Geometric Resolution of Schwarzschild Horizon

GGI Workshop, April 19 2023

Pierre Heidmann

Pierre Heidmann

Pierre Heidmann

What are the new degrees of freedom from Quantum Gravity

that make black holes?

Pierre Heidmann

Supersymmetric Paradigm

Do coherent QG states extend beyond supersymmetry? Can

they resolve horizons of non-extremal BH?

Pierre Heidmann

- **1.** Vacuum solitons in gravity
- 2. Charged solitons in gravity
- 3. Solitons that resolve Schwarzschild horizon
- 4. Some gravitational properties

Pierre Heidmann

On Solitons in Gravity

Soliton:

- ``perpetual'' state of a non-linear theory
- ~ fundamental particle but regular
- Existence in 4d General Relativity? Serini 1918, Einstein, Pauli '41, Breitenlohner, Maison, Gibbons '87
 - $S = \int d^4x \sqrt{-g} R$
 - Smooth & horizonless
 - Pure deformation of spacetimes
 - Finite energy & stable

On Solitons in Gravity

Soliton:

- ``perpetual'' state of a non-linear theory
- ~ fundamental particle but regular
- Existence in 4d General Relativity? Serini 1918, Einstein, Pauli '41, Breitenlohner, Maison, Gibbons '87
 - $S = \int d^4x \sqrt{-g} R$
 - Smooth & horizonless
 - Pure deformation of spacetimes
 - Finite energy & stable

Pierre Heidmann

On Solitons in Gravity

- Soliton:
 - ``perpetual'' state of a non-linear theory
 - ~ fundamental particle but regular
- Existence in 4d General Relativity?
 - $S = \int d^4x \sqrt{-g} R$
 - Smooth & horizonless
 - Pure defoil hation of spacetimes
 - Finite energy & stable

Serini 1918, Einstein, Pauli '41, Breitenlohner, Maison, Gibbons '87

Pierre Heidmann

On Solitons in General Relativity

- Soliton:
 - ``perpetual'' state of a non-linear theory
 - \sim fundamental particle but regular
- Existence in 4d General Relativity? Serini 1918, Einstein, Pauli '41, Breitenlohner, Maison, Gibbons '87
 - $S = \int d^4x \sqrt{-g} \left(R \frac{1}{4} F^2 \right)$
 - Smooth & Olless
 - Pure deformation
 - Finite energy &

fin ns in 4d GR No-go Theol

Gravity with extra compact dimensions:

- 4d spacetime + a compact dimension in vacuum
- Deformation of the circle \Rightarrow Deformation of the 4d spacetime
- Topological Soliton: <u>state of gravity</u> produced by the degeneracy of the circle

Pierre Heidmann

Gravity with extra compact dimensions:

- 4d spacetime + a compact dimension in vacuum
- Deformation of the circle ⇒ Deformation of the 4d spacetime
- Topological Soliton: <u>state of gravity</u> produced by the degeneracy of the circle

Gravity with extra compact dimensions:

- 4d spacetime + a compact dimension in vacuum
- Deformation of the circle ⇒ Deformation of the 4d spacetime
- **Topological Soliton:** <u>state of gravity</u> produced by the degeneracy of the circle

Pierre Heidmann

Gravity with extra compact dimensions:

- 4d spacetime + a compact dimension in vacuum
- Deformation of the circle ⇒ Deformation of the 4d spacetime
- **Topological Soliton:** <u>state of gravity</u> produced by the degeneracy of the circle

Pierre Heidmann

Gravity with extra compact dimensions:

- 4d spacetime + a compact dimension in vacuum
- Deformation of the circle ⇒ Deformation of the 4d spacetime
- **Topological Soliton:** <u>state of gravity</u> produced by the degeneracy of the circle

- Challenge: Einstein equations
- Weyl formalism in 4d GR: Weyl 1917

$$ds_4^2 = -W_0 dt^2 + \frac{1}{W_0} \left[e^{2\nu} (d\rho^2 + dz^2) + \rho^2 d\phi^2 \right]$$

Generalized Weyl formalism Emparan, Reall '02

- Challenge: Einstein equations
- Weyl formalism in 4d GR: Weyl 1917

$$ds_4^2 = -W_0 dt^2 + \frac{1}{W_0} \left[e^{2\nu} (d\rho^2 + dz^2) + \rho^2 d\phi^2 \right] \Rightarrow$$

Generalized Weyl formalism ^{Emparan, Reall '02} Bah, PH '20

Linear Einstein Equations!
$$W_0 = \prod_i \left(1 - \frac{2M_i}{r_i(\rho, z)} \right)$$

6

- **Challenge:** Einstein equations
- Weyl formalism in 4d GR: Weyl 1917

$$ds_4^2 = -W_0 dt^2 + \frac{1}{W_0} \left[e^{2\nu} (d\rho^2 + dz^2) + \rho^2 d\phi^2 \right] \Rightarrow$$

Emparan, Reall '02 Generalized Weyl formalism Bah, PH '20

$$ds_D^2 = -W_0 dt^2 + \frac{1}{\prod W_\Lambda} \left[e^{2\nu} (d\rho^2 + dz^2) + \rho^2 d\phi^2 \right] + \sum_I W_I dy_I^2$$

 $W_{\Lambda} =$

 $2M_3 \sim R_{y_2}$

 $2M_2 \sim R_{y_1}$

 $2M_1 \sim R_{\nu_2}$

At $\rho = 0$

Challenge: Einstein equations Linear Einstein Equations! Weyl formalism in 4d GR: Weyl 1917 $ds_4^2 = -W_0 dt^2 + \frac{1}{W_0} [e^{2\nu} (d\rho^2 + dz^2) + \rho^2 d\phi^2] \Rightarrow$ $W_{\Lambda} = \prod_{i} \left(1 - \frac{2M_i}{r_i(\rho, z)} \right)^{D_i^{(1)}}$ Emparan, Reall '02 Generalized Weyl formalism Bah, PH '20 $ds_D^2 = -W_0 dt^2 + \frac{1}{\Pi W_A} \left[e^{2\nu} (d\rho^2 + dz^2) + \rho^2 d\phi^2 \right] + \sum_I W_I dy_I^2$ y_1 -Circle: y_2 -Circle: Contains the bubble of nothing Bound states of bubbles Smooth bound states of bubbles $2M_2$ Z

Pierre Heidmann

 $2M = 2 \sum M_i$

Geometric Resolution of Schwarzschild Horizon

 $2M_{3}$

 $2M_1$

At $\rho = 0$

Vacuum Topological Solitons

 Class of Vacuum Topological Solitons induced by the degeneracy of compact directions Bah, PH '20

$$ds_D^2 = -dt^2 + H \left[\frac{dr^2}{1 - \frac{2M}{r}} + r^2 d\theta^2 \right] + r^2 \sin^2 \theta \, d\phi^2 + \sum_I \prod_{i=1}^N \left(1 - \frac{2M_i}{r} \right)^{D_i^{(\Lambda)}} dy_I^2 \qquad D_i^{(\Lambda)} = 0 \text{ or } 1.$$
accounts for interaction between internal bubbles of different kinds
Sizes of internal bubbles constrained by *bubble equations* in terms of radii of extra dimensions R_{y_I}

• Reduction to 4d: Singular BH with scalars of mass $\frac{1}{2}M = \frac{1}{2}\sum M_i$

Pierre Heidmann

7

Vacuum Topological Solitons

 Class of Vacuum Topological Solitons induced by the degeneracy of compact directions Bah, PH '20 '21

$$ds_{D}^{2} = -dt^{2} + H \begin{bmatrix} \frac{dr^{2}}{1 - \frac{2M}{r}} + r^{2}d\theta^{2} \\ 1 - \frac{2M}{r} \end{bmatrix} + r^{2}\sin^{2}\theta \ d\phi^{2} + \sum_{I}\prod_{i=1}^{N}\left(1 - \frac{2M_{i}}{r}\right)^{D_{i}^{(\Lambda)}} dy_{I}^{2} \qquad D_{i}^{(\Lambda)} = 0 \ or \ 1.$$
accounts for interaction between internal bubbles of different kinds
Sizes of internal bubbles constrained by *bubble equations* in terms of radii of extra dimensions $R_{y_{I}}$

• Reduction to 4d: Singular BH with scalars of mass $\frac{1}{2}M = \frac{1}{2}\sum M_i$

$$ds_4^2 = \sqrt{1 - \frac{2M}{r}} \left[-dt^2 + H \left[\frac{dr^2}{1 - \frac{2M}{r}} + r^2 d\theta^2 \right] + r^2 \sin^2 \theta \, d\phi^2 \right] + \text{bunch of scalar fields}$$

Pierre Heidmann

7

Instability of Vacuum Solitons

- But... Stability issue! Witten '81, Gross, Perry, Yaffe '82
 - Bubble of nothing mediates the decay of Kaluza-Klein vacuum spacetimes: it grows indefinitely or collapses
 - Another ingredient is required...

Instability of Vacuum Solitons

- But... Stability issue! Witten '81, Gross, Perry, Yaffe '82
 - Bubble of nothing mediates the decay of Kaluza-Klein vacuum spacetimes: it grows indefinitely or collapses
 - Another ingredient is required: **Electromagnetic flux!** $\rightarrow E_{flux} \sim \int F^2$

Expectation: meta-stable Gravitational Solitons with compact dimensions and EM flux could exist!

Question: Can we actually construct them? What is their physics?

Pierre Heidmann

- **1. Vacuum solitons in gravity**
- 2. Charged solitons in gravity
- **3.** Solitons that resolve Schwarzschild horizon
- 4. Some gravitational properties

Pierre Heidmann

Electrostatic Ernst Formalism in 4d

- Challenge: Einstein Maxwell equations
- Electrostatic Ernst formalism in 4d: Ernst '68

$$ds_4^2 = -\frac{1}{Z} dt^2 + Z[e^{2\nu}(d\rho^2 + dz^2) + \rho^2 d\phi^2]$$

$$F = dA \wedge dt$$

- Solution-generating techniques:
 - Inverse scattering: Generic solutions with an arbitrary number of sources (BH here) induced by a mass parameter M_i and a charge Q_i Ruiz, Manko, Martin '95
 - Charged Weyl: Linear solutions for an arbitrary number of sources with $M_i/Q_i = cst$

Pierre Heidmann

Generalized Ernst Formalism

- Classification of frameworks that decompose into set of Ernst Equations:
 - **M-theory** on $T^6 \times S^1$ with M2-M2-M2-KKm flux
 - **Type IIB** on $T^4 \times S^1 \times S^1$ with D1-D5-P-KKm flux

• D1-D5 system on $S^1 \times S^1$ and rigid T^4

$$ds_{6}^{2} = \frac{1}{\sqrt{Z_{D1}Z_{D5}}} \left[-W_{1} dt^{2} + \frac{dy_{1}^{2}}{W_{1}} \right] + \sqrt{Z_{D1}Z_{D5}} \left[\frac{1}{W_{2}} \left[e^{2\nu} (d\rho^{2} + dz^{2}) + \rho^{2} d\phi^{2} \right] + W_{2} dy_{2}^{2} \right],$$

$$F_{3} = d \left[H_{D5} d\phi \wedge dy_{2} - A_{D1} dt \wedge dy_{1} \right],$$

PH '21

A Topological Star

- Source the previous framework by a single charged bubble Bah, PH PRL '20
- The metric: $r_B > r_S$

$$ds^{2} = -\left(1 - \frac{r_{S}}{r}\right)dt^{2} + \left(1 - \frac{r_{B}}{r}\right)dy^{2} + \frac{dr^{2}}{\left(1 - \frac{r_{S}}{r}\right)\left(1 - \frac{r_{B}}{r}\right)} + r^{2}[d\theta^{2} + \sin^{2}\theta \ d\phi^{2}]$$

Extra Dimension

- Soliton is located at $r = r_B$ and carries **D1-D5 charges** $Q = \sqrt{3r_S r_B}$
- Regularity \Rightarrow r_B , r_S R_y Extra dimension size • $R_y \sim 10^3 \ell_P \Rightarrow \begin{pmatrix} Mass \sim 10^{21} \text{ protons} \\ \sim 10^{-36} M_{\odot} \\ \text{Size, } r_B \sim 10^{-23} r_{proton} \end{pmatrix}$ • Topological star ~ Topological Particle of Gravity How to make macroscopic solitons?

Bubble Bag Ends

Bound states of topological stars using at least two extra dimensions

Bah, PH '20, '21, '22; PH '21

- Use the Charged Weyl Formalism to solve EOM analytically with a linear ansatz
- Smooth bound states of N topological stars with $Q = M / \cosh b$
 - Size ~ $N^{1/4} R_{\gamma} \rightarrow$ macroscopic!
 - Like non-extremal black holes + singular scalars in 4d but free from singularities and horizons in 6d!
 - Clear origin as M2-M2-M2 or D1-D5-KKm non-supersymmetric bubbling geometries

Bubble Bag Ends

$$ds_{6}^{2} = \frac{1}{\mathcal{Z}_{1}} \left[-dt^{2} + U_{1}dy_{1}^{2} \right] + \frac{U_{2} \mathcal{Z}_{1}}{\mathcal{Z}_{0}} \left(dy_{2} + H_{0} d\phi \right)^{2} + \frac{\mathcal{Z}_{0} \mathcal{Z}_{1}}{U_{1}U_{2}} \left[e^{2\nu} \left(d\rho^{2} + dz^{2} \right) + \rho^{2} d\phi^{2} \right],$$

$$F_{3} = dH_{1} \wedge d\phi \wedge dy_{2} + dT_{1} \wedge dt \wedge dy_{1},$$
(2.14)

where the quantities,⁸ which are independent of the gauge fields, are given by

$$U_{1} = \prod_{i=1}^{N+1} \left(1 - \frac{2M_{2i-1}}{r_{+}^{(2i-1)} + r_{-}^{(2i-1)} + M_{2i-1}} \right), \qquad U_{2} = \prod_{i=1}^{N} \left(1 - \frac{2M_{2i}}{r_{+}^{(2i)} + r_{-}^{(2i)} + M_{2i}} \right),$$
$$e^{2\nu} = \frac{E_{-+}^{(1,n)}}{\sqrt{E_{++}^{(n,n)} E_{--}^{(1,1)}}} \prod_{i=1}^{N} \prod_{j=1}^{N+1} \sqrt{\frac{E_{--}^{(2i,2j-1)} E_{++}^{(2i,2j-1)}}{E_{-+}^{(2i,2j-1)} E_{+-}^{(2i,2j-1)}}}, \qquad (2.15)$$

and the ones depending on the gauge fields are

$$\begin{aligned} \mathcal{Z}_{0} &= \frac{e^{b_{0}} - e^{-b_{0}} U_{1} U_{2}^{2}}{2 \sinh b_{0}}, \qquad \mathcal{Z}_{1} &= \frac{e^{b_{1}} - e^{-b_{1}} U_{1}}{2 \sinh b_{1}}, \\ H_{0} &= \frac{1}{2 \sinh b_{0}} \left[r_{-}^{(1)} - r_{+}^{(2N+1)} + \sum_{i=1}^{N} (r_{-}^{(2i)} - r_{+}^{(2i)}) \right], \qquad (2.16) \\ H_{1} &= \frac{1}{2 \sinh b_{1}} \sum_{i=1}^{N+1} (r_{-}^{(2i-1)} - r_{+}^{(2i-1)}), \quad T_{1} &= -\sinh b_{1} \frac{e^{b_{1}} + e^{-b_{1}} U_{1}}{e^{b_{1}} - e^{-b_{1}} U_{1}}, \end{aligned}$$

We define the distances to the endpoints $r_{\pm}^{(i)}$ and the generating functions $E_{\pm\pm}^{(i,j)}$ such as

$$r_{\pm}^{(i)} \equiv \sqrt{\rho^2 + \left(z - z_i^{\pm}\right)^2}, \qquad E_{\pm\pm}^{(i,j)} \equiv r_{\pm}^{(i)} r_{\pm}^{(j)} + \left(z - z_i^{\pm}\right) \left(z - z_j^{\pm}\right) + \rho^2, \tag{2.10}$$

But.... The geometries still have non-zero total charges

Pierre Heidmann

- **1. Vacuum solitons in gravity**
- 2. Charged solitons in gravity
- **3.** Solitons that resolve Schwarzschild horizon
- 4. Some gravitational properties

Pierre Heidmann

Resolving Schwarzschild?

How to resolve Schwarzschild arbitrarily close to its horizon using extra dimensions and flux?
Brane Flux

Resolving Schwarzschild?

How to resolve Schwarzschild arbitrarily close to its horizon using extra dimensions and flux?
Brane Flux

Pierre Heidmann

Bah, PH '23

Schwarzschild Scalarwalls

Schwarzschild Scalarwalls: Schwarzschild black hole with a backreacted singular scalar field Bah, PH '23

$$ds_4^2 = -\left(1 - \frac{2M}{r}\right)dt^2 + H(r,\theta)\left[\frac{dr^2}{\left(1 - \frac{2M}{r}\right)} + r^2d\theta^2\right] + r^2\sin^2\theta \ d\phi^2,$$
$$e^{-\Phi} = 1 - \frac{2M}{r}, \qquad H(r,\theta) = \left(1 + \frac{M^2\sin^2\theta}{r(r-2M)}\right)^{-1}$$

• Embedding in M-theory on T^7 as a vacuum solution with T^7 deformations

$$ds_{11}^{2} = \left(1 - \frac{2M}{r}\right)^{\frac{2}{3}} \left[-dt^{2} + dy_{0}^{2} + dy_{1}^{2} + dy_{2}^{2}\right] + \left(1 - \frac{2M}{r}\right)^{-\frac{1}{3}} ds(T^{4})^{2} + \left(1 - \frac{2M}{r}\right)^{-\frac{1}{3}} \left[H(r,\theta) \left[\frac{dr^{2}}{\left(1 - \frac{2M}{r}\right)} + r^{2}d\theta^{2}\right] + r^{2}\sin^{2}\theta \ d\phi^{2}\right],$$

$$(1 - \frac{2M}{r})^{-\frac{1}{3}} \left[H(r,\theta) \left[\frac{dr^{2}}{\left(1 - \frac{2M}{r}\right)} + r^{2}d\theta^{2}\right] + r^{2}\sin^{2}\theta \ d\phi^{2}\right],$$

$$(2 - \frac{2M}{r})^{-\frac{1}{3}} \left[H(r,\theta) \left[\frac{dr^{2}}{\left(1 - \frac{2M}{r}\right)} + r^{2}d\theta^{2}\right] + r^{2}\sin^{2}\theta \ d\phi^{2}\right],$$

$$(2 - \frac{2M}{r})^{-\frac{1}{3}} \left[H(r,\theta) \left[\frac{dr^{2}}{\left(1 - \frac{2M}{r}\right)} + r^{2}d\theta^{2}\right] + r^{2}\sin^{2}\theta \ d\phi^{2}\right],$$

$$(2 - \frac{2M}{r})^{-\frac{1}{3}} \left[H(r,\theta) \left[\frac{dr^{2}}{\left(1 - \frac{2M}{r}\right)} + r^{2}d\theta^{2}\right] + r^{2}\sin^{2}\theta \ d\phi^{2}\right],$$

$$(2 - \frac{2M}{r})^{-\frac{1}{3}} \left[H(r,\theta) \left[\frac{dr^{2}}{\left(1 - \frac{2M}{r}\right)} + r^{2}d\theta^{2}\right] + r^{2}\sin^{2}\theta \ d\phi^{2}\right],$$

$$(2 - \frac{2M}{r})^{-\frac{1}{3}} \left[H(r,\theta) \left[\frac{dr^{2}}{\left(1 - \frac{2M}{r}\right)} + r^{2}d\theta^{2}\right] + r^{2}\sin^{2}\theta \ d\phi^{2}\right],$$

$$(2 - \frac{2M}{r})^{-\frac{1}{3}} \left[H(r,\theta) \left[\frac{dr^{2}}{\left(1 - \frac{2M}{r}\right)} + r^{2}d\theta^{2}\right] + r^{2}\sin^{2}\theta \ d\phi^{2}\right],$$

$$(2 - \frac{2M}{r})^{-\frac{1}{3}} \left[H(r,\theta) \left[\frac{dr^{2}}{\left(1 - \frac{2M}{r}\right)} + r^{2}d\theta^{2}\right] + r^{2}\sin^{2}\theta \ d\phi^{2}\right],$$

$$(2 - \frac{2M}{r})^{-\frac{1}{3}} \left[H(r,\theta) \left[\frac{dr^{2}}{\left(1 - \frac{2M}{r}\right)} + r^{2}d\theta^{2}\right] + r^{2}\sin^{2}\theta \ d\phi^{2}\right],$$

Geometric Resolution

- Step 1: blowing up a **bubble of nothing** of size $\ell \sim 2M$
- Step 2: add $(\ell/2)^2 \sim M^2$ M2 branes and anti-M2 branes at the poles
- Step 3: Replace the poles by small bubbles of size σ supported by the same M2 brane flux

$$ds_{11}^2 = \left[-dt^2 + ds(T^6)^2\right] + \left(1 - \frac{\ell}{r}\right)dy_0^2 + \left[\frac{dr^2}{\left(1 - \frac{\ell}{r}\right)} + r^2d\theta^2 + r^2\sin^2\theta \ d\phi^2\right]$$

Pierre Heidmann

Geometric Resolution

- Step 1: blowing up a bubble of nothing of size $\ell \sim 2M$
- Step 2: add $(\ell/2)^2 \sim M^2$ M2 branes and anti-M2 branes at the poles
- Step 3: Replace the poles by small bubbles supported by the same M2 brane flux

Pierre Heidmann

Geometric Resolution

- Step 1: blowing up a bubble of nothing of size $\ell \sim 2M$
- Step 2: add $(\ell/2)^2 \sim M^2$ M2 branes and anti-M2 branes at the poles
- Step 3: Replace the poles by small bubbles supported by the same M2 brane flux

$$ds_{11}^{2} = Z^{-\frac{2}{3}} \left[-dt^{2} + \left(1 - \frac{\sigma}{r_{1}}\right) \left(1 - \frac{\sigma}{r_{3}}\right) dy_{1}^{2} + dy_{2}^{2} \right] + Z^{\frac{1}{3}} \left[\left(1 - \frac{\ell}{r_{2}}\right) dy_{0}^{2} + ds(T^{4})^{2} \right] + Z^{\frac{1}{3}} \left[H \left[\frac{dr^{2}}{\left(1 - \frac{\ell + 2\sigma}{r}\right)} + r^{2} d\theta^{2} \right] + r^{2} \sin^{2} \theta \ d\phi^{2} \right], \qquad F_{4} = dA \wedge dt \wedge dy_{1} \wedge dy_{2}$$

First example of topological solitons that resolve the horizon of a Schwarzschild black hole + a scalar tail

- **1. Vacuum solitons in gravity**
- 2. Charged solitons in gravity
- **3.** Solitons that resolve Schwarzschild horizon
- 4. Some gravitational properties

Pierre Heidmann

Lensing and Gravitational Wave Signatures

Two experiments allow to probe the near-environment of black holes.

What are the **gravitational characteristics of topological solitons** compared to those of a black hole?

1. Gravitational lensing:

BH and TS do not emit light but scatter light rays

2. Gravitational wave emission:

After the gravitational merger, the final state relaxes by emitting a **ringdown gravitational wave signal**.

Gravitational Lensing and Imaging

- Topological Soliton → intense spacetime deformation ⇒ intense lensing
- Photons follow geodesic trajectories
- Like black holes, they are circumscribed by an photon ring (~ shadow) where light can be trapped.
- However, incoming photons do not fall into a horizon (≠ shadow) but bounce on the soliton after a chaotic trajectory

Imaging Topological Solitons

What do Topological solitons look like in the sky?

1. Build a ray tracing code

Bah, Berti, PH '22

- 2. Shoot 10⁶ light rays from a celestial sphere
- 3. Reconstruct the picture as seen from a distant observer

Pierre Heidmann

Imaging Topological Solitons

- Use a star patch for more ``arty" imaging Bah, Berti, PH '22
- Incoming light endures high redshift and chaotic trajectories
 → intensity should be suppressed beyond the probe limit

Imaging Topological Solitons

• Imaging from a **bright accretion disk** $\rightarrow \sim$ EHT Bah, Berti, PH '22

Gravitational Wave Signal

- Gravitational waves are governed by quasi-normal
- Static black hole: modes localize at the shadow and determined by its scattering properties
- Topological solitons replace the horizon by stable photon rings. How does it affect quasi-normal modes?
 - Fundamental modes localize at the microstructure
 - Black hole modes are part of the spectrum but cavity effect on their decay time

Gravitational Wave Signal

- Gravitational waves are governed by quasi-normal
- Static black hole: modes localize at the shadow and determined by its scattering properties
- Topological solitons replace the horizon by stable photon rings. How does it affect quasi-normal modes?

Conclusion and Outlook

- Fundamental states of Quantum Gravity that manifest as Topological Solitons in Gravity exist. Their phenomenology and fundamental role open a window into new astrophysics and black hole physics.
- Solitons in Anti-de Sitter spacetimes and application to holography?
 Bah, PH '22; Houppe, PH '22
- General phase space of topological solitons? Spinning solitons? Chern-Simons interactions?
- Physical observables for future experiments? Bah, Berti, PH '22; Bah, Berti, Speeney, PH '23
- General aspect of stability and existence? Ваh, Dey, PH '21
 Nucleation in the early universe (dark matter?) or late stage of matter collapse (ВН)?

