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What is quantum state/channel discrimination?

e Discriminating between possible quantum states/channels
(unsurprisingly).

We are presented with an unknown quantum state/channel.

Our task is to decide which state/channel it is (from a finite set).
Carry out measurement/interact with probe.

Quantum metrology is more concerned with parameter estimation.



Why carry out quantum state/channel discrimination?

e Many physical experiments can be regarded as
state/channel discrimination.

e A process can be modelled as a quantum
operation.
Any probe can be described as a quantum state.

e Deciding which physical process occurs is
channel discrimination.

e Example: quantum target detection.
Example: probing a substance with photons to
find transmission.

e Example: quantum reading.




Grouping states/channels into classes

e Suppose we are not interested in
which specific state we have.

e Instead, we are interested in a
property of that state.

e Example: average photon number.

e For probing a grid of pixels, we might
be looking for a global property.

e Example: reading a barcode/number.

e Example: cluster detection.




Ultimate bounds on state discrimination

Better measurement devices perform better measurements!

We cannot perfectly distinguish between non-orthogonal quantum states.
There is an ultimate bound on quantum state/channel discrimination.
Focus on binary hypothesis testing.

Two cases: symmetric and asymmetric.

Symmetric: Helstrom bound. Asymmetric: quantum Neyman-Pearson.
Can be hard to calculate exactly for large states.

Asymptotic bounds: quantum Stein’s lemma/quantum Hoeffding bound.
What about CV states/large DV states?



Analytical bounds for non-asymptotic asymmetric state
discrimination e

—— CAQCB

e Upper and lower bounds based — oaqce
on the fidelity, the quantum T\ e
Chernoff bound, and the
quantum relative entropy.

e Lower bound based on fidelity is
exact for pure states.

e Optimal upper bound based on
the quantum Chernoff bound is
asymptotically tight. 7 N
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Demonstrating quantum advantage in imaging

e Quantum advantage means better
performance than every classical
protocol.

e Often compare lower bounds to
upper bounds.

e C(lassical imaging protocols use
classical probe states.

e Maximise over all classical probes.

e TMSVs show quantum advantage
for probing lossy channels.
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Is it robust enough for pattern recognition?

e Quantum advantage may be lost
by data processing. 2
e Machine learning is hard to study
analytically.
e Two forms of pattern recognition: (a) (b)

supervised and unsupervised.
e Example: Quantum-enhanced
barcode decoding and pattern 2 ’
recognition.
e What about unsupervised?

(d)




e (Can study numerically.
e We find that we can achieve quantum
advantage for cluster detection.
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Learning a quantum measurement

We previously considered applying machine learning to a quantum
measurement result.

What about learning a measurement to directly decide the class?
Suppose we have a limited training set: how well can we generalise?
Example: quantum phase recognition.

Now suppose we start with classical data.

Can consider different embeddings, with different approximation errors.
What is a “good” embedding?



Generalization in Quantum Machine Learning: a
Quantum Information Perspective

e (Can bound the generalisation error with a
quantity that depends on the embedding.

e Scales with T, where T is the number of
training samples.

e (Cannot simultaneously minimise the
generalisation error and the approximation
error.

e A good embedding has a small intra-class
distance and large inter-class distance.
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Conclusions

Many physical processes can be modelled as quantum channels.
Can find ultimate bounds on optimal state/channel discrimination.
Quantum probes can have quantum advantage.

This advantage can be robust enough to survive machine learning.
Measurements learned through machine learning can generalise.
If we can choose the embedding, we want a good embedding.
Current work: out of distribution generalisation.



