The naturalness of vanishing black hole response

Riccardo Penco

GGI, Apr 18, 2023

Carnegie Mellon University
Mellon College of Science | Physics

The naturalness of vanishing black hole
 response - linear, (mainly) static,
 Ricardo Penco

In collaboration with

Lam Hui
Columbia University

Austin Joyce
University of Chicago

Luca Santoni

APC, Paris

Adam Solomon
McMaster University

Based on 2010.00593, 2105.01069, 2203.08832

Example of static linear response

Figure 4.6

Solution to $\nabla^{2} \Phi=0: \quad \Phi(r, \theta)=-E_{0} r \cos \theta+\frac{p \cos \theta}{r^{2}} \quad$ (outside the sphere)

Susceptibility: $\quad \chi=\frac{p}{E_{0}}=\left(\frac{\epsilon_{r}-1}{\epsilon_{r}+2}\right) a^{3}$

Static response of 4D GR Black Holes

Linear perturbations of 4D GR black holes are described by the Teukolsky equation for any s, ℓ, m. Focus on $\omega=0$.

- boundary condition at the horizon: $\left.\phi\right|_{r=r_{+}}=$finite
- at infinity: $\phi \sim r^{\ell}+\ldots+\frac{1}{r^{\ell+1}}+\ldots$
. susceptibility $=\frac{\text { coefficient of } 1 / r^{\ell+1}}{\text { coefficient of } r^{\ell}}=\chi^{\prime}+i \chi^{\prime \prime}$

$$
\chi^{\prime}=0 \text { for any } s, \ell, m
$$

Static response of 4D GR Black Holes

A few comments:

- for $\vec{J}_{B H}=0$, we also have $\chi^{\prime \prime}=0$
- for $s=2, \quad \chi^{\prime}=$ Love numbers
- $\chi^{\prime} \neq 0$ away from 4D or GR
- Some confusion in the literature on Kerr

1. $\chi^{\prime \prime} \neq 0$ at $\omega=0$
2. growing solution also contains $1 / r^{\ell+1}$ subleading terms

Black holes are the only known objects with $\chi^{\prime}=0$ for any s, ℓ, m.

Observations: clear target
e.g. for stars, $\chi^{\prime}=\mathcal{O}(1) \times$ radius $^{2 \ell+1}$

Theory: naturalness problem

Point-particle EFT

Interactions between objects and long wavelength fields described by, e.g. for spin 1 :

$$
S=\int d \tau\left[-m+q U^{\mu} A_{\mu}+\left(c_{1} \eta^{\mu \nu}+c_{2} U^{\mu} U^{\nu}\right) F_{\mu}{ }^{\lambda} F_{\nu \lambda}+\ldots\right]
$$

Higher derivative terms are suppressed by:

$$
\operatorname{size} \times \vec{\partial} \quad(\text { size } / v) \times \partial_{t}
$$

Consider object neutral ($q=0$) and at rest ($U^{\mu}=\delta_{0}^{\mu}$).

Linear response in the p.p. EFT

Setting also $\vec{E}=\vec{E}_{0}, \vec{B}=0$, our action reduces to

$$
S=\int d t\left(-V_{0}\right), \text { with } \quad V_{0}=\text { constant }
$$

In order to have $\chi^{\prime}=0$ for any s, ℓ, m, an infinite number of Wilson coefficients must vanish.

This is usually a consequence of symmetries...

Do black holes have more symmetries than regular objects?

YES!

1. Charalambous, Dubovsky, Ivanov [2103.01234, 2209.02091]
2. Hui, Joyce, RP, Santoni, Solomon [2105,01069, 2203,08832]

Setup

For simplicity, focus on free scalar on Schwarzschild:

$$
S=\frac{1}{2} \int d t d r d \Omega\left[\frac{r^{4}}{\Delta}\left(\partial_{t} \phi\right)^{2}-\Delta\left(\partial_{r} \phi\right)^{2}+\phi \nabla_{S_{2}}^{2} \phi\right], \quad \Delta=r\left(r-r_{s}\right)
$$

Ultimately interested in static fields.

For now, consider small, finite frequencies to discuss all symmetries in single framework.

Near-zone Approximation

Consider scalar modes with $r_{s} \ll 1 / \omega$:

Near-zone approximation: $r \ll 1 / \omega$

$$
\frac{r^{4}}{\Delta}\left(\partial_{t} \phi\right)^{2} \quad \rightarrow \quad \frac{r_{s}^{4}}{\Delta}\left(\partial_{t} \phi\right)^{2}
$$

Effective Geometry

- ϕ is now minimally coupled to

$$
d s^{2} \simeq \underbrace{\frac{\Delta}{r_{s}^{2}} d t^{2}+\frac{r_{s}^{2}}{\Delta} d r^{2}}_{A d S_{2}}+r_{s}^{2} d \Omega^{2}
$$

- $A d S_{2} \times S^{2}$: 6 Killing vectors
- Conformally flat: 9 conformal Killing vectors
- Ricci scalar = 0: ϕ is conformally coupled

Hidden Symmetries

Near-zone action is invariant under $S O(4,2)$:

$$
\delta \phi=\xi^{\mu} \partial_{\mu} \phi+\frac{1}{4} \phi \nabla_{\mu} \xi^{\mu}
$$

with $\xi^{\mu}=3 S^{2}$ isometries, $3 A d S_{2}$ isometries, 9 CKVs

SO(3,1) Symmetries

Hui, Joyce, RP, Santoni, Solomon [2105,01069, 2203,08832]

- S^{2} isometries + 3 CKVs:

$$
\begin{aligned}
& J_{01}=-\frac{2 \Delta}{r_{s}} \cos \theta \partial_{r}-\frac{\partial_{r} \Delta}{r_{s}} \sin \theta \partial_{\theta} \\
& J_{02}=-\cos \phi\left[\frac{2 \Delta}{r_{s}} \sin \theta \partial_{r}-\frac{\partial_{r} \Delta}{r_{s}}\left(\frac{\tan \phi}{\sin \theta} \partial_{\phi}-\cos \theta \partial_{\theta}\right)\right] \\
& J_{03}=-\sin \phi\left[\frac{2 \Delta}{r_{s}} \sin \theta \partial_{r}-\frac{\partial_{r} \Delta}{r_{s}}\left(\frac{\cot \phi}{\sin \theta} \partial_{\phi}+\cos \theta \partial_{\theta}\right)\right]
\end{aligned}
$$

- This $S O(3,1)$ is an exact symmetry of the static sector
- NOTE: doesn't rely on near-zone approximation

Vanishing Response in the IR

Regular $r_{s} \rightarrow 0$ limit: special conformal transformations (SCTs)

$$
\delta \phi \rightarrow c_{i}\left(x^{i}-\vec{x}^{2} \partial^{i}+2 x^{i} \vec{x} \cdot \vec{\partial}\right) \phi \quad \text { (weight 1/2) }
$$

Must be symmetries of the static long-distance EFT of BHs:

$$
S=-\frac{1}{2} \int d^{4} x\left(\nabla_{i} \phi\right)^{2}-m \int d t\left[1+\frac{\lambda_{2}}{2}\left(\nabla_{i} \phi\right)^{2}+\frac{\lambda_{4}}{2}\left(\nabla_{i} \nabla_{j} \phi\right)^{2}+\ldots\right]
$$

These worldline couplings would break SCTs $\rightarrow \lambda_{2}=\lambda_{4}=\ldots=0$.
For a star, SCTs are explicitly broken at scale $r_{\star} \rightarrow \lambda_{2} \sim r_{\star}^{4}, \ldots$

$S O(3,1)$ Symmetries in the UV

Static equations:

$$
H_{\ell} \phi_{\ell}=0, \quad \text { with } \quad H_{\ell}=-\Delta\left[\partial_{r}\left(\Delta \partial_{r}\right)-\ell(\ell+1)\right]
$$

The $J_{0 i}$'s mix modes with different ℓ :

$$
\delta \phi_{\ell}=c_{\ell-1} D_{\ell-1}^{+} \phi_{\ell-1}-c_{\ell} D_{\ell+1}^{-} \phi_{\ell+1}
$$

Ladder algebra:

$$
\begin{array}{lll}
H_{\ell+1} D_{\ell}^{+}=D_{\ell}^{+} H_{\ell} & \Longrightarrow & H_{\ell+1}\left(D_{\ell}^{+} \phi_{\ell}\right)=0 \\
H_{\ell-1} D_{\ell}^{-}=D_{\ell}^{-} H_{\ell} & \Longrightarrow & H_{\ell-1}\left(D_{\ell}^{-} \phi_{\ell}\right)=0
\end{array}
$$

SO(3,1) Symmetries in the UV

We can also define recursively the following operators:

$$
Q_{0}=\Delta \partial_{r}, \quad Q_{\ell}=D_{\ell-1}^{+} Q_{\ell-1} D_{\ell}^{-}
$$

which generate symmetries at fixed $\ell: \quad\left[H_{\ell}, Q_{\ell}\right]=0$.

Ladder Symmetries

Vanishing Response in the UV

Current conservation for Q_{ℓ} symmetries: $\partial_{r} J_{\ell}^{r}=0$

$$
J_{\ell}^{r}=\left[\Delta \partial_{r}\left(D_{1}^{-} \ldots D_{\ell}^{-} \phi_{\ell}\right)\right]^{2}
$$

$S O(3,1)$ Symmetries

A few comments:

- exact same story for scalar on Kerr, but $J_{\ell}^{r}=\left(\chi^{\prime \prime}\right)^{2}$
- For $s=1,2$, symmetries of the Teukolsky equation see also: Kehagias, Perrone \& Riotto [2211.02384]
- Also a ladder in spin: $\psi_{\ell, s+1}=E_{s}^{+} \psi_{\ell, s}, \quad \psi_{\ell, s-1}=E_{s}^{-} \psi_{\ell, s}$
- Similar ladder structure in $A d S_{2 n+1}$: transparency

Compton \& Morrison [2003.08023]

Conclusions

Hidden symmetries of black holes:

- conformal Killing vectors of the near-zone metric ensure that black holes have vanishing response.
- ladder symmetries shed further light on solutions.

Future directions:

- Understanding at the level of the action beyond scalars?
- Do ladder symmetries constrain dissipative response in EFT?
- Systematic EFT understanding of near-zone approximation?

$S O(2,1)$ Symmetries

Charalambous, Dubovsky, Ivanov [2103.01234, 2209.02091]
$A d S_{2}$ isometries:

$$
T=2 r_{s} \partial_{t} \quad L_{ \pm}=e^{ \pm t / 2 r_{s}}\left(2 r_{s} \partial_{r} \sqrt{\Delta} \partial_{t} \mp \sqrt{\Delta} \partial_{r}\right)
$$

Solutions finite at r_{s} belong to finite dim. irreps of $S O(2,1)$

SO(2,1) Symmetries

Charalambous, Dubovsky, Ivanov [2103.01234, 2209.02091]
A few comments:

- originally derived as symmetries of Teukolsky eq., exist for Kerr and any integer s
- $L_{ \pm}$take static solutions into solutions $\sim e^{ \pm t / r_{s}}$
- mix IR \& UV outside near-zone regime: formal trick
- purely UV argument, no point-particle counterpart.

Conformal Killing Vectors

$$
\begin{array}{ll}
J_{01}=-\frac{2 \Delta}{r_{s}} \cos \theta \partial_{r}-\frac{\partial_{r} \Delta}{r_{s}} \sin \theta \partial_{\theta} & \\
J_{02}=-\cos \phi\left[\frac{2 \Delta}{r_{s}} \sin \theta \partial_{r}-\frac{\partial_{r} \Delta}{r_{s}}\left(\frac{\tan \phi}{\sin \theta} \partial_{\phi}-\cos \theta \partial_{\theta}\right)\right] & \begin{array}{l}
\text { Exact symmetries } \\
\text { of the static sector }
\end{array} \\
J_{03}=-\sin \phi\left[\frac{2 \Delta}{r_{s}} \sin \theta \partial_{r}-\frac{\partial_{r} \Delta}{r_{s}}\left(\frac{\cot \phi}{\sin \theta} \partial_{\phi}+\cos \theta \partial_{\theta}\right)\right] & \\
\hline
\end{array}
$$

$K_{ \pm}=e^{ \pm \pm / 2 r_{s}} \frac{\sqrt{\Delta}}{r_{s}} \cos \theta\left(\frac{r_{s}^{3}}{\Delta} \partial_{t} \mp \partial_{r} \Delta \partial_{r} \mp 2 \tan \theta \partial_{\theta}\right)$
$M_{ \pm}=e^{ \pm t / 2 r_{s}} \cos \phi\left[\frac{r_{s}^{2}}{\sqrt{\Delta}} \sin \theta \partial_{t} \mp \frac{\sqrt{\Delta} \partial_{r} \Delta \sin \theta}{r_{s}} \partial_{r} \pm \frac{2 \sqrt{\Delta}}{r_{s}} \cos \theta \partial_{\theta} \mp \frac{2 \sqrt{\Delta}}{r_{s}} \frac{\tan \phi}{\sin \theta} \partial_{\phi}\right]$
$N_{ \pm}=e^{ \pm t / 2 r_{s}} \sin \phi\left[\frac{r_{s}^{2}}{\sqrt{\Delta}} \sin \theta \partial_{t} \mp \frac{\sqrt{\Delta} \partial_{r} \Delta \sin \theta}{r_{s}} \partial_{r} \pm \frac{2 \sqrt{\Delta}}{r_{s}} \cos \theta \partial_{\theta} \pm \frac{2 \sqrt{\Delta}}{r_{s}} \frac{\cot \phi}{\sin \theta} \partial_{\phi}\right]$

Ladder Symmetries in de Sitter

Compton and Morrison [2003.08023]

Massive scalar in $d S_{d+1}$: $\left[-\partial_{t}^{2}-\frac{\nu(\nu+1)}{\cosh ^{2} t}-k^{2}\right] \phi=0, \quad(\nu=\ell-1+d / 2)$
For $d+1=$ odd: dS transparency

Similar ladder structure.

