INFN

Gravitational wave modeling for non-circular binary black holes within the effective one-body approach
 Andrea Placidi

Work in collaboration with:
Simone Albanesi, Sebastiano Bernuzzi, Gianluca Grignani,
Troels Harmark, Alessandro Nagar, Marta Orselli
More details in the references:
arXiv:2112.05448 Phys. Rev. D 105 (2022) 10, 104030
arXiv:2202.10063 Phys. Rev. D 105 (2022) 10, 104031
arXiv:2203.16286 Phys. Rev. D 105 (2022) 12, L121503

Gravitational wave (GW) astronomy feats

$\xrightarrow[\text { discovery date }]{ }$

Coalescing Compact Binaries (CCBs)

2 NS-NS + 3 NS-BH + $85 \mathrm{BH}-\mathrm{BH}$

90 CCBs

Gravitational wave (GW) astronomy feats

$\xrightarrow[\text { discovery date }]{ }$
Many more to come!
O4 (24/05/2023) and other GW detectors

2	$\mathrm{NS}-\mathrm{NS}+$
3	$\mathrm{NS}-\mathrm{BH}+$
85	$\mathrm{BH}-\mathrm{BH}$
90 CCBs	

LIGO-India, Cosmic Explorer, Einstein Telescope, LISA, TianQuin, Taiji, Pulsar timing arrays

Analytical GW models

Analytical GW models

For any given astrophysical source, data analysis in GW astronomy requires the general prior knowledge of the respective GW signals

$$
h(t, \theta)=F_{+} h_{+}(t, \theta)+F_{\times} h_{\times}(t, \theta)
$$

$$
h_{+}, h_{\times} \equiv \text { physical polarizations of the GW } \theta \equiv \text { set of parameters of the source }
$$

Analytical GW models

For any given astrophysical source, data analysis in GW astronomy requires the general prior knowledge of the respective GW signals

$$
h(t, \theta)=F_{+} h_{+}(t, \theta)+F_{\times} h_{\times}(t, \theta)
$$

$$
h_{+}, h_{\times} \equiv \text { physical polarizations of the GW } \theta \equiv \text { set of parameters of the source }
$$

Primary GW sources: coalescing compact binaries of black holes (BH) One needs:

CCB evolution

Analytical GW models

For any given astrophysical source, data analysis in GW astronomy requires the general prior knowledge of the respective GW signals

$$
h(t, \theta)=F_{+} h_{+}(t, \theta)+F_{\times} h_{\times}(t, \theta)
$$

$h_{+}, h_{\times} \equiv$ physical polarizations of the GW $\theta \equiv$ set of parameters of the source
Primary GW sources: coalescing compact binaries of black holes (BH) One needs:

CCB evolution

Methods to compute the respective GWs at infinity

Analytical GW models for CCBs

Analytical GW models for CCBs

Analytical GW models for CCBs

INFN

Analytical GW models for CCBs

Effective one-body (EOB) approach

Effective one-body (EOB) approach

EOB basic idea:
[Buonanno-Damour '99]

Effective one-body (EOB) approach

EOB basic idea:
[Buonanno-Damour '99]

Effective one-body (EOB) approach

EOB basic idea:
[Buonanno-Damour '99]

Effective one-body (EOB) approach

EOB basic idea:
[Buonanno-Damour '99]

Effective dynamics

Particle in motion around a BH

EOB waveform models

EOB waveform models

EOB waveform models

EOB waveform models

Non-circular EOB inspiral

Non-circular EOB inspiral

Isolated binaries circularize rapidly...

$$
\left(e \sim 10^{-6} \text { at } f_{\text {orb }}=10 \mathrm{~Hz}\right)
$$

INFN

Non-circular EOB inspiral

Isolated binaries circularize rapidly...

$$
\left(e \sim 10^{-6} \text { at } f_{\text {orb }}=10 \mathrm{~Hz}\right)
$$

\longrightarrow Quasi-circular (qc) approximation
... but dynamical encounters in dense stellar environments and the Lidov-Kozai mechanism in hierarchical three-body systems can lead to non-circular binaries
\longrightarrow Non-circular (nc) corrections in the waveform models

Non-circular EOB inspiral

Isolated binaries circularize rapidly...

$$
\left(e \sim 10^{-6} \text { at } f_{\text {orb }}=10 \mathrm{~Hz}\right)
$$

\longrightarrow Quasi-circular (qc) approximation
... but dynamical encounters in dense stellar environments and the Lidov-Kozai mechanism in hierarchical three-body systems can lead to non-circular binaries
\longrightarrow Non-circular (nc) corrections in the waveform models
We worked on improving the non-circular branch of TEOBResumS:
$h_{+}-i h_{\times}=D_{L}^{-1} \sum_{\ell=2}^{\ell_{\text {max }}} \sum_{m=-\ell}^{\ell} h_{\ell m-2} Y_{\ell m}(\Theta, \Phi)$
$\longrightarrow h_{\ell m}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{N_{\mathrm{nc}}} \hat{h}_{\ell m}^{\mathrm{qc}}$ $\begin{aligned} & \text { TEOBResumS-DALI before } \\ & \text { Newtonian factors } \\ & \text { [Chiaramello-Nagar 2020] }\end{aligned}$

Non-circular EOB inspiral

Isolated binaries circularize rapidly...

$$
\left(e \sim 10^{-6} \text { at } f_{\text {orb }}=10 \mathrm{~Hz}\right)
$$

\longrightarrow Quasi-circular (qc) approximation
... but dynamical encounters in dense stellar environments and the Lidov-Kozai mechanism in hierarchical three-body systems can lead to non-circular binaries
\longrightarrow Non-circular (nc) corrections in the waveform models
We worked on improving the non-circular branch of TEOBResumS:

Non-circular EOB inspiral

Isolated binaries circularize rapidly...

$$
\left(e \sim 10^{-6} \text { at } f_{\text {orb }}=10 \mathrm{~Hz}\right)
$$

\longrightarrow Quasi-circular (qc) approximation
... but dynamical encounters in dense stellar environments and the Lidov-Kozai mechanism in hierarchical three-body systems can lead to non-circular binaries \longrightarrow Non-circular (nc) corrections in the waveform models

We worked on improving the non-circular branch of TEOBResumS:

Obtained by:

- Translating in EOB variables generic-planar-orbit PN results for the spherical modes $h_{\ell m}$
Factoring out Newtonian and circular contributions

$$
h_{\ell m}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{N_{\mathrm{nc}}} \hat{h}_{\ell m}^{\mathrm{qc}} \hat{h}_{\ell m}^{\mathrm{nc}}
$$

Current results

With a first version of our non-circular factors $\hat{h}_{\ell m}^{\mathrm{nc}}$ we succeeded in improving how TEOBResumS-DALI deals with non-circularized binaries:

- Increased analytical/numerical agreement of the waveform phase
- More accurate fluxes of energy and angular momentum at infinity

$$
\dot{E}=\frac{1}{16 \pi} \sum_{\ell=2}^{\ell_{\max }} \sum_{m=-\ell}^{\ell}\left|\dot{h}_{\ell m}\right|^{2} \quad \dot{J}=-\frac{1}{16 \pi} \sum_{\ell=2}^{\ell_{\max }} \sum_{m=-\ell}^{\ell} m \mathfrak{J}\left(\dot{h}_{\ell m} h_{\ell m}^{*}\right)
$$

Current results

With a first version of our non-circular factors $\hat{h}_{\ell m}^{\mathrm{nc}}$ we succeeded in improving how TEOBResumS-DALI deals with non-circularized binaries:

- Increased analytical/numerical agreement of the waveform phase
- More accurate fluxes of energy and angular momentum at infinity

$$
\dot{E}=\frac{1}{16 \pi} \sum_{\ell=2}^{\ell_{\text {max }}} \sum_{m=-\ell}^{\ell}\left|\dot{h}_{\ell m}\right|^{2} \quad \dot{J}=-\frac{1}{16 \pi} \sum_{\ell=2}^{\ell_{\text {max }}} \sum_{m=-\ell}^{\ell} m \Im\left(\dot{h}_{\ell m} h_{\ell m}^{*}\right)
$$

Then, we developed an updated version of $\hat{h}_{\ell m}^{\mathrm{nc}}$, with explicit time derivatives, that further improves the fluxes at infinity and also enhances the analytical/numerical agreement of the waveform amplitude

Current results

With a first version of our non-circular factors $\hat{h}_{\ell m}^{\mathrm{nc}}$ we succeeded in improving how TEOBResumS-DALI deals with non-circularized binaries:

- Increased analytical/numerical agreement of the waveform phase
- More accurate fluxes of energy and angular momentum at infinity

$$
\dot{E}=\frac{1}{16 \pi} \sum_{t=2}^{\ell_{\text {max }}} \sum_{m=-\ell}^{\ell}\left|\dot{h}_{\ell m}\right|^{2} \quad \dot{J}=-\frac{1}{16 \pi} \sum_{t=2}^{t_{\text {max }}} \sum_{m=-\ell}^{\ell} m \Im\left(\dot{h}_{\ell m} h_{\ell m}^{*}\right)
$$

Then, we developed an updated version of $\hat{h}_{\ell m}^{\mathrm{nc}}$, with explicit time derivatives, that further improves the fluxes at infinity and also enhances the analytical/numerical agreement of the waveform amplitude

Future projects in this direction

- 2.5PN noncircular factors (with the inclusion of oscillatory memory effects) in preparation, almost ready
- Additional noncircular waveform information for spinning binaries

Thanks for your attention!

EXTRA SLIDES

Bad convergence of the PN series

Bad convergence of the PN series

- [Cutler et al. '93]: Slow convergence of the PN series
- [Thorne-Brady-Creighton '98]: PN results can't be used in the strong field regime, in the last ~ 10 orbits of the inspiral they are unreliable
- [Damour-lyer-Sathyaprakash '98]: particle around a Schwarzschild BH The PN series is badly convergent and erratic...

Bad convergence of the PN series

- [Cutler et al. '93]: Slow convergence of the PN series
- [Thorne-Brady-Creighton '98]: PN results can't be used in the strong field regime, in the last ~ 10 orbits of the inspiral they are unreliable
- [Damour-lyer-Sathyaprakash '98]: particle around a Schwarzschild BH

The PN series is badly convergent and erratic...
...but after proper resummations there is a substantial improvement!

Real and effective dynamics

Dictionary between the two dynamics (no spin for simplicity):

Real and effective dynamics

Dictionary between the two dynamics (no spin for simplicity):
Established in terms of Delaunay Hamiltonians: energy levels of the bound states expressed in terms of action variables, which are quantized according to the semi-classical rules of Bohr-Sommerfeld

$$
\begin{aligned}
J & \equiv \frac{1}{2 \pi} \oint p_{\varphi} d \varphi=\ell \hbar \\
I_{r} & \equiv \frac{1}{2 \pi} \oint p_{r} d r \\
N & \equiv I_{r}+J=n \hbar
\end{aligned}
$$

Real and effective dynamics

Dictionary between the two dynamics (no spin for simplicity):

Established in terms of Delaunay Hamiltonians: energy levels of the bound states expressed in terms of action variables, which are quantized according to the semi-classical rules of Bohr-Sommerfeld

$$
\begin{aligned}
& J \equiv \frac{1}{2 \pi} \oint p_{\varphi} d \varphi=\ell \hbar \\
& I_{r} \equiv \frac{1}{2 \pi} \oint p_{r} d r \\
& N \equiv I_{r}+J=n \hbar
\end{aligned}
$$

Real and effective dynamics

Dictionary between the two dynamics (no spin for simplicity):

Established in terms of Delaunay Hamiltonians: energy levels of the bound states expressed in terms of action variables, which are quantized according to the semi-classical rules of Bohr-Sommerfeld

$$
\begin{aligned}
J & \equiv \frac{1}{2 \pi} \oint p_{\varphi} d \varphi=\ell \hbar \\
I_{r} & \equiv \frac{1}{2 \pi} \oint p_{r} d r \\
N & \equiv I_{r}+J=n \hbar
\end{aligned}
$$

Real and effective dynamics

Dictionary between the two dynamics (no spin for simplicity):

Established in terms of Delaunay Hamiltonians: energy levels of the bound states expressed in terms of action variables, which are quantized according to the semi-classical rules of Bohr-Sommerfeld

$$
\begin{aligned}
J & \equiv \frac{1}{2 \pi} \oint p_{\varphi} d \varphi=\ell \hbar \\
I_{r} & \equiv \frac{1}{2 \pi} \oint p_{r} d r \\
N & \equiv I_{r}+J=n \hbar
\end{aligned}
$$

Energy map between
$\mathscr{E}_{\text {eff }}^{\mathrm{NR}} \equiv \mathscr{E}_{\text {eff }}-\mu c^{2}$ and
$E_{\text {real }}^{\mathrm{NR}} \equiv E_{\text {real }}-M c^{2}$

Real and effective dynamics

Dictionary between the two dynamics (no spin for simplicity):

Established in terms of Delaunay Hamiltonians: energy levels of the bound states expressed in terms of action variables, which are quantized according to the semi-classical rules of Bohr-Sommerfeld

$$
\begin{aligned}
J & \equiv \frac{1}{2 \pi} \oint p_{\varphi} d \varphi=\ell \hbar \\
I_{r} & \equiv \frac{1}{2 \pi} \oint p_{r} d r \\
N & \equiv I_{r}+J=n \hbar
\end{aligned}
$$

[^0] $\rightarrow \frac{\mathscr{E}_{\mathrm{eff}}^{\mathrm{NR}}}{\mu c^{2}}=\frac{E_{\text {ral }}^{\mathrm{NR}}}{\mu c^{2}}\left[1+\alpha_{1} \frac{E_{\text {real }}^{\mathrm{NR}}}{\mu c^{2}}+\alpha_{2}\left(\frac{E_{\text {real }}^{\mathrm{NR}}}{\mu c^{2}}\right)^{2}+\alpha_{3}\left(\frac{E_{\text {real }}^{\mathrm{NR}}}{\mu c^{2}}\right)^{3}+\ldots\right]$ System of equations for the \longrightarrow parameters $\tilde{a}_{i}, \tilde{b}_{i}, z_{i}$, and α_{i} (underconstrained system)

Importance of non-circularity

However...

- Dynamical encounters in dense stellar environments (globular clusters, galactic nuclei) and the Lidov-Kozai mechanism in compact triples may lead to CBC with measurable eccentricity

Importance of non-circularity

However...

- Dynamical encounters in dense stellar environments (globular clusters, galactic nuclei) and the Lidov-Kozai mechanism in compact triples may lead to CBC with measurable eccentricity \longrightarrow info on binary formation channels [Lower et al. 2018]

Importance of non-circularity

However...

- Dynamical encounters in dense stellar environments (globular clusters, galactic nuclei) and the Lidov-Kozai mechanism in compact triples may lead to CBC with measurable eccentricity \longrightarrow info on binary formation channels [Lower et al. 2018]
[Gamba et al. 2021]: GW190521 analysis in a dynamical capture scenario

Importance of non-circularity

However...

- Dynamical encounters in dense stellar environments (globular clusters, galactic nuclei) and the Lidov-Kozai mechanism in compact triples may lead to CBC with measurable eccentricity \longrightarrow info on binary formation channels [Lower et al. 2018]
[Gamba et al. 2021]: GW190521 analysis in a dynamical capture scenario

- Neglecting eccentricity can cause systematic errors in parameter inference [Favata 2014, Favata et al 2022] and induce bias in GR tests [Bhat et al 2022]

Importance of non-circularity

However...

- Dynamical encounters in dense stellar environments (globular clusters, galactic nuclei) and the Lidov-Kozai mechanism in compact triples may lead to CBC with measurable eccentricity \longrightarrow info on binary formation channels [Lower et al. 2018]
[Gamba et al. 2021]: GW190521 analysis in a dynamical capture scenario

- Neglecting eccentricity can cause systematic errors in parameter inference [Favata 2014, Favata et al 2022] and induce bias in GR tests [Bhat et al 2022]

> | The orbital eccentricity has a significant role in CBC waveform models! |
| :--- |
| EOB models need corresponding non-circular corrections |

More details on the PN qc waveform factor

Native quasi-circular version of TEOBResumS:
$h_{+}-i h_{\times}=D_{L}^{-1} \sum_{\ell=2}^{\ell_{\text {max }}} \sum_{m=-\epsilon}^{\ell} h_{\ell m-2} Y_{\ell m}(\Theta, \Phi)$

More details on the PN qc waveform factor Native quasi-circular version of TEOBResums:

[Nagar et al. 2020] [Riemenschneider et al. 2021]

More details on the PN qc waveform factor

Native quasi-circular version of TEOBResums:
$\begin{aligned} & h_{+}-i h_{x}=D_{L}^{-1} \sum_{\ell=2}^{\ell_{m=}} \sum_{m=-\epsilon}^{t}{ }^{h_{m m}-2 Y_{\ell m}(\Theta, \Phi)} \\ & h_{\ell m}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{\mathrm{qc}}\end{aligned}$
[Nagar et al. 2020]
[Riemenschneider et al. 2021]
$h_{\ell m}^{N_{\mathrm{qc}}} \rightarrow$ Newtonian factor Leading contribution of $h_{\ell m}$ in its PN expansion

More details on the PN qc waveform factor
Native quasi-circular version of TEOBResumS:
$h_{+}-i h_{\times}=D_{L}^{-1} \sum_{\ell=2}^{\ell_{\text {max }}} \sum_{m=-\ell}^{\ell} h_{\ell m}-2 Y_{\ell m}(\Theta, \Phi)$

$$
\longrightarrow h_{\ell m}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{\mathrm{qc}}
$$

[Nagar et al. 2020] [Riemenschneider et al. 2021]
$h_{\ell m}^{N_{\mathrm{qc}}} \rightarrow$ Newtonian factor Leading contribution of $h_{\ell m}$ in its PN expansion
$\hat{h}_{\ell m}^{\mathrm{qc}} \rightarrow$ Quasi-circular PN factor Residual PN information in factorized form

$$
\hat{h}_{\ell m}^{\mathrm{qc}}=\hat{S}_{\mathrm{eff}} T_{\ell m} \times e^{i \delta_{\ell m}} f_{\ell m} \times \hat{h}_{\ell m}^{\mathrm{NQC}} \quad \text { [Damour-lyer-Nagar 2009] }
$$

More details on the PN qc waveform factor Native quasi-circular version of TEOBResums:
$\begin{aligned} & h_{+}-i h_{\times}=D_{L}^{-1} \sum_{\ell=2}^{\ell_{\text {max }}} \sum_{m=-\ell}^{\ell} h_{\ell m-2} Y_{\ell m}(\Theta, \Phi) \\ & h_{\ell m}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{\mathrm{qc}} \\ &\end{aligned}$
[Nagar et al. 2020] [Riemenschneider et al. 2021]
$h_{\ell m}^{N_{\mathrm{qc}}} \rightarrow$ Newtonian factor Leading contribution of $h_{\ell m}$ in its PN expansion $\hat{h}_{\ell m}^{\mathrm{qc}} \rightarrow$ Quasi-circular PN factor Residual PN information in factorized form

INFN

More details on the PN qc waveform factor

Native quasi-circular version of TEOBResumS:

$h_{+}-i h_{\times}=D_{L}^{-1} \sum_{\ell=2}^{\ell_{\text {max }}} \sum_{m=-\ell}^{\ell} \overparen{h_{\ell m}}-2 Y_{\ell m}(\Theta, \Phi)$

$$
h_{\ell m}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{\mathrm{qc}}
$$

[Nagar et al. 2020] [Riemenschneider et al. 2021]
$h_{\ell m}^{N_{\mathrm{qc}}} \rightarrow$ Newtonian factor Leading contribution of $h_{\ell m}$ in its PN expansion $\hat{h}_{\ell m}^{\mathrm{qc}} \rightarrow$ Quasi-circular PN factor \quad Residual PN information in factorized form

INFN

More details on the PN qc waveform factor

Native quasi-circular version of TEOBResums:

$h_{+}-i h_{\times}=D_{L}^{-1} \sum_{\ell=2}^{\ell_{\text {max }}} \sum_{m=-\ell}^{\ell} \overparen{h_{\ell m}}-2 Y_{\ell m}(\Theta, \Phi)$

$$
h_{\ell m}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{\mathrm{qc}}
$$

[Nagar et al. 2020] [Riemenschneider et al. 2021]
$h_{\ell m}^{N_{\mathrm{qc}}} \rightarrow$ Newtonian factor Leading contribution of $h_{\ell m}$ in its PN expansion $\hat{h}_{\ell m}^{\mathrm{qc}} \rightarrow$ Quasi-circular PN factor \quad Residual PN information in factorized form

Non-circular Newtonian factor

First non-circular extension:
$\begin{aligned} & h_{+}-i h_{x}=D_{L}^{-1} \sum_{\ell=2}^{\ell_{\text {max }}} \sum_{m=-\ell}^{\ell} h_{\ell m-2} Y_{\ell m}(\Theta, \Phi) \\ & h_{\ell m}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{\mathrm{qc}}\end{aligned}$

Non-circular Newtonian factor

First non-circular extension:

Non-circular Newtonian factor

First non-circular extension:

$h_{+}-i h_{\times}=D_{L}^{-1} \sum_{\ell=2}^{\ell_{\text {max }}} \sum_{m=-\ell}^{\ell} \overparen{h \ell m}-2^{h_{\ell m}}(\Theta, \Phi)$

Example - Newtonian factors of h_{22}

$$
h_{22}^{N_{\mathrm{ac}}}=-8 \sqrt{\frac{\pi}{5}}(r \dot{\varphi})^{2} e^{-2 i \varphi}
$$

$$
\hat{h}_{22}^{N_{\mathrm{nc}}}=1-\frac{\ddot{r}}{2 r \dot{\varphi}^{2}}-\frac{\dot{r}^{2}}{2(r \dot{\varphi})^{2}}+i\left(\frac{2 \dot{r}}{r \dot{\varphi}}+\frac{\ddot{\varphi}}{2 \dot{\varphi}^{2}}\right)
$$

Quasi-circular approximation relaxed in the Newtonian sector:

$$
\begin{aligned}
& h_{\ell m}^{N} \equiv \begin{cases}\frac{d^{\ell}}{d t^{\ell}}\left(r^{\ell} e^{-i m \varphi}\right) & \begin{array}{ll}
\ell+m \\
\frac{d^{\ell}}{d t^{\ell}}\left(r^{\ell+1} \dot{\varphi} e^{-i m \varphi}\right) & \text { odd } \\
\ell+m
\end{array} \\
h_{\ell m}^{N}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{N_{\mathrm{nc}}} & \hat{h}_{\ell m}^{N_{\mathrm{nc}}} \equiv \frac{h_{\ell m}^{N}}{h_{\ell m}^{N_{\mathrm{qc}}}} \\
\hline\end{cases} \\
&
\end{aligned}
$$

Note:
the time derivatives of the EOB variables (besides the orbital frequency $\Omega \equiv \dot{\varphi}$) resum non-circular contribution at every PN order

Non-circular Newtonian factor

First non-circular extension:

$h_{+}-i h_{\times}=D_{L}^{-1} \sum_{\ell=2}^{\ell_{\text {max }}} \sum_{m=-\ell}^{\ell} \overparen{h \ell m}-2^{h_{\ell m}}(\Theta, \Phi)$

Quasi-circular approximation relaxed in the Newtonian sector:

$$
\begin{array}{ll}
h_{\ell m}^{N} \equiv \begin{cases}\frac{d^{\ell}}{d t^{\ell}}\left(r^{\ell} e^{-i m \varphi}\right) & \begin{array}{ll}
\text { even } \\
\ell+m
\end{array} \\
\frac{d^{\ell}}{d t^{\ell}}\left(r^{\ell+1} \dot{\varphi} e^{-i m \varphi}\right) & \text { odd } \\
\ell+m\end{cases} \\
h_{\ell m}^{N}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{N_{\mathrm{nc}}} & \hat{h}_{\ell m}^{N_{\mathrm{nc}}} \equiv \frac{h_{\ell m}^{N}}{h_{\ell m}^{N_{\mathrm{qc}}}}
\end{array}
$$

Example - Newtonian factors of h_{22} :

$$
h_{22}^{N_{\mathrm{qc}}}=-8 \sqrt{\frac{\pi}{5}}(r \dot{\varphi})^{2} e^{-2 i \varphi}
$$

$$
\hat{h}_{22}^{N_{\mathrm{nc}}}=1-\frac{\ddot{r}}{2 r \dot{\varphi}^{2}}-\frac{\dot{r}^{2}}{2(r \dot{\varphi})^{2}}+i\left(\frac{2 \dot{r}}{r \dot{\varphi}}+\frac{\ddot{\varphi}}{2 \dot{\varphi}^{2}}\right)
$$

Note:
the time derivatives of the EOB variables (besides the orbital frequency $\Omega \equiv \dot{\varphi}$) resum non-circular contribution at every PN order

Non-circular PN information is still missing!

More on our nc factors

Noncircular extension of the PN sector:
$h_{+}-i h_{x}=D_{L}^{-1} \sum_{\ell=2}^{\ell_{\text {max }}} \sum_{m=-\ell}^{\ell} h_{\ell m-2} Y_{\ell m}(\Theta, \Phi)$
$\rightarrow h_{\ell m}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{N_{\mathrm{nc}}} \hat{h}_{\ell m}^{\mathrm{qc}} \hat{h}_{\ell m}^{\mathrm{nc}}$
$\hat{h}_{\ell m}^{\mathrm{nc}} \rightarrow$ Noncircular PN factor (2PN accurate for now)

INFN

More on our nc factors

Noncircular extension of the PN sector:

$\begin{aligned} & h_{+}-i h_{x}=D_{L}^{-1} \sum_{\ell=2}^{\ell_{\text {max }}} \sum_{m=-\ell}^{\ell} h_{\ell m-2} Y_{\ell m}(\Theta, \Phi) \\ & h_{\ell m}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{N_{\mathrm{nc}}} \hat{h}_{\ell m}^{\mathrm{qc}} \hat{h}_{\ell m \mathrm{~m}}^{\mathrm{nc}}\end{aligned}$
$\hat{h}_{\ell m}^{\text {nc }} \rightarrow$ Noncircular PN factor (2PN accurate for now)

Calculation procedure:

Starting generic-orbit waveform mode

$h_{\ell m}=h_{\ell m}^{N}+\frac{1}{c^{2}} h_{\ell m}^{1 \mathrm{PN}_{\text {inst }}}+\frac{1}{c^{3}} h_{\ell m}^{1.5 \mathrm{PN}_{\text {tail }}}+\frac{1}{c^{4}} h_{\ell m}^{2 \mathrm{PN}_{\text {inst }}}+O\left(c^{-5}\right)$

Obtained by translating in EOB variables the generic-orbit spherical modes $h_{\ell m}$ provided in [Mishra-Arun-lyer 2015], [Boetzel et al. 2019], [Khalil et al. 2021]

More on our nc factors

Noncircular extension of the PN sector:

$h_{+}-i h_{x}=D_{L}^{-1} \sum_{\ell=2}^{\ell_{\text {max }}} \sum_{m=-\ell}^{\ell} h_{\ell m-2} Y_{\ell m}(\Theta, \Phi)$
$h_{\ell m}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{N_{\mathrm{nc}}} \hat{h}_{\ell m}^{\mathrm{qc}} \hat{h}_{\ell m}^{\mathrm{nc}}$
$\hat{h}_{\ell m}^{\text {nc }} \rightarrow$ Noncircular PN factor (2PN accurate for now)

Calculation procedure:

Starting generic-orbit waveform mode

$h_{\ell m}=h_{\ell m}^{N}+\frac{1}{c^{2}} h_{\ell m}^{1 \mathrm{PN}_{\text {inst }}}+\frac{1}{c^{3}} h_{\ell m}^{1.5 \mathrm{PN}_{\text {tail }}}+\frac{1}{c^{4}} h_{\ell m}^{2 \mathrm{PN}_{\text {inst }}}+O\left(c^{-5}\right)$

Obtained by translating in EOB variables the generic-orbit spherical modes $h_{\ell m}$ provided in [Mishra-Arun-lyer 2015], [Boetzel et al. 2019], [Khalil et al. 2021]

More on our nc factors

Noncircular extension of the PN sector:

$h_{+}-i h_{x}=D_{L}^{-1} \sum_{\ell=2}^{\ell_{\text {max }}} \sum_{m=-\ell}^{\ell} h_{\ell m-2} Y_{\ell m}(\Theta, \Phi)$
$h_{\ell m}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{N_{\mathrm{nc}}} \hat{h}_{\ell m}^{\mathrm{qc}} \hat{h}_{\ell m}^{\mathrm{nc}}$
$\hat{h}_{\ell m}^{\text {nc }} \rightarrow$ Noncircular PN factor (2PN accurate for now)

Calculation procedure:

Starting generic-orbit waveform mode
$h_{\ell m}=h_{\ell m}^{N}+\frac{1}{c^{2}} h_{\ell m}^{1 \mathrm{PN}_{\text {inst }}}+\frac{1}{c^{3}} h_{\ell m}^{1.5 \mathrm{PN}_{\text {tail }}}+\frac{1}{c^{4}} h_{\ell m}^{2 \mathrm{PN}_{\text {inst }}}+O\left(c^{-5}\right)$

Obtained by translating in EOB variables the generic-orbit spherical modes $h_{\ell m}$ provided in [Mishra-Arun-lyer 2015], [Boetzel et al. 2019], [Khalil et al. 2021]

More on our nc factors

Noncircular extension of the PN sector:

$h_{+}-i h_{x}=D_{L}^{-1} \sum_{\ell=2}^{\ell_{\text {max }}} \sum_{m=-\ell}^{\ell} h_{\ell m-2} Y_{\ell m}(\Theta, \Phi)$
$h_{\ell m}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{N_{\mathrm{nc}}} \hat{h}_{\ell m}^{\mathrm{qc}} \hat{h}_{\ell m}^{\mathrm{nc}}$
$\hat{h}_{\ell m}^{\text {nc }} \rightarrow$ Noncircular PN factor (2PN accurate for now)
Calculation procedure:
Starting generic-orbit waveform mode
$h_{\ell m}=h_{\ell m}^{N}+\frac{1}{c^{2}} h_{\ell m}^{1 \mathrm{PN}_{\text {inst }}}+\frac{1}{c^{3}} h_{\ell m}^{1.5 \mathrm{PN}_{\text {tail }}}+\frac{1}{c^{4}} h_{\ell m}^{2 \mathrm{PN}_{\text {inst }}}+O\left(c^{-5}\right)$

Obtained by translating in EOB variables the generic-orbit spherical modes $h_{\ell m}$ provided in [Mishra-Arun-lyer 2015], [Boetzel et al. 2019], [Khalil et al. 2021]

Circular limit:
$p_{r} \rightarrow 0$ as well as all the time derivatives of the EOB variables, except for $\dot{\varphi}$

$$
\rightarrow \hat{h}_{\ell m}^{\mathrm{nc}} \equiv T_{2 \mathrm{PN}}\left[\frac{\hat{h}_{\ell m}}{\hat{h}_{\ell m}^{\mathrm{qc}}}\right]
$$

$T_{2 \mathrm{PN}} \rightarrow$ PN Taylor expansion truncated at the 2PN order

,

More on our nc factors

Noncircular extension of the PN sector:

$$
\begin{aligned}
& h_{+}-i h_{x}=D_{L}^{-1} \sum_{\ell=2}^{\ell_{\text {max }}} \sum_{m=-\ell}^{\ell} h_{\ell m-2} Y_{\ell m}(\Theta, \Phi) \\
& h_{\ell m}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{N_{\mathrm{nc}}} \hat{h}_{\ell m}^{\mathrm{qc}} \hat{h}_{\ell m}^{\mathrm{nc}}
\end{aligned}
$$

$\hat{h}_{\ell m}^{\text {nc }} \rightarrow$ Noncircular PN factor (2PN accurate for now) Internal structure:

$$
\hat{h}_{\ell m}^{\mathrm{nc}} \equiv T_{2 \mathrm{PN}}\left[\frac{\hat{h}_{\ell m}}{\hat{h}_{\ell m}^{4 \mathrm{cc}}}\right]=1+\frac{1}{c^{2}} \hat{h}_{\ell m}^{\mathrm{PN}} \mathrm{inst,nc}^{\text {in }}+\frac{1}{c^{3}} \hat{h}_{\ell m}^{1.5 \mathrm{PN}_{\text {tail.,nc }}}+\frac{1}{c^{4}} \hat{h}_{\ell m}^{2 \mathrm{PN}}
$$

More on our nc factors

Noncircular extension of the PN sector:

$\begin{aligned} & h_{+}-i h_{\times}=D_{L}^{-1} \sum_{\ell=2}^{\ell_{\text {ma }}} \sum_{m=-\ell}^{\ell} \\ & h_{\ell m}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{N_{\mathrm{nc}}} \hat{h}_{\ell m}^{\mathrm{qc}} \hat{h}_{\ell m}^{\mathrm{nc}} \\ & h_{\ell m}(\Theta, \Phi)\end{aligned}$
$\hat{h}_{\ell m}^{\text {nc }} \rightarrow$ Noncircular PN factor (2PN accurate for now)
Internal structure:
$\underbrace{\hat{h}_{\ell m}^{\mathrm{nc}} \equiv T_{2 \mathrm{PN}}\left[\frac{\hat{h}_{\ell m}}{\hat{h}_{\ell m}^{\mathrm{qc}}}\right]=1+\frac{1}{c^{2}} \hat{h}_{\ell m}^{1 \mathrm{PN}_{\text {inst,nc }}}+\frac{1}{c^{3}} \hat{h}_{\ell m}^{1.5 \mathrm{PN}_{\text {tail,nc }}}+\frac{1}{c^{4}} \hat{h}_{\ell m}^{2 \mathrm{PN}_{\text {inst,nc }}} \text {, }}_{\text {Additional factorization }}$

More on our nc factors

Noncircular extension of the PN sector:

$h_{+}-i h_{x}=D_{L}^{-1} \sum_{\ell=2}^{\ell_{\text {max }}} \sum_{m=-\ell}^{\ell} h_{\ell m-2} Y_{\ell m}(\Theta, \Phi)$
$h_{\ell m}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{N_{\mathrm{nc}}} \hat{h}_{\ell m}^{\mathrm{qc}} \hat{h}_{\ell m}^{\mathrm{nc}}$
$\hat{h}_{\ell m}^{\text {nc }} \rightarrow$ Noncircular PN factor (2PN accurate for now)
Internal structure:
$\underbrace{\hat{h}_{\ell m}^{\mathrm{nc}} \equiv T_{2 \mathrm{PN}}\left[\frac{\hat{h}_{\ell m}}{\hat{h}_{\ell m}^{\mathrm{qc}}}\right]=1+\frac{1}{c^{2}} \hat{h}_{\ell m}^{1 \mathrm{PN}_{\mathrm{inst,nc}}}+\frac{1}{c^{3}} \hat{h}_{\ell m}^{1.5 \mathrm{PN}_{\text {tail,nc }}}+\frac{1}{c^{4}} \hat{h}_{\ell m}^{2 \mathrm{PN}_{\mathrm{inst}, \mathrm{nc}}} \text {, }}_{\text {Additional factorization }}$

We developed two versions of our extra factor:

- [Placidi et al. 2022, Albanesi et al. 04/2022] $\rightarrow \hat{h}_{\ell m}^{\mathrm{nc}}$ [1]
- [Albanesi et al. 06/2022] $\rightarrow \hat{h}_{\ell m}^{\mathrm{nc}}[2]$

Difference in the computation of the instantaneous factor $\hat{h}_{\ell m}^{\mathrm{nc}} \mathrm{c}_{\mathrm{int}}$

The two version of our factors

The two version of our factors

Two versions of our noncircular PN factors:

- $\hat{h}_{\ell m}^{\mathrm{nc}}[1] \rightarrow$ All the time derivatives of the EOB variables are removed using the 2PN-expanded equations of motion
- $\hat{h}_{\ell m}^{\mathrm{nc}}[2] \rightarrow$ In the instantaneous part we keep them explicit $\rightarrow \hat{h}_{\ell m}^{\mathrm{nc}} \mathrm{c}_{\text {inst }}$ is a PN generalization of $\hat{h}_{\ell m}^{N_{\mathrm{nc}}}$

The two version of our factors

$$
\begin{aligned}
& \text { Spherical modes in } \\
& \text { radiative multipoles } \\
& \text { In terms of the STF } \\
& \text { multipoles of the source } \\
& \begin{array}{|c}
\begin{array}{l}
\text { even } \\
\ell+m
\end{array}
\end{array} h_{\ell m}=-\frac{U_{\ell m}}{\sqrt{2} c^{\ell+2}} \rightarrow U_{\ell m}=\frac{4}{\ell!} \sqrt{\frac{(\ell+1)(\ell+2)}{2 \ell(\ell+1)}} \alpha_{\ell m}^{L} U_{L} \\
& \rightarrow U_{L}=\frac{d^{\ell}}{d t^{\ell}} I_{L}+O\left(c^{-3}\right) \\
& \begin{array}{l}
\begin{array}{l}
\text { odd } \\
\ell+m
\end{array}
\end{array} h_{\ell m}=i \frac{V_{\ell m}}{\sqrt{2} c^{\ell+3}} \rightarrow V_{\ell m}=-\frac{8}{\ell!} \sqrt{\frac{\ell(\ell+2)}{2(\ell-1)(\ell+1)}} \alpha_{\ell m}^{L} V_{L} \rightarrow V_{L}=\frac{d^{\ell}}{d t^{\ell}} J_{L}+O\left(c^{-3}\right)
\end{aligned}
$$

Two versions of our noncircular PN factors:

- $\hat{h}_{\ell m}^{\mathrm{nc}}[1] \rightarrow$ All the time derivatives of the EOB variables are removed using the 2PN-expanded equations of motion
- $\hat{h}_{\ell m}^{\mathrm{nc}}[2] \rightarrow$ In the instantaneous part we keep them explicit $\rightarrow \hat{h}_{\ell m}^{\mathrm{nc}} \mathrm{c}_{\text {ist }}$ is a PN generalization of $\hat{h}_{\ell m}^{N_{\text {nc }}}$ Example - Instantaneous noncircular PN factor for the mode h_{22} :

$$
\begin{aligned}
& h_{22}^{\text {inst }} \sim U_{22}^{\text {inst }} \sim U_{i j}^{\text {inst }}=\ddot{I}_{i j}+O\left(c^{-5}\right) \rightarrow \begin{array}{|c}
\text { 2PN eqs. } \\
\text { of motion }
\end{array} \rightarrow h_{22}^{\text {inst }}\left(r, \varphi, p_{r}, p_{\varphi}\right) \xrightarrow{\text { factorization }} \hat{h}_{22}^{\mathrm{nc}} \mathrm{c}_{\text {int }} \text { of } \hat{h}_{22}^{\mathrm{nc}}[1] \\
& \longrightarrow h_{22}^{\text {inst }}\left(r, \dot{r}, \ddot{r}, \varphi, \dot{\varphi}, \ddot{\varphi}, p_{r}, \dot{p}_{r}, \ddot{p}_{r}, p_{\varphi}, \dot{p}_{\varphi}, \ddot{p}_{\varphi}\right) \xrightarrow{\text { factorization }} \hat{h}_{22}^{\mathrm{nc}} \mathrm{inst}_{\text {int }} \text { of } \hat{h}_{22}^{\mathrm{nc}}[2]
\end{aligned}
$$

Waveform results [1]: test-mass limit

Simple testing ground: GW of a test-mass plunging on a black hole ($\nu \rightarrow 0$)

Models: $p_{0} \equiv$ initial semilatus rectum

$$
\hat{a}=0
$$

$$
e_{0}=0.3 \quad p_{0}=7
$$

$$
\begin{aligned}
& \bullet \mathbf{N} \rightarrow h_{\ell m}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{N_{\mathrm{nc}}} \hat{h}_{\ell m}^{\mathrm{qc}} \\
& \bullet 2 \mathrm{PN} \rightarrow h_{\ell m}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{N_{\mathrm{nc}}} \hat{h}_{\ell m}^{\mathrm{qc}} \hat{h}_{\ell m}^{\mathrm{nc}}[1] \\
& \Psi_{\ell m} \equiv h_{\ell m} / \sqrt{(\ell+2)(\ell+1) \ell(\ell-1)} \begin{array}{l}
\hat{a} \equiv \mathrm{BH} \text { spin } \\
e_{0} \equiv \text { initial eccentricity }
\end{array}
\end{aligned}
$$

Waveform results [1]: test-mass limit

Simple testing ground: GW of a test-mass plunging on a black hole ($\nu \rightarrow 0)$

Models:
\(\left.\begin{array}{l}\bullet \mathbf{N} \rightarrow h_{\ell m}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{N_{\mathrm{nc}}} \hat{h}_{\ell m}^{\mathrm{qc}}

\bullet 2 \mathbf{P N} \rightarrow h_{\ell m}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{N_{\mathrm{nc}}} \hat{h}_{\ell m}^{\mathrm{qc}} \hat{h}_{\ell m}^{\mathrm{nc}}[1]\end{array}\right]\)| $\underline{\Psi_{\ell m} \equiv h_{\ell m} / \sqrt{(\ell+2)(\ell+1) \ell(\ell-1)}} \begin{array}{l}\hat{a} \equiv \mathrm{BH} \text { spin } \\ e_{0} \equiv \text { initial eccentricity } \\ p_{0} \equiv \text { initial semilatus rectum }\end{array}$ |
| :--- |

$$
\begin{aligned}
& \phi_{\ell m} \equiv \arctan \frac{\mathfrak{S}\left(h_{\ell m}\right)}{\mathfrak{R}\left(h_{\ell m}\right)} \\
& A_{\ell m} \equiv\left|h_{\ell m}\right|
\end{aligned}
$$

Waveform results [1]: test-mass limit

Simple testing ground: GW of a test-mass plunging on a black hole ($\nu \rightarrow 0$)

Models:

- $\mathbf{N} \rightarrow h_{\ell m}=h_{\ell m}^{N_{\text {co }}} \hat{h}_{\ell m}^{N_{n c}} \hat{h}_{\ell m}^{q \mathrm{qc}}$
- $2 \mathrm{PN} \rightarrow h_{\ell m}=h_{\ell m}^{N_{\mathrm{q}}} \hat{h}_{\ell m}^{N_{\mathrm{c}}} \hat{h}_{\ell m}^{\mathrm{qc}} \hat{h}_{\ell m}^{\mathrm{nc}}[1]$
$\Psi_{\ell m} \equiv h_{\ell m} / \sqrt{(\ell+2)(\ell+1) \ell(\ell-1)}$
$\hat{a} \equiv \mathrm{BH}$ spin
$e_{0} \equiv$ initial eccentricity
$p_{0} \equiv$ initial semilatus rectum

For each initial eccentricity, the extra $\hat{h}_{\ell m}^{\mathrm{nc}}[1]$ factor improves the phase but has a marginal effect on the amplitude

Waveform results [2]: test-mass limit

Simple testing ground: GW of a test-mass plunging on a black hole ($\nu \rightarrow 0$)

Models:

- N

$$
\rightarrow \quad h_{\ell m}=h_{\ell m}^{N_{\mathrm{qc}}} \hat{h}_{\ell m}^{N_{\mathrm{nc}}} \hat{h}_{\ell m}^{\mathrm{qc}}
$$

Waveform results [2]: test-mass limit

Simple testing ground: GW of a test-mass plunging on a black hole ($\nu \rightarrow 0$)

Models:

- N

$\Rightarrow \hat{h}_{\ell m}^{\mathrm{nc}}[1]$ and $\hat{h}_{\ell m}^{\mathrm{nc}}[2]$ give similar phase corrections but $\hat{h}_{\ell m}^{\mathrm{nc}}$ [2] also yields a small but significant improvement at the level of the amplitude

Waveform results [2]: test-mass limit

Simple testing ground: GW of a test-mass plunging on a black hole ($\nu \rightarrow 0$)

Models:

- N

$$
\rightarrow \quad h_{\ell m}=h_{\ell m}^{N_{c \cdot}} \hat{h}_{\ell_{m}}^{N_{\text {ne }}} \hat{h}_{\ell m}^{q \mathrm{c}}
$$

- 2PN[1] $\rightarrow h_{\ell m}=h_{\ell m}^{N_{\text {de }}} \hat{h}_{\ell m}^{N_{n \mathrm{n}}} \hat{h}_{\ell m}^{\mathrm{qc}} \hat{h}_{\ell m}^{\mathrm{nc}}[1]$
- 2PN[2] $\rightarrow h_{\ell m}=h_{\ell m}^{N_{\mathrm{cq}}} \hat{h}_{\ell m}^{N_{n \mathrm{cc}}} \hat{h}_{\ell m}^{\mathrm{qc}} \hat{h}_{\ell m}^{\mathrm{nc}}[2]$
$\Longrightarrow \hat{h}_{\ell m}^{\mathrm{nc}}[1]$ and $\hat{h}_{\ell m}^{\mathrm{nc}}$ [2] give similar phase corrections but $\hat{h}_{\ell m}^{\mathrm{nc}}$ [2] also yields a small but significant improvement at the level of the amplitude

Qualitative difference in the amplitude corrections [1] and [2]:

\Rightarrow As opposed to $\hat{h}_{\ell m}^{\mathrm{nc}}[1], \hat{h}_{\ell m}^{\mathrm{nc}}$ [2] brings amplitude corrections that do not vanish at the apastra and periastra (vertical lines in the plot) of the orbital motion

Flux results for the geodesic motion [1]-[2]

Analytical/numerical relative differences averaged over a geodesic orbit with $\mathrm{p}=9$

Models:

Orbit averaged fluxes:

$$
\begin{array}{ll}
\left\langle\dot{J}_{\ell m}\right\rangle=\frac{1}{T_{r}} \int_{0}^{T_{r}}\left[-\frac{1}{8 \pi} m \mathfrak{\Im}\left(\dot{h}_{\ell m} h_{\ell m}^{*}\right)\right] d t & T_{r} \rightarrow \text { radial period } \\
\left\langle\dot{E}_{\ell m}\right\rangle=\frac{1}{T_{r}} \int_{0}^{T_{r}}\left[\frac{1}{8 \pi}\left|\dot{h}_{\ell m}\right|^{2}\right] d t &
\end{array}
$$

Waveform results [1]-[2]: comparable masses

Comparisons with the waveforms of the Simulating eXtreme Spacetime (SXS) catalog [Placidi et al. 2021]: EOB/NR unfaithfulness analysis for the model with $\hat{h}_{\ell m}^{\text {nc }}$ [1]

[Albanesi et al. 06/2022]: still no unfaithfulness analysis for the $\hat{h}_{\ell m}^{\mathrm{nc}}$ [2] model but we checked that the additional improvement over $\hat{h}_{\ell m}^{\mathrm{nc}}$ [1] seen in the test-mass limit carries over to the comparable mass case, where the amplitude corrections at the radial turning points are even more relevant

EOB approach for more general dynamics

 Aligned/antialigned spins:$r_{c} \equiv$ centrifugal radius

- $\left.H_{\mathrm{eff}} \rightarrow H_{\mathrm{eff}}\right|_{r \rightarrow r_{c}}+$ spin-orbit terms
. $A(r) \rightarrow A\left(r_{c}\right) \frac{1+2 M / r_{c}}{1+2 M / r}, \quad D(r) \rightarrow D\left(r_{c}\right) \frac{r^{2}}{r_{c}^{2}}$
- $\rho_{\ell m} \rightarrow \rho_{\ell m}^{\mathrm{orb}} \rho_{\ell m}^{\mathrm{spin}}$

Tidal deformations (Neutron stars):
. $A(r) \rightarrow A(r)+A_{\text {tidal }}^{5 \mathrm{PN}}\left(r, k_{\lambda}\right)$
Precession

- Euler rotating aligned-spin (non-precessing) waveforms from a precessing frame to an inertial frame

Eccentricity e and semilatus rectum p
There is no gauge invariant definition, we define them in analogy with Newtonian mechanics as:

$$
\begin{aligned}
r(\varphi)=\frac{p}{1-e \cos \varphi}, & \rightarrow \quad r_{p}=\frac{p}{1+e}, \quad r_{a}=\frac{p}{1-e} \\
& \rightarrow \quad e=\frac{r_{a}-r_{p}}{r_{a}+r_{p}}, \quad p=\frac{2 r_{a} r_{p}}{r_{a}+r_{p}}
\end{aligned}
$$

where the numerical values of periastron and apastron $\left(r_{p}, r_{a}\right)$ follows from Hamilton's equations of motion in terms of the EOB Hamiltonian

Notice: this definition is valid as long as bound orbits are considered

[^0]: Energy map between
 $\mathscr{E}_{\text {eff }}^{\mathrm{NR}} \equiv \mathscr{E}_{\text {eff }}-\mu c^{2}$ and
 $E^{\mathrm{NR}}=E^{-}-M c^{2}$

