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Example of static linear response

Solution to  :          (outside the sphere)


Susceptibility:      

∇2Φ = 0 Φ(r, θ) = − E0 r cos θ +
p cos θ

r2

χ =
p
E0

= ( ϵr − 1
ϵr + 2 ) a3

[ Jackson]

Growing = probe Decaying = response



Static response 

of 4D GR Black Holes
Linear perturbations of 4D GR black holes are described                           
by the Teukolsky equation for any . Focus on 


• boundary condition at the horizon:        =  finite


• at infinity:  


• susceptibility =  =              


                                  for any  

s, ℓ, m ω = 0.

ϕ
r=r+

ϕ ∼ rℓ + … +
1

rℓ+1
+ …

coefficient of 1/rℓ+1

coefficient of rℓ
χ′￼+ iχ′￼′￼

χ′￼= 0 s, ℓ, m



Static response 

of 4D GR Black Holes
A few comments:


• for , we also have 


• for ,   Love numbers


•   away from 4D or GR


• Some confusion in the literature on Kerr

1.  at 


2. growing solution also contains  subleading terms

⃗JBH = 0 χ′￼′￼= 0

s = 2 χ′￼=

χ′￼≠ 0

χ′￼′￼≠ 0 ω = 0

1/rℓ+1



Black holes are the only known objects 

with  for any . χ′￼= 0 s, ℓ, m

Theory: naturalness problem

Observations: clear target


e.g. for stars, χ′￼= 𝒪(1) × radius2ℓ+1



Point-particle EFT

Interactions between objects and long wavelength fields 
described by, e.g. for spin 1:


        


Higher derivative terms are suppressed by:


                         size                     (size / v) 


Consider object neutral (  ) and at rest (  ).

S = ∫ dτ [−m + qUμAμ + (c1ημν + c2UμUν) Fμ
λFνλ + …]

× ⃗∂ × ∂t

q = 0 Uμ = δμ
0



Linear response in the p.p. EFT

Setting also , our action reduces to


                  ,    with     constant


If  then we expect . 


Our action changes by


                       

⃗E = ⃗E 0 , ⃗B = 0

S = ∫ dt (−V0) V0 =

⃗E 0 → ⃗E 0 + δ ⃗E , V0 → V0 − ⃗p ⋅ δ ⃗E

δS = ∫ dt 2(2c1 − c2) ⃗E 0 ⋅ δ ⃗E χ′￼= 2(2c1 − c2)



In order to have  for any ,

an infinite number of Wilson coefficients 


must vanish. 

χ′￼= 0 s, ℓ, m

This is usually a consequence of symmetries...



Do black holes have more symmetries

than regular objects? 

YES!

1. Charalambous, Dubovsky, Ivanov [2103.01234, 2209.02091]

2. Hui, Joyce, RP, Santoni, Solomon [2105,01069, 2203,08832]



Setup

For simplicity, focus on free scalar on Schwarzschild:


     ,             


Ultimately interested in static fields.


For now, consider small, finite frequencies to discuss all 
symmetries in single framework.

S =
1
2 ∫ dtdrdΩ [ r4

Δ
(∂tϕ)2 − Δ(∂rϕ)2 + ϕ∇2

S2
ϕ] Δ = r(r − rs)



Near-zone Approximation

Consider scalar modes with  : 


Near-zone approximation:   

rs ≪ 1/ω

r ≪ 1/ω

rs 1/ω
r

Near zone Far zone

r4

Δ
(∂tϕ)2 →

r4
s

Δ
(∂tϕ)2



Effective Geometry

•  is now minimally coupled to


• : 6 Killing vectors  


• Conformally flat: 9 conformal Killing vectors


• Ricci scalar = 0:  is conformally coupled

ϕ

AdS2 × S2

ϕ

ds2 ≃
Δ
r2

s
dt2 +

r2
s

Δ
dr2 + r2

s dΩ2 (Δ ≡ r2 − rsr)

S2

AdS2



Hidden Symmetries

Near-zone action is invariant under :


 


with 3  isometries, 3  isometries, 9 CKVs


3  isometries =  = CDI symmetries


3  isometries + 3 CKVs =  = our symmetries 

SO(4,2)

δϕ = ξμ∂μϕ+ 1
4 ϕ∇μξμ

ξμ = S2 AdS2

AdS2 SO(2,1) ≃ SL(2,ℝ)/ℤ2

S2 SO(3,1)



 SymmetriesSO(3,1)

•  isometries + 3 CKVs:


• This  is an exact symmetry of the static sector


• NOTE: doesn't rely on near-zone approximation

S2

SO(3,1)

Hui, Joyce, RP, Santoni, Solomon [2105,01069, 2203,08832]

J01 = − 2Δ
rs

cos θ ∂r−
∂rΔ
rs

sin θ ∂θ

J02 = − cos ϕ [ 2Δ
rs

sin θ ∂r−
∂rΔ
rs ( tan ϕ

sin θ ∂ϕ − cos θ∂θ)]
J03 = − sin ϕ [ 2Δ

rs
sin θ ∂r−

∂rΔ
rs ( cot ϕ

sin θ ∂ϕ + cos θ∂θ)]



Vanishing Response in the IR

Regular  limit: special conformal transformations (SCTs)


                                     (weight 1/2)


Must be symmetries of the static long-distance EFT of BHs:


     


These worldline couplings would break SCTs  .


For a star, SCTs are explicitly broken at scale  

rs → 0

δϕ → ci ( xi − ⃗x2∂i + 2xi ⃗x ⋅ ⃗∂) ϕ

S = −
1
2 ∫ d4x (∇iϕ)2 − m∫ dt [1 +

λ2

2
(∇iϕ)2 +

λ4

2
(∇i ∇jϕ)2 + …]

→ λ2 = λ4 = … = 0

r⋆ → λ2 ∼ r4
⋆ , …



 Symmetries in the UVSO(3,1)

Static equations:


                  


The  ’s  mix modes with different :


                                   


Ladder algebra:


                       

Hℓ ϕℓ = 0 , with Hℓ = − Δ [∂r(Δ∂r) − ℓ(ℓ + 1)]

J0i ℓ

δϕℓ = cℓ−1D+
ℓ−1ϕℓ−1 − cℓD−

ℓ+1ϕℓ+1

Hℓ+1D+
ℓ = D+

ℓ Hℓ ⟹ Hℓ+1(D+
ℓ ϕℓ) = 0

Hℓ−1D−
ℓ = D−

ℓ Hℓ ⟹ Hℓ−1(D−
ℓ ϕℓ) = 0



 Symmetries in the UVSO(3,1)

We can also define recursively the following operators:


                               


which generate symmetries at fixed :      .

Q0 = Δ∂r, Qℓ = D+
ℓ−1Qℓ−1D−

ℓ

ℓ [Hℓ, Qℓ] = 0



Ladder Symmetries

solution 1 solution 2

ℓ

ℓ − 1

ℓ + 1

D+
ℓ

D−
ℓ

Qℓ



Vanishing Response in the UV

Current conservation for  symmetries:   


                                     


Qℓ ∂rJr
ℓ = 0

Jr
ℓ = [Δ∂r (D−

1 … D−
ℓ ϕℓ)]

2

r = rs

constant

1/rℓ+1

r = ∞

divergent

rℓ

Jr
ℓ = 0

Jr
ℓ ≠ 0



 SymmetriesSO(3,1)

A few comments:


• exact same story for scalar on Kerr, but 


• For , symmetries of the Teukolsky equation


• Also a ladder in spin:   


• Similar ladder structure in : transparency

Jr
ℓ = (χ′￼′￼)2

s = 1,2

ψℓ,s+1 = E+
s ψℓ,s, ψℓ,s−1 = E−

s ψℓ,s

AdS2n+1

see also: Kehagias, Perrone & Riotto [2211.02384]

Compton & Morrison  [2003.08023]



Conclusions
Hidden symmetries of black holes: 


• conformal Killing vectors of the near-zone metric 
ensure that black holes have vanishing response.


• ladder symmetries 
shed further light on solutions.


Future directions:


• Understanding at the level of the action beyond scalars?


• Do ladder symmetries constrain dissipative response in EFT? 


• Systematic EFT understanding of near-zone approximation? 



 SymmetriesSO(2,1)

 isometries:


Solutions finite at  belong to finite dim. irreps of 

AdS2

rs SO(2,1)

T = 2rs ∂t L± = e±t/2rs(2rs ∂r Δ∂t ∓ Δ∂r)

Charalambous, Dubovsky, Ivanov [2103.01234, 2209.02091]

                  

                               

                             

 static                   

                               

SO(2,1) SO(3)
T J3
L± J±

m = 0
ℓ ℓ

Lℓ+1
− (static) ∼ ∂ℓ+1

r (static) = 0

no 1/rℓ+1

no response



A few comments:


• originally derived as symmetries of Teukolsky eq., exist for 

Kerr and any integer 


•  take static solutions into solutions  

• mix IR & UV outside near-zone regime: formal trick


• purely UV argument, no point-particle counterpart.

s

L± ∼ e±t/rs

 SymmetriesSO(2,1)
Charalambous, Dubovsky, Ivanov [2103.01234, 2209.02091]



Conformal Killing Vectors 

J01 = − 2Δ
rs

cos θ ∂r−
∂rΔ
rs

sin θ ∂θ

J02 = − cos ϕ [ 2Δ
rs

sin θ ∂r−
∂rΔ
rs ( tan ϕ

sin θ ∂ϕ − cos θ∂θ)]
J03 = − sin ϕ [ 2Δ

rs
sin θ ∂r−

∂rΔ
rs ( cot ϕ

sin θ ∂ϕ + cos θ∂θ)]
K± = e±t/2rs

Δ
rs

cos θ ( r3
s

Δ ∂t ∓ ∂rΔ∂r ∓ 2 tan θ∂θ)
M± = e±t/2rs cos ϕ [ r2

s

Δ
sin θ∂t∓

Δ∂rΔ sin θ
rs

∂r±
2 Δ

rs
cos θ∂θ∓

2 Δ
rs

tan ϕ
sin θ ∂ϕ]

N± = e±t/2rs sin ϕ [ r2
s

Δ
sin θ∂t∓

Δ∂rΔ sin θ
rs

∂r±
2 Δ

rs
cos θ∂θ± 2 Δ

rs

cot ϕ
sin θ ∂ϕ]

Exact symmetries 
of the static sector



Ladder Symmetries in de Sitter
Compton and Morrison [2003.08023]


Massive scalar in : 


For odd: dS transparency


Similar ladder structure.

dSd+1 [−∂2
t −

ν(ν + 1)
cosh2 t

− k2] ϕ = 0, (ν = ℓ − 1 + d /2)

d + 1 =

t = − ∞

e+ikt

t = + ∞

e−ikt

e+ikt

e−ikt


