Black hole spectroscopy with the next generation of gravitational wave detectors

Costantino Pacilio (University of Milano Bicocca) GGI, April 20 2023

Artwork by LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet)

Probing gravity with gravitational waves

Ground based GW detectors probe gravity in systems with both:

Strong potential

Strong curvature

The Riemann curvature at the event horizon of a Schwarzschild metric scales as:

$$\sqrt{R^{abcd}R_{abcd}}\sim M^{-2}$$

Baker+ (2014), <u>arxiv 1412.3455</u> EXTREME GRAVITY AND FUNDAMENTAL PHYSICS, <u>arxiv 1903.09221</u>

Compact binary sources

Binary black holes dominate the catalog of compact binary sources of ground based detections

Credit: OzGRav/Carl Knox

Binary black holes and tests of GR

GW150914 discovery paper

Tests of GR with LVK event catalogs:

- LKV GWTC-2 (2020), arxiv 2010.14529
- LVK GWTC-3 (2021), arxiv 2112.06861

Ghosh (2022), a	<u>arxiv 2204.00662</u>
-----------------	-------------------------

Test	Section	Quantity	
\mathbf{RT}	4.1	<i>p</i> -value	
IMR	4.1	Fractional deviation in remnant mass and spin	
\mathbf{PAR}	4.2	PN deformation parameter	
SIM	4.2	Deformation in spin-induced multipole parameter	
MDR	4.3	Magnitude of dispersion, $ A_{\alpha} $	
POL	4.4	Bayes Factors between different polarization hypotheses	
RD	4.5	Fractional deviations in frequency (PYRING)	
		Fractional deviations in frequency and damping time (PSEOB)	
ECH	4.5	Signal-to-noise Bayes Factor	

Binary black holes and tests of GR

GW150914 discovery paper

Tests of GR with LVK event catalogs:

- LKV GWTC-2 (2020), arxiv 2010.14529
- LVK GWTC-3 (2021), arxiv 2112.06861

	4.1	p-value
1	4.1	Fractional deviation in remnant mass and spin
{	4.2	PN deformation parameter
1	4.2	Deformation in spin-induced multipole parameter
R	4.3	Magnitude of dispersion, $ A_{\alpha} $
<u>.</u>	4.4	Bayes Factors between different polarization hypotheses
	4.5	Fractional deviations in frequency (PYRING)
		Fractional deviations in frequency and damping time (PSEOB)
Ŧ	4.5	Signal-to-noise Bayes Factor

Quantity

Quasi-normal modes of black holes

The ringdown is generated by a distorted BH relaxing towards the equilibrium

The signal can be expressed as a superposition of damped sinusoids each with a characteristic frequency and damping time (quasi-normal modes)

 $\omega_{lmn}=2\pi f_{lmn}+i/ au_{lmn}$,

No hair theorem

EHT Collaboration (2019), arxiv 1906.11238

Uniqueness Theorem

Stationary black holes in vacuum GR are uniquely described by the Kerr spacetime metric

$$ds^{2} = -\left(1 - \frac{2Mr}{\Sigma}\right)dv^{2} + 2dvdr + \Sigma d\theta^{2} + \frac{(r^{2} + a^{2})^{2} - \Delta a^{2}\sin^{2}\theta}{\Sigma}\sin^{2}\theta d\bar{\phi}^{2} - 2a\sin^{2}\theta drd\bar{\phi} - \frac{4Mra}{\Sigma}\sin^{2}\theta dvd\bar{\phi}.$$

Roy P. Kerr Phys. Rev. Lett. 11, 237 (1963)

Black hole perturbations

Simulation by The SXS (Simulating eXtreme Spacetimes) Project

Black hole perturbations

Linear perturbations about black holes are described by Teukolsky's equation

Key prediction

A perturbed black hole emits gravitational waves with a characteristic frequency spectrum

Teukolsky 2014, <u>arxiv 1410.2130</u> Berti+ (2009), <u>arxiv 0905.2975</u> Pani (2013), <u>arxiv 1305.6759</u>

Simulation by Georgia Tech, MAYA Collaboration

Quasi normal modes and the no-hair theorem

As a consequence of the no-hair theorem, the quasi normal modes depend only on the mass and spin of the BH remnant

Quasi normal modes are countably infinite, but only two of them are independent

 $f_{lmn} \equiv f_{lmn}(M,\chi)$ $au_{lmn}\equiv au_{lmn}(M,\chi)$

Testing no-hair with black hole spectroscopy

BH spectroscopy:

measuring the frequency and damping times of a BH from its GW signal

GR test:

check that there is no "third" independent frequency or damping time Berti, Cardoso, Will (2006), <u>arxiv</u> <u>gr-qc/0512160</u>

Berti+ (2016), <u>arxiv 1605.09286</u>

Baibhav+ (2023), <u>arxiv</u> 2302.03050

Gossan+ (2011), <u>arxiv</u> <u>1111.5819</u>

Meidam+ (2014), <u>arxiv</u> <u>1406.3201</u>

Even if the background is Kerr, no-hair is violated if the perturbation dynamics differ from Teukolsky's Barausse & Sotriou (2004), <u>arxiv 0803.3433</u> Tattersall+ (2017), <u>arxiv 1711.01992</u>

GW190521: a case study for LVK

SNR requirements for detecting modified spectra

Computing modified spectra at the non-perturbative level in the spin is challenging

Kerr-Newman: Dias+ (2015) <u>arxiv 1501.04625</u> Horndeski: Tattersall+ (2018) <u>arxiv 1804.08950</u> dCS: Wagle+ (2022), <u>arxiv 2103.09913</u> EdGB: Pierini & Gualtieri (2022), <u>arxiv 2207.11267</u> **Recent results**: Cano+ (2023), <u>arxiv 2304.02663</u> Ghosh+ (2023) <u>arxiv 2303.00088</u>

There are very degenerate spectra (Delta-like) or less degenerate spectra (Delta_220-like)

SNR larger than ~200 is required to confidently tell non-GR apart from GR

From a great power ...

They will be sensitive to sources at cosmological distances

Cosmic Explorer Horizon Study

... come responsible expectations

Cosmic Explorer Horizon Study

Most of the events are placed at redshift larger than 1 and therefore, they will present low SNR This can be traced back to the star formation rate

The landscape of black hole spectroscopy

Bhagwat, CP+ (2023) , <u>arxiv 2304.02283</u> With: S. Bhagwat, P. Pani, M. Mapelli

We consider a population of stellar mass binary black holes in agreement with the LVK population constraints

Generated with the pop synth code MOBSE and described in Mapelli et al. 2021, <u>arxiv 2109.06222</u>

Compute the expected SNR for each event in the catalog

Compute the constraints in the deviation of the subdominant modes from the GR predictions ~ O(10^5) events / yr

Total duration: 10 years

Einstein Telescope: SNR prospects

NOTE: We use the updated sensitivities and detector designs from the recent ET paper <u>arxiv 2303.15923</u>

ET: measuring deviations from GR

 $(l,m,n)
eq (2,2,0) \qquad f_{lmn} = f^{ ext{GR}}_{lmn} \left(1 + \delta f_{lmn}
ight) \qquad au_{lmn} = au^{ ext{GR}}_{lmn} \left(1 + \delta au_{lmn}
ight)$

- Damping times are poorly measured overall te catalog
- 500-to-1000 events/yr with O(10) % measurability
- 1-to-few events/yr with O(1) % measurability (but larger variance within the catalog)

ET + Cosmic Explorer: SNR prospects

NOTE: We use the baseline 40km CE

Configuration	$\rho_{\rm RD} \ge 12 \ {\rm yr}^{-1}$	$\rho_{\rm RD} \ge 50 \ {\rm yr}^{-1}$	$\rho_{\rm RD} \ge 100 \ {\rm yr}^{-1}$	$\max(ho_{ m RD})$
Δ -10km+CE	17174 ± 115	161 ± 14	13 ± 5	1508
2L-15km+CE	22144 ± 122	246 ± 16	18 ± 7	1607

ET + CE: measuring deviations from GR

- 2000-to-4000 events/yr with O(10) % measurability
- ~10 events/yr with O(1)
 % measurability (but larger variance within the catalog)
- Back of the envelope stacking: constraining GR at the sub-percent level

Conclusions

3G ground based detectors will detect hundreds-to-thousands of BH ringdowns per year

A synergy between ET and CE will have a large impact on our ability to test GR with BH spectroscopy

A full 3G network will constrain the ringdown spectrum within O(1) % with single events and within O(0.1) % with a catalog of events

