} e^{-} \rightarrow \gamma+n \gamma_{\mathbf{i n v}} \\
e^{+} e^{-} \rightarrow \gamma+e_{\mathbf{i n v}}^{-}+e_{\mathbf{i n v}}^{+}+n \gamma_{\mathbf{i n v}}
\end{array}\right.
$$

State of the art 1709.00009:
Signal: $e^{+} e^{-} \rightarrow a \gamma$ (mono- γ)

- Bg:

$$
\left\{\begin{array}{l}
e^{+} e^{-} \rightarrow \gamma+n \gamma_{\mathbf{i n v}} \\
e^{+} e^{-} \rightarrow \gamma+e_{\mathbf{i n v}}^{-}+e_{\mathbf{i n v}}^{+}+n \gamma_{\mathbf{i n v}}
\end{array}\right.
$$

VBF:

Signal: $e^{+} e^{-} \rightarrow e^{+} e^{-} a$
$\mathrm{Bg}:\left\{\begin{array}{l}e^{+} e^{-} \rightarrow e^{+} e^{-}+n \gamma_{\mathrm{inv}} \\ e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}, \tau \rightarrow e \nu \bar{\nu}\end{array}\right.$

State of the art 1709.00009:
Signal: $e^{+} e^{-} \rightarrow a \gamma$ (mono- γ)

- Bg:

$$
\left\{\begin{array}{l}
e^{+} e^{-} \rightarrow \gamma+n \gamma_{\mathrm{inv}} \\
e^{+} e^{-} \rightarrow \gamma+e_{\mathrm{inv}}^{-}+e_{\mathrm{inv}}^{+}+n \gamma_{\mathrm{inv}}
\end{array}\right.
$$

VBF:

Signal: $e^{+} e^{-} \rightarrow e^{+} e^{-} a$
Bg: $\left\{\begin{array}{l}e^{+} e^{-} \rightarrow e^{+} e^{-}+n \gamma_{\mathrm{inv}} \\ e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}, \tau \rightarrow e \nu \bar{\nu}\end{array}\right.$

ALP DOES NOT DECAY INTO PHOTONS WITHIN DETECTOR!

INVISIBLE PARTICLE

WH1Y?

WHYALPS?

WHYALPS?

- Strong CP problem

WHYALPS?

- Strong CP problem
- Dark Matter

WHYALPS?

- Strong CP problem
- Dark Matter
- Smoking gun of BSM Theories (String Theory, Supersymmetry...)

WHY ALPS?

- Strong CP problem
- Dark Matter
- Smoking gun of BSM Theories (String Theory, Supersymmetry...)
- Cosmological problems (over-efficient cooling of some stars, the transparency of the Universe to very high-energy γ-rays, 3.55 keV line from Andromeda...)

WHYBELIEII?

WHYBELIEII?

- Works on intensity frontier (50 ab ${ }^{-1}$)

WHYBELIEII?

- Works on intensity frontier (50 ab ${ }^{-1}$)
- Is complementary to high energy machine (LHC)

WHYBEEIEII?

- Works on intensity frontier (50 $\mathbf{a b}^{-1}$)
- Is complementary to high energy machine (LHC)
- Can explore MeV-GeV scale where many BSM particles live $\sqrt{s}=10.58 \mathrm{GeV}$

WHYBELIEII?

- Works on intensity frontier (50 ab ${ }^{-1}$)
- Is complementary to high energy machine (LHC)
- Can explore MeV-GeV scale where many BSM particles live $\sqrt{s}=10.58 \mathbf{G e V}$
- Is $e^{+} e^{-}$collider \rightarrow the initial state is known and invisible states can be reconstructed

WHYTHEVVF?

WHYTHEVEF?

- Has been an important channel (for example Higgs)

WHYTHEVEF?

- Has been an important channel (for example Higgs)
- Will be important at high energy colliders

WHYTHEVEF?

- Has been an important channel (for example Higgs)
- Will be important at high energy colliders
- Is more important that the strahlung when the detector polar angle acceptance is bigger

WHYTHEVEF?

- Has been an important channel (for example Higgs)
- Will be important at high energy colliders
- Is more important that the strahlung when the detector polar angle acceptance is bigger
- Is an independent alternative to strahlung

HOW?

S
 \sqrt{b}

USENARBOWWIDTH

$$
\Gamma_{a}=\frac{g_{a \gamma \gamma}^{2} M_{a}^{3}}{64 \pi}
$$

$=$ On $M_{a} \sim 0.1 \mathbf{G e V}, g_{a r \gamma} \sim 10^{-4} \mathbf{G e V}^{-1}, \Gamma_{a} \sim 50 \mu \mathrm{eV}$

SMEARNG

SMEARNG

- Detector is not perfect!

SMEARNG

- Detector is not perfect!
- Monochromatic energy beam is seen as gaussian: $E \rightarrow \frac{1}{\sqrt{2 \pi} \sigma_{E}} e^{\frac{-E^{2}}{2 \sigma_{E}^{2}}}$

SMEARMG

- Detector is not perfect!
- Monochromatic energy beam is seen as gaussian: $E \rightarrow \frac{1}{\sqrt{2 \pi} \sigma_{E}} e^{\frac{-E^{2}}{2 \sigma_{E}^{2}}}$
- Polar angle θ and azimuthal angle ϕ are smeared too

SMEARMG

- Detector is not perfect!
- Monochromatic energy beam is seen as gaussian: $E \rightarrow \frac{1}{\sqrt{2 \pi} \sigma_{E}} e^{\frac{-E^{2}}{2 \sigma_{E}^{2}}}$
- Polar angle θ and azimuthal angle ϕ are smeared too
-

$$
m_{\text {miss }}^{2}=p_{\text {miss }}^{2}=E_{\text {miss }}^{2}-\vec{p}_{\text {miss }}^{2}
$$

SMEARING

- Detector is not perfect!
$=$ Monochromatic energy beam is seen as gaussian: $E \rightarrow \frac{1}{\sqrt{2 \pi} \sigma_{E}} e^{\frac{-E^{2}}{2 \sigma_{E}^{2}}}$
- Polar angle θ and azimuthal angle ϕ are smeared too

$$
\begin{gathered}
m_{\text {miss }}^{2}=p_{\text {miss }}^{2}=E_{\text {miss }}^{2}-\vec{p}_{\text {miss }}^{2} \\
\left(\delta m_{\text {miss }}^{2}\right)^{2}=\left(\delta E_{\text {miss }}^{2}\right)^{2}+\left(\delta \vec{p}_{\text {miss }}^{2}\right)^{2}
\end{gathered}
$$

SMEARING

- Detector is not perfect!
- Monochromatic energy beam is seen as gaussian: $E \rightarrow \frac{1}{\sqrt{2 \pi} \sigma_{E}} e^{\frac{-E^{2}}{2 \sigma_{E}^{2}}}$
- Polar angle θ and azimuthal angle ϕ are smeared too

$$
\begin{gathered}
m_{\text {miss }}^{2}=p_{\text {miss }}^{2}=E_{\text {miss }}^{2}-\vec{p}_{\text {miss }}^{2} \\
\left(\delta m_{\text {miss }}^{2}\right)^{2}=\left(\delta E_{\text {miss }}^{2}\right)^{2}+\left(\delta \vec{p}_{\text {miss }}^{2}\right)^{2}
\end{gathered}
$$

SMEARING

- Detector is not perfect!
= Monochromatic energy beam is seen as gaussian: $E \rightarrow \frac{1}{\sqrt{2 \pi} \sigma_{E}} e^{\frac{-E^{2}}{2 \sigma_{E}^{2}}}$
- Polar angle θ and azimuthal angle ϕ are smeared too
-

$$
\begin{gathered}
m_{\text {miss }}^{2}=p_{\text {miss }}^{2}=E_{\text {miss }}^{2}-\vec{p}_{\text {miss }}^{2} \\
\left.\left(\delta m_{\text {miss }}^{2}\right)^{2}=\left(\delta E_{\text {miss }}^{2}\right)^{2}+\delta \vec{p}_{\text {miss }}^{2}\right)^{2}
\end{gathered}
$$

After smearing

francesca acanfora - 22.02.2023 - theory group day • Fusing photons into dark matter at belle il

Whitiow?

$$
e^{+} e^{-} \rightarrow e^{+} e^{-} a
$$

$$
\eta=-\frac{1}{2} \log \frac{|\vec{p}|-p_{L}}{|\vec{p}|+p_{L}} \underset{m \rightarrow 0}{\longrightarrow}-\log \left(\tan \frac{\theta}{2}\right)
$$

$$
\eta=-\frac{1}{2} \log \frac{|\vec{p}|-p_{L}}{|\vec{p}|+p_{L}} \underset{m \rightarrow 0}{\longrightarrow}-\log \left(\tan \frac{\theta}{2}\right)
$$

$$
\eta=-\frac{1}{2} \log \frac{|\vec{p}|-p_{L}}{|\vec{p}|+p_{L}} \underset{m \rightarrow 0}{\longrightarrow}-\log \left(\tan \frac{\theta}{2}\right)
$$

$$
\eta=-\frac{1}{2} \log \frac{|\vec{p}|-p_{L}}{|\vec{p}|+p_{L}} \underset{m \rightarrow 0}{\longrightarrow}-\log \left(\tan \frac{\theta}{2}\right)
$$

$$
x[\text { a.u. }]
$$

$\left(E\left(e^{-}\right), E\left(e^{+}\right)\right)$ PLANEFOR $\tau \tau$

$$
e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}, \tau \rightarrow e \nu \bar{\nu}
$$

EMPTYREEION IN

$\left(E\left(e^{-}\right), E\left(e^{+}\right)\right)$

 PLANEFOR $\tau \tau$ BG$$
e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}, \tau \rightarrow e \nu \bar{\nu}
$$

HESUTIS

Heach

- Cigar

- Cigar
- Parabola

- Cigar
- Parabola
- Hyperbole

CONCLUSIONS

- The VBF was worth it and proved better than the strahlung
- Original selections were proposed:
- High purity search
- Depend on signal and bg topology only:
- Detector-independent
- Theory-independent
- Future work:
- Apply to other colliders
- Apply to other BSM searches

THANYOU

franeesea aganfora - 22.02.2028 - theory group day - fusing photons into dark matter at belle il

AIPSMILESTONES

- Peccei-Quinn symmetry PhysRevLett.38.1440
- Wilczeck PhysRevLett.40.279 and Weinberg PhysRevLett.40.223
- KSVZ ITEP-64-1979 and DFSZ models Print-81-0320 (IAS,PRINCETON)

ALPSCOUPLEDTOGAUGEBOSONS

$$
\begin{aligned}
& \mathscr{L}=\frac{1}{2} \partial^{\mu} a \partial_{\mu} a-\frac{1}{2} m_{a}^{2} a^{2}-\frac{c_{B}}{4 f_{a}} a B^{\mu \nu} \tilde{B}_{\mu \nu}-\frac{c_{W}}{4 f_{a}} a W^{i, \mu \nu} \tilde{W}_{\mu \nu}^{i} \\
&=\tilde{B}_{\mu \nu}=\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} B^{\rho \sigma} . \\
& \mathscr{L} \supset-\frac{g_{a \gamma \gamma}}{4} a F_{\mu \nu} \tilde{F}^{\mu \nu}-\frac{g_{a \gamma Z}}{4} a F_{\mu \nu} \tilde{Z}^{\mu \nu}-\frac{g_{a Z Z}}{4} a Z_{\mu \nu} \tilde{Z}^{\mu \nu}-\frac{g_{a W W}}{4} a W_{\mu \nu} \tilde{W}^{\mu \nu}, \\
&= g_{a \gamma \gamma}=\frac{c_{B} \cos ^{2} \theta_{\mathrm{W}}+c_{W} \sin ^{2} \theta_{\mathrm{W}}}{f_{a}}, \quad g_{a \gamma Z}=\frac{\sin 2 \theta_{\mathrm{W}}\left(c_{W}-c_{B}\right)}{f_{a}}
\end{aligned}
$$

EFFECTOFSMEARINGONMISSINGMASS

QEDPROOFSKETCH

Claim: can not do $m_{\text {miss }} \sim 0, \eta_{\text {miss }} \sim 0$ with:

- Low mass
- High missing energy
- Few invisible photons

1. A small mass needs all coplanar photons
2. High missing energy needs photons along the beam pipe
3. $\eta_{\text {miss }}=0$ needs forward and backward photons
4. There is missing mass lower bound

${ }_{\tau \tau}{ }^{\text {PPROOFSKEECH }}$

- The $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$dynamics has one angular degree of freedom θ. Irrelevant for our aim.
- The $\tau \rightarrow e \nu \bar{\nu}$ dynamics has the $(\nu \bar{\nu})$ body mass $M\left(N^{ \pm}\right)$and one angular degree of freedom $\theta^{ \pm}$
- Without loss of generality $M\left(N^{ \pm}\right)=0$
- Then $E\left(e^{ \pm}\right)$only depend on $\theta^{ \pm}$
- $\tau^{ \pm}$are boosted $\rightarrow e^{ \pm}$collinear to parent $\tau \rightarrow\left|\theta^{+}-\theta^{-}\right| \sim \pi$ in CoM
- Cigar asks for maximal $\left|\vec{p}_{\text {miss }}\right| \rightarrow$ at most one hard electron at a time

SEIEETIONSMORE EXPLLCIILY:LOWMASS

- Cigar: $10.437 \mathrm{GeV}-1.155 E_{\text {miss }} \leq\left|\vec{p}_{\text {miss }}\right| \leq 12.437 \mathrm{GeV}-1.155 E_{\text {miss }}$
- Hyperbole: $E_{+}^{*}>0.50 G e V+\frac{1.06 G e V^{2}}{-0.54 G e V+E_{-}^{*}}$.
- Parabola: $m_{\text {miss }}^{2}<-20.41\left(\eta_{\text {miss }}-1.4\right)\left(\eta_{\text {miss }}+1.4\right) G e V^{2}$.

SEIEETIONSMORE EXPLLCIIL:HIIGHMASS

- Missing mass
$=\cos \theta\left(e^{-}, e^{+}\right)^{*} \geq 0.4$
$--0.5 \leq \eta_{\text {miss }}^{*} \leq 0.5$

SIMULATIONSDETALLS

- MG5_aMC (MadGraph) to simulate signal and backgrounds
$=$ Python analysis
- QED bg cross section:
= Before cigar selection $=29.84 \mathrm{pb}$
- After= 14.76 pb
- $\tau \tau$ bg cross section:
- Before cigar selection $=19.86 \mathrm{pb}$
- After= 7.84 pb
- Signal cross section on $M_{a}=4.35 \cdot 10^{-5} \mathrm{pb}$

