Temperature inversion in a gravitationally bound plasma: the case of the solar corona

Luca Barbieri

In collaboration with: Lapo Casetti, Andrea Verdini and Simone Landi

Florence theory group day February 2023

What is temperature inversion?

Non equilibrium stationary configuration (non isothermal)

Number density and temperature are anticorrelated

Florence theory group day February 2023

The solar atmosphere: coronal heating problem (temperature inversion)

[M.Druckmuller eclipse August 2008]

Standard approaches: fluid dynamics approaches The hypothesis of LTE (local thermal equilibrium)

Temperature inversion

Number density and temperature are anticorrelated

Florence theory group day February 2023

Non-equilibrium approach: velocity filtration (J.D. Scudder 1992)

What did we do?

The kinetic (numerical) model

- Self-electrostatic interactions (an electrostatic plasma).
- Thermal contact with the Chromosphere (a thermostat).

Fluctuating temperature of the Chromosphere

- Fluctuating temperature of the Chromosphere (thermostat) → Temperature inversion.
- Theoretical model to explain the results of the simulations.

The kinetic (numerical) model

- Loop (Semicircular tube).
- External gravitational field plus the Pannekoek-Rossland field.
- Thermal contact with the Chromosphere (thermostat).
- Cylindrical symmetry (one-dimensional model).
- HMF (Hamiltonian mean-field) assumption to treat the self-electrostatic field (only the first Fourier mode).

$$\begin{split} M_e \ddot{x}_{j,e} &= -eE(x_{j,e}) + g \frac{M_e + M_i}{2} \sin\left(\frac{\pi x_{j,e}}{2L}\right) \\ M_i \ddot{x}_{j,i} &= eE(x_{j,i}) + g \frac{M_e + M_i}{2} \sin\left(\frac{\pi x_{j,i}}{2L}\right) \\ E(x) &= \frac{4eN}{S} q \sin\left(\frac{\pi x}{L}\right) \\ q &= q_i - q_e \quad q_{e/i} = \frac{1}{N} \sum_{j=1}^N \cos\left(\frac{\pi x_{j,e/i}}{L}\right) \end{split}$$

Luca Barbieri

The system of units

All the quantities are normalized as

$$L_0 = \frac{L}{\pi} \quad v_0 = \sqrt{\frac{k_B T_0}{M_e}} \quad M_0 = M_e$$

The equations of motion in dimensionless units

$$\begin{split} \ddot{\theta}_{j,e} &= -Cq[\{\theta_{j,e/i}\}]\sin\theta_{j,e} + \tilde{g}\sin\left(\frac{\theta_{j,e}}{2}\right) \\ M\ddot{\theta}_{j,i} &= Cq[\{\theta_{j,e/i}\}]\sin\theta_{j,i} + \tilde{g}\sin\left(\frac{\theta_{j,i}}{2}\right) \quad \theta_{j,e/i} = \frac{\pi x_{j,e/i}}{L} \\ q[\{\theta_{j,e/i}\}] &= q_i[\{\theta_{j,i}\}] - q_e[\{\theta_{j,e}\}] \quad q_{e/i}[\{\theta_{j,e/i}\}] = \frac{1}{N}\sum_{j=1}^N \cos\theta_{j,e/i} \\ M &= \frac{M_i}{M_e} \quad C = 2\left(\frac{t_0}{t_{p,e}}\right)^2 \quad \tilde{g} = \frac{gL_0(M_i + M_e)}{2k_BT_0} \end{split}$$

Florence theory group day February 2023

The thermostat temperature fluctuations

The system

- A two-component plasma in an external field.
- Fluctuating temperature at the base.

 $au_{i} \ll t_{r,2}$ thermal relaxation time back to T_0

 τ sorted from an exponential distribution

$$f(\tau) = \frac{1}{\langle \tau \rangle} e^{-\frac{\tau}{\langle \tau \rangle}}$$

T sorted from an exponential distribution

$$f(T) = \frac{1}{T_p} e^{-\frac{T-T_0}{T_p}}$$

The temperature inversion

The theoretical model: temporal coarse-graining

$T = \begin{bmatrix} \Delta t & \Delta t & \Delta t \\ T_0 & \Delta t & \Delta t & \tilde{f}_{\alpha,SS}(\theta, p) = D\left(A\int_1^{+\infty} dT \frac{f(T)}{TM_{\alpha}}e^{-\frac{H_{\alpha}}{T}} + \frac{(1-A)}{M_{\alpha}}e^{-H_{\alpha}}\right) \\ H_{\alpha} = \frac{p^2}{2M_{\alpha}} + \tilde{g}z \quad z = 2\cos\left(\frac{\theta}{2}\right)$

Luca Barbieri

Why temperature inversion?: the theoretical model vs numerics

$$C = 400 \quad M = \frac{M_i}{M_e} = 1836 \quad T_0 = 10000K \quad z_{top} - z_{bottom} = 2 \cdot 10^4 km \quad T_p = 900000K \quad A = \frac{\Delta t}{\Delta t + \langle \tau \rangle} = 0.1$$
Theoretical model
$$z_1 = 2.3 \cdot 10^3 km \quad z_2 = 3.9 \cdot 10^3 km \quad z_3 = 1.1 \cdot 10^4 km$$

$$z_1^{0^0} = \frac{10^0}{10^0} = \frac{10^$$

LUCU DUIDIEI

T(K)

Conclusions

- We have shown with a kinetic (numerical) model how temperature fluctuations in the high Chromosphere are able to bring the plasma towards a non-thermal configuration with temperature inversion.
- We have a theoretical model able to explain the results of the simulations.

Why the fluctuating temperature of the Chromosphere (thermostat)?

Jets and spicole

Solar raster scan at OV 629

Magnetic reconnection

Luca Barbieri