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Motivation

We will focus on
the inspiral part
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Broad brush picture

Black holes/compact objects can be approximated as point-like particles

when the separation bJ is large with respect to their size R

For a spinless object, we start from a minimally coupled scalar

S = −
∫

dDx
√
|g | 1

2

[
∂µφ∂νφg

µν + m2φ2 + . . .
]

higher derivative terms (δS ∼
∫

cX

m φ
2W 2

X ) encode tidal effects . . .

It is instructive to use an amplitude-based approach (starting from S) to

derive quantitative information for the inspiral phase

The idea is to study the scattering process (rather than a bound system)

and extract the effective gravitational “potential” of the EoB approach
Buonanno Damour 1998, . . . , Damour 2016, . . .

It allows to recycle techniques developed for particle physics and led to

new results/ideas in classical GR
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The aim

Consider two “elementary” objects interacting gravitationally. What is

the final state if they scatter with an initial relative Lorentz factor

σ = − p1p2

m1m2
and impact parameter bJ?

A rich (not fully solved) problem even in the classical limit

We expect the following qualitative picture

p1

p2

p3
p4

Θ14

Θ23

GR radiation
GR radiation

In state (centre of mass frame) Out state

bJ

The aim: give a quantitative description of the final state when R
bJ
� 1

How do the classical observables (deflection angles, radiation spectrum)

behave in the UR limit σ � 1 at large bJ?
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Based on:

2210.12118, 2204.02378, 2203.11915, 2101.05772: the eikonal operator

2008.12743, 2104.03256: detailed 3PM discussion (including integrals)

Physics Reports (in progress): the gravitational eikonal

in collaboration with: P. Di Vecchia, C. Heissenberg, G. Veneziano
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The eikonal approach

1 We treat the BH’s/shockwaves as objects with known couplings to

gravity (massless fields in general)

2 Use perturbative amplitudes to describe the large-distance

scattering, take the classical limit and extract classical observables.

The second step can be tackled technically in several ways. I will focus

on the eikonal approach. Two main features:

� It is a general approach applicable to all perturbative gravitational

theories (GR, supergravity, string theory) and different types of

objects (Schwarzschild, Kerr, shockwaves, strings . . . )

� Classical physics is obtained by resumming an infinite set of

contributions which leads to exponentiation

5



The eikonal phase I (elastic case)

Calculate the 2→ 2 scattering amplitude A(E , q2) focusing on the

non-analytic terms as q → 0 (q ∼ ~/b is the typical momentum carried

by a single graviton exchanged between m1 and m2). In pictures

1 4π − Θ

Θ

2
3 π − Θ

Θ

b
bJΘ

2

known coupling

1 n

1 m

known coupling

Tree amplitude

(also disconnected)

p2

p1

p3

p4

A spacetime picture of the scattering Diagrammatic picture

. . .

. . .

Graviton
linesΘ14 = Θ23 = Θ

In the elastic case

Key classical quantities:

The centre-of-mass energy E2 =s =−(p1 + p2)2 = (m2
1 + m2

2 + 2m1m2σ).

The angular momentum J = p bJ , p = |~pi |, Ep = m1m2

√
σ2 − 1

The momentum transferred Qµ = pµ1 + pµ4 , Q = 2p sin
(

Θ
2

)
6



The eikonal phase II (elastic case)

It is convenient to go to impact parameter space

Ã(s, b) =

∫
dD−2q

(2π)D−2
e ib·q

A(s, q2)

4Ep

The semiclassical limit requires that the long range part of Ã takes the

form

1 + iÃ(s, b) =
(

1 + 2i∆(s, b)
)
e i2δ(s,b)

where δ is O(~−1) and ∆ encodes the quantum terms O(~m) with m ≥ 0

δ = δ0 + δ1 + . . ., ∆ = ∆1 + . . ., with δk ,∆k ∼ O(G k+1) (PM expansion)

Expanding formally in G the expression above we get

=
16πG

q2
m2

1m
2
2

(
2σ2 − 2

D − 2

)
+ . . . ⇒ Ã0 =2δ0=

Gm1m2(πb
2)ε(2σ2 − 1

1−ε)Γ(−ε)√
σ2 − 1

+ . . . ⇒ (Ã1) 1

h̄2
=
i

2
(2δ0)

2 , (Ã1) 1
h̄

= 2δ1
D→4−→ 3πG2m1m2(m1 +m2)(5σ

2 − 1)

4b
√
σ2 − 1
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The eikonal phase III (elastic case)

The relation between b and Q follows from a stationary phase argument

S(s,Q2) = 4Ep

∫
dD−2b e−

i
~bQ+2iδ(s,b) ⇒ Qµ = ~

∂ 2δ

∂bµ

At leading order QD=4
1PM =

∣∣∣∣~∂2δ0∂b

∣∣∣∣ = 2Gm1m2

(
2σ2 − 1

)
b
√
σ2 − 1

An interesting limit is: σ � 1 with RD−3
E ≡ GE ∼ G

√
2m1m2σ < bD−3

In this ultrarelativistic regime the 2PM angle has a finite limit. For D = 4

Q

p
' Θ2PM

UR−→ 4RE

b
+O

(
R3
E

b3

)
It agrees with the scattering of two Aichelburg and Sexl shockwaves

’t Hooft; Fabbrichesi, Pettorino, Veneziano, Vilkovisky

Is this a general feature (i.e. holding at all PM orders)?
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Novelties at 3PM

From the 2-loop amplitude we extract 3PM data Bern, Cheung, Roiban, Shen, Solon, Zeng;

Herrmann, Parra-Martinez, Ruf, Zeng; DHRV; Bjerrum-Bohr, Damgaard, Plante, Vanhove; Brandhuber, Chen, Travaglini, Wen

In the eikonal approach a first result is δ2 2008.12743 and 2104.03256

+i
2m2

1m
2
2G

3

πb2
(2σ2−1)2
(σ2−1)2

{
− 1

ε

[
8−5σ2

3
− σ(3−2σ2)

(σ2−1)
1
2
cosh−1(σ)

]

+(log(4(σ2 − 1))− 3 log(πb2eγE))
[
8−5σ2

3
− σ(3−2σ2)

(σ2−1)
1
2
cosh−1(σ)

]

+(cosh−1(σ))2
[
σ(3−2σ2)
(σ2−1)

1
2
− 24σ6−16σ4+9σ2+3

(2σ2−1)2

]

+cosh−1(σ)
[
σ(88σ6−240σ4+240σ2−97)

3(2σ2−1)2(σ2−1)
1
2

]

+σ(3−2σ2)

(σ2−1)
1
2
Li2(1− z2) + −140σ6+220σ4−127σ2+56

9(2σ2−1)2

}

2δ2 =
4G3m2

1m
2
2

b2

{
(2σ2−1)2(8−5σ2)

6(σ2−1)2 − σ(14σ2+25)

3
√
σ2−1

+ s(12σ4−10σ2+1)

2m1m2(σ2−1)
3
2
+ cosh−1 σ

[
σ(2σ2−1)2(2σ2−3)

2(σ2−1)
5
2

+ −4σ4+12σ2+3
σ2−1

] }
radiation reaction

(agrees with Damour’s 2010.01641)

A consequence of analyticity

and crossing

probe limit

Bern, Cheung, Roiban,
Shen, Solon, Zeng 1901.04424

z = σ −
√
σ2 − 1

potential gravitons
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Energy crisis I

Let us first focus on the contribution from potential gravitons

� There is a log-divergent UR term

� In the opposite limit it matches all known PN data

We now include the RR contribution

� It yields only odd PN terms (so they don’t spoil previous checks!)

� In the UR limit the log-divergent term cancel

The leading total UR contribution reads

2δ2
UR−→ 4G 3m2

1m
2
2

b2

[
σ2

(
−10

3
− 14

3
+12

)]
=

16G 3m2
1m

2
2

b2
σ2

Amati, Ciafaloni, Veneziano

A finite UR contribution to the 3PM angle Θ3PM
UR−→ 1

12
Θ3

1PM

It’s universal: a consequence of the “graviton dominance in the

Ultrahigh-Energy Scattering” (checked in several supergravity theories)
2008.12743; Bern, Ita, Parra-Martinez, Ruf
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Including radiation

The new ingredient is the classical 2→ 3 amplitude

p2

p1 k1

k2

k

q1

q2

Aj(q1, q2, k) =
εj=+,×

Many gravitons are emitted classically during the scattering.

We expect that in Aj exponentiates as well and yields an eikonal operator

including a coherent radiation. Schematically we have

e2i δ̂(b1,b2) = e2i δ̃(b)e i
∫
k [Ãj (b1,b2,k)a†j (k)+Ã∗j (b1,b2,k)aj (k)]

δ̃ is real, see below for its relation with the elastic eikonal

11



Eikonal operator

The in-state is described by the wavepackets Φi

|ψ〉 =

∫
−p1

∫
−p2

Φ1(−p1)Φ2(−p2)eib1·p1+ib2·p2 | − p1,−p2, 0〉

wavepackets bJ = b1 − b2 impact parameter

The out-state contains many gravitons (a coherent state)

S|ψ〉 '
∫
p3

∫
p4

e−ib1·p4−ib2·p3
∫

dDQ1

(2π)D

∫
dDQ2

(2π)D
Φ1(p4 −Q1) Φ2(p3 −Q2)

×
∫
dDx1

∫
dDx2 e

i(b1−x1)·Q1+i(b2−x2)·Q2 e2iδ̂(x1,x2)|p3, p4, 0〉

e2iδ̂(x1,x2) =

∫
dDQ̃

(2π)D

∫
dDx̃ e−iQ̃(x̃−x1+x2)+i2δ̃(b)e

i
∫
k
[Ãj(x1,x2,k)a

†
j
(k)+Ã∗j (x1,x2,k)aj(k)]

Derived from the

2→ 2 amplitude

Derived from the 2→ 2 + 1gr amplitude

p1 + p4 = Q1

p2 + p3 = Q2

2δ̃(be) = Reδ(σ12, b) + Reδ(σ34, b)

σ12 = − p1·p2
m1m2

, σ34 = − p3·p4
m1m2 Cristofoli, Gonzo, Moynihan, O’Connell, Ross, Sergola, White

Ã is the Fourier Transform of the 2→ 2 + 1gr classical amplitude
Goldberger, Ridgway; Luna, Nicholson, O’Connell, White; Mogull, Plefka, Steinhoff
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Unitarity and classical constraints

Notice that Imδ is now absent and the eikonal operator has a chance to

be (classically) unitary

When calculating the elastic transition 〈ψ|S |ψ〉, we use the BCH formula:

this should produce at the stationary point Imδ (checked at 3PM)

For instance unitarity requires 〈ψ|S†S |ψ〉 ' 〈ψ|ψ〉 = 1. It implies

(xi − bi)µ =
∂2δs(be)

∂Qµi
− i

∫
k

Ã∗(x1, x2, k)
↔
∂

∂Qµi
Ã(x1, x2, k)

Qi µ = (−1)i+1Q̃µ − i
∫
k

Ã∗(x1, x2, k)
↔
∂

∂xµi
Ã(x1, x2, k)

x̃µ = (x1 − x2)µ +
∂2δs(be)

∂Q̃µ

Q̃µ =
∂2δs(be)

∂x̃µ

These are stationary phase conditions for the integrals overQi , Q̃, xi and x̃

Classical observables are derived from expectation values 〈ψ|S†OS |ψ〉
Evaluating scalar products at the stationary point provides the classical

physics results (as usual)
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Other observables at 3PM

Full inclusive radiative observables at 3PM: the total radiated energy, the

impulses, the the mechanical, gravitational angular momenta

Qα
1 ' −

G3m2
1m

2
2

b3
ǔα2 E , Qα

2 ' −
G3m2

1m
2
2

b3
ǔα1 E , Pα ' G3m2

1m
2
2

b3
(ǔµ1 + ǔµ2 ) E

f1 =
210σ6 − 552σ5 + 339σ4 − 912σ3 + 3148σ2 − 3336σ + 1151

48(σ2 − 1)
3
2

f2 = −35σ4 + 60σ3 − 150σ2 + 76σ − 5

8
√
σ2 − 1

, f3 =
(2σ2 − 3)(35σ4 − 30σ2 + 11)

8(σ2 − 1)
3
2

Herrmann, Parra-Martinez,Ruf, Zeng

∆L1 '
G3m2

1m
2
2

b3

[
E+b[αuβ]1
σ − 1

− 1

2
E b[αǔβ]2

]
, Jαβ ' G3m2

1m
2
2

b3
F
(
b[αǔ

β]
1 − b[αǔ

β]
2

)
∆L2 = ∆L1(1↔ 2, bα ↔ −bα) , ǔµ1 =

σ uµ2 − u
µ
1

σ2 − 1
, ǔµ2 =

σ uµ1 − u
µ
2

σ2 − 1
, uµi = − p

µ
i

mi

E
π

= f1 + f2 log
σ + 1

2
+ f3

σ cosh−1σ

2
√
σ2 − 1

C
π

= g1 + g2 log
σ + 1

2
+ g3

σ cosh−1σ

2
√
σ2 − 1

g1 =
105σ7 − 411σ6 + 240σ5 + 537σ4 − 683σ3 + 111σ2 + 386σ − 237

24(σ2 − 1)2

g2 = −35σ5 − 90σ4 − 70σ3 + 16σ2 + 155σ − 62

4(σ2 − 1)
, g3 = −

(2σ2 − 3)
(
35σ5 − 60σ4 − 70σ3 + 72σ2 + 19σ − 12

)
4 (σ2 − 1)

2

Manohar, Ridgway, Shen

DHRV: 2210.12118

In the centre of mass frame
with b1 + b2 = 0

C
√
σ2 − 1 = −E+ + σE−

F = E+ −
1

2
E = −E− +

1

2
E

Conservations laws checked explicitly. Subtleties for J, L from

zero-frequency “gravitons” Damour; Veneziano, Vilkovisky; 2203.11915; Riva, Vernizzi, Wonng; Bini, Damour; . . .

Many checks (and predictions) in the PN limit Bini, Geralico, Damour; . . .
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Energy crisis II: a UR threshold

A dangerous region ω? ∼
√
σ
b

There is a cancellation between the leading terms in f3, g3 and f2 g2! A

consequence of the radiation being focused along the the BH trajectories:

θgr < 1/(ωb), so at ω? we have θgr < 1/
√
σ D’Eath; Colferai, Ciafaloni, Veneziano

However this is not sufficient to avoid another energy crisis in E rad

E rad

E
UR−→ R3

E

b3

(m1 + m2)E

m1m2

[
35π

64
(1 + 2 ln 2)

]
There is a threshold where the PM expansion breaks down:

√
mjσ
2mi

Θ & 1

(it appears clearly in the soft energy spectrum) D’Eath 1978 (DHRV 2204.02378)

After crossing D’Eath’s threshold, Q , . . . should stop increasing
Gruzinov, Veneziano; Ciafaloni, Colferai, Coradeschi, Veneziano

Transverse and longitudinal 3PM impulses Qi behave very differently in

the UR regime
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Results at 4PM and energy crisis III

At 3PM the transverse impulse (along bµ) and the longitudinal one have

different UR behaviours: the first has a finite limit, while the second one

requires a resummation of the PM expansion

The full 4PM impulses Qi have been recently derived
Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, Zeng; Dlapa, Kälin, Liu, Neef, Porto

At low velocities this analysis agrees with recent PN results Bini, Damour, Geralico

In the UR limit the pattern seen at 3PM seems to be broken

� the transverse components diverge as Q4PM ∼ Θ4
1PM

E√
m1m2

� the longitudinal part is log-divergent
E rad
4PM

E ∼ Θ4
1PM ln

[
E√
m1m2

]
Two possibilities: we should always resum the PM-expansion before

taking the UR limit or we have not disentangled radiative and

conservative effects at 4PM and there exists a transverse part of the 4PM

impulses with a finite UR limit
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Connections to other approaches

The classical deflection angle in a spherically symmetric metric is

Θ = −π + 2J
∞∫
r∗

dr

r2
√
p2 − J2

r2 − V (r)
, V (r) = −

∞∑
n=1

Gn

rn
fn EOB approach

In the R
bJ
� 1 limit we can derive fn from δn−1 . . . after that, use the lhs

to calculate Θ at bJ ' O(R) Damour and Rettegno; see yesterday’s discussion lead by Ceresole and Rettegno

An observable exploring a range

velocities. From Damour Rettegno

2211.01399

One can exploit ν = m1m2

(m1+m2)2 as a perturbative parameter (instead of G ).

A large literature: the self-force approach). A very recent comparison

with 4PM data and self-force (with scalar interaction)
Barack, Bern, Herrmann, Long, Parra-Martinez, Roiban, Ruf, Shen, Solon, Teng, Zeng 2304.09200
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Conclusion and outlook

We can use an amplitudes based approach to study gravitational binaries

It captures all aspects: conservative, radiation-reaction and real radiation

The approach is flexible and can be applied to different theories/objects

and yields explicit, Lorentz invariant expressions.

The high-energy (UR) limit provides challenges and useful tests

I discussed a UR threshold and different “energy crisis”. The study of the

UR limit is likely to play a useful role in the future. Open questions:

� at 4PM we have an unexpected pattern: the UR divergence in Q is

worse than in E rad (true even in the m1 = m2 case)

� understand better how to distinguish between conservative and

dissipative effects

� exploit the recent NLO waveforms Brandhuber, Brown, Chen, Angelis, Gowdy, Travaglini; Elkhidir,

O’Connell, Sergola, Vazquez-Holm; Herderschee, Roiban, Teng; Georgoudis, Heissenbergb, Vazquez-Holm

� refine the links with the EoB approach
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Soft radiation

Dress the elastic scattering with soft gravitons (ω < ω∗ � v
b ). The

emission of such gravitons exponentiate in momentum space
Bloch-Nordsieck, Weinberg; Laddha, Saha, Sahoo, Sen; Addazi, Bianchi, Veneziano

Combining this with the eikonal exponentiation we have

e2iδ̂s.r. ' exp
(

1
h̄

∫ ω∗

k

∑
j

[
fj(k)a†j(k)− f∗j (k)aj(k)

])
× [1 + 2i∆(σ, b)] eiReg(2δ)

fj(k) = ε∗µνj (k)
∑
n
κ pµnp

ν
n

pn·kS-matrix with
soft gravitons

The fj ’s act on δ: Qµ= pµ1 + pµ4 = ∂Reg(2δ)
∂bµ

= −bµ
b 2p sin Θ

2 =−(pµ2 + pµ3 )

Reg(2δ) is the ε0 part of the elastic eikonal. The IR-singular part of the

elastic process follows from normal ordering (via the BCH formula) δ̂

〈Ψ0|e2iδ̂s.r.|Ψ0〉 ' exp

− ( (ω∗)−2ε

−2ε

)
G
π

∑
n,m

mnmm

(
σ2
nm − 1

2

)
Fnm︸ ︷︷ ︸

 eiReg(2δ)

ai|Ψ0〉 = 0 σnm = −ηiηj pnpm
mnmm

ηn = +1 (ηn = −1) if n is a final (initial) state in the elastic process

Fnm =
∫ ω∗

k
mnmm

(pmk)(pmk)
=
(

(ω∗)−2ε

−2ε

)
ηnηmarccoshσnm√

σ2
nm−1

?
= Im(2δsing)

with
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The soft spectrum

The standard PM approach is a Taylor expansion in Q2

2m2
i

(small

momentum exchange in comparison to the BH masses)

[
Im(2δsing)

] X
=
(
− 1

2ε

)
G
π Q

2
1PM

[
8−5σ2

3(σ2−1) +
(2σ2−3)σ
(σ2−1)3/2

cosh−1σ
]
+ . . .

σ12 = σ34 = σ , σ13 = σ24 = σ − Q2

2m1m2
,

σjj = Fjj = 1 , σ14 = 1 + Q2

2m2
1
, σ23 = 1 + Q2

2m2
2

Classical observables are derived as expected: 〈ψ|e−2i δ̂ O e2i δ̂|ψ〉, where

|ψ〉 is the initial (2-particle) state

For instance
dE rad

soft

dω
= 〈ψ|e−2i δ̂s.r.

[∑
i

∫
dΩ2

2ω(2π)3

(
ωa†i ai

)]
e2i δ̂s.r. |ψ〉

Then, for the soft radiation, we get the relation
dE rad

soft

dω ' lim
ε→0

[−4εImδ2]
DHRV 2101.05772

By using the expression above for Imδ2, one obtains Smarr’s result Smarr 1977

Is the cosh−1 σ term problematic?
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Another energy crisis

The soft spectrum is reliable till ω∗ . 1
b

The PM-expanded energy emitted by soft gravitons diverges in the UR

limit: E rad
soft ' E (c1 log(σ) + c2) (ci are constant ∼ Θ3, c2 is not universal)

Thus we should go back to exact soft answer (ignoring non-linear memory effects)

dErad
soft

dω
' 4G

π

[
2m1m2

(
σ2 − 1

2

)
cosh−1 σ√
σ2 − 1

− 2m1m2

(
σ2
Q −

1

2

)
cosh−1 σQ√
σ2
Q − 1

+
m2

1

2
−m2

1

((
1 +

Q2

2m2
1

)2

− 1

2

) cosh−1
(
1 + Q2

2m2
1

)
√(

1 + Q2

2m2
1

)2
− 1

+
m2

2

2
−m2

2

((
1 +

Q2

2m2
2

)2

− 1

2

) cosh−1
(
1 + Q2

2m2
2

)
√(

1 + Q2

2m2
2

)2
− 1

]
with σQ = σ − Q2

2m1m2

There is no singularity at Q = 0, but, there is one at Q2

2m2
i

= −2: it is an

unphysical singularity in the t-channel corresponding to the exchange of

two on-shell BH’s (p1 + p4)2 = −(2m1)2 or (p2 + p3)2 = −(2m2)2

It fixes the radius of convergence of the Q � m2
i expansion for

dE rad

dω
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A UR threshold

In GR notation, the threshold matches that found by D’Eath D’Eath 1978

Q

2mi
=

p sin
(

Θ
2

)
mi

∼ p

mi
Θ ∼

√
mjσ

2mi
Θ ∼ 1

When 1/
√
σ is of the order of Θ the PM expansion breaks down

In the UR limit, the exact formula yields finite results. The fraction of

energy carried away by soft radiation is finite

dE rad
soft

dω
' GsΘ2

1PM

π

[
1 + log

4

Θ2
1PM

]
,

E rad
soft

E
' Θ3

1PM

4π

[
1 + log

4

Θ2
1PM

]
Gruzinov, Veneziano; Ciafaloni, Colferai, Veneziano

Again the UR limit seems to be universal: the soft energy spectrum of

GR and N = 8 supergravity agree above the UR threshold

Notice the non-analytic dependence of the exact answer on Θ1PM ∼ G
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