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Broad brush picture

Black holes/compact objects can be approximated as point-like particles
when the separation by is large with respect to their size R

For a spinless object, we start from a minimally coupled scalar

1
5= - [ d2x/lel ; [u00,08" + mP?+ .
higher derivative terms (6S ~ [ %¢2 W2) encode tidal effects . ..

It is instructive to use an amplitude-based approach (starting from S) to
derive quantitative information for the inspiral phase

The idea is to study the scattering process (rather than a bound system)
and extract the effective gravitational “potential” of the EoB approach

Buonanno Damour 1998, , Damour 2016,

It allows to recycle techniques developed for particle physics and led to
new results/ideas in classical GR



Consider two “elementary” objects interacting gravitationally. \What is
the final state if they scatter with an initial relative Lorentz factor

o = —22 and impact parameter b;?
mym

A rich (not fully solved) problem even in the classical limit

We expect the following qualitative picture
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The aim: give a quantitative description of the final state when b% <1

How do the classical observables (deflection angles, radiation spectrum)
behave in the UR limit o > 1 at large b,?



2210.12118, 2204.02378, 2203.11915, 2101.05772: the eikonal operator
2008.12743, 2104.03256: detailed 3PM discussion (including integrals)

Physics Reports (in progress): the gravitational eikonal

in collaboration with: P. Di Vecchia, C. Heissenberg, G. Veneziano



The eikonal approach

1 We treat the BH's/shockwaves as objects with known couplings to
gravity (massless fields in general)

2 Use perturbative amplitudes to describe the large-distance
scattering, take the classical limit and extract classical observables.

The second step can be tackled technically in several ways. | will focus
on the eikonal approach. Two main features:

e It is a general approach applicable to all perturbative gravitational
theories (GR, supergravity, string theory) and different types of
objects (Schwarzschild, Kerr, shockwaves, strings ...)

e Classical physics is obtained by resumming an infinite set of
contributions which leads to exponentiation



The eikonal phase | (elastic case)

Calculate the 2 — 2 scattering amplitude A(E, g?) focusing on the
non-analytic terms as ¢ — 0 (g ~ ii/b is the typical momentum carried
by a single graviton exchanged between m; and my). In pictures

<——p2 known coupling p3 ——»

Ig! bJ In the elastic case Graviton (ﬂ“e?i?mplit“‘:ed)
:E// 14 =03 =0 lines so disconnecte
m m
T—0 |/ o
1 4 ,
0 <«——p; known coupling Pa ——»
A spacetime picture of the scattering Diagrammatic picture

Key classical quantities:
The centre-of-mass energy E2=s=—(p1 + p2)? = (m} + m3 + 2mymy0).
The angular momentum J = p by, p=|p:|, Ep = mmavo2 —1
The momentum transferred Q* = pi' + p§’, @ = 2psin (%)



The eikonal phase Il (elastic case)

It is convenient to go to impact parameter space

. dD—2q . ,A(57 q2)

The semiclassical limit requires that the long range part of A takes the
form

1+ iA(s, b) = (1 +2iA(s, b)) i25(s,b)

where 6 is O(h~!) and A encodes the quantum terms O(h™) with m > 0
§=060+01+..., A= Ap+..., with 5, Ax ~ O(G*1) (PM expansion)

Expanding formally in G the expression above we get

167G, 2 - Gmyma(mb?) (20 — 2)I(—¢)
1 - T (2 *D—2> T T A =s Vol —1

= i 2 S Do 3TGPmyma(my + my)(50% — 1)
H fom )y =caP, (A =20 2 e



The eikonal phase Ill (elastic case)

The relation between b and @ follows from a stationary phase argument

g j 20

S(s,Q%) = 4Ep/dD’2b P LR T B V. hgT
m

D=4 8250 - 2Gm1m2 (20’2 = 1)

At leading order Qipy = 'h

db Vo2 —1
An interesting limit is: o > 1 with R 3 = GE ~ G\/2mymyo < bP—3
In this ultrarelativistic regime the 2PM angle has a finite limit. For D = 4
Q ur 4Rg Rg
—~0 — — + 0| —=
. 2PM b + B3
It agrees with the scattering of two Aichelburg and Sexl shockwaves

't Hooft; Fabbrichesi, Pettorino, Veneziano, Vilkovisky

Is this a general feature (i.e. holding at all PM orders)?



Novelties at 3PM

From the 2-loop amplitude we extract 3PM data sem. cheung, Roiban, shen, Solon, Zeng:

Herrmann, Parra-Martinez, Ruf, Zeng; DHRV; Bjerrum-Bohr, Damgaard, Plante, Vanhove; Brandhuber, Chen, Travaglini, Wen

In the eikonal approach a first result is d 2008.12743 and 2104.03256

Bt O e k—zr\ radiation reaction
205 = 4G ;',;1""‘2 { (20°-1)°(8—507) _ o(140°+25) (agrees with Damour’s 2010.01641)

6(c2-1)2 3vo2—1

/,,,i A Dbotential gravitons
s(120*—1002 +1) a(202-1)%(202-3) 7404+1202+3] Bern, Cheung, Roiban
sl2e 100750 4 cosh ™t o 2 I ) »

+ 2myma(o2—1) * [ 2(02-1)2 u o?-1 Shen, Solon, Zeng 1901.04424

probe limit

. 2mIm3G? (207—1)? 182502 o(3= 247 A consequence of analyticity
R ay = y .20 S { 3T et ! cosh™ (0)] and crossing
=2 a9 2 —
+ (log(4(0? — 1)) — 3log(nb2e=)) {S*T — 220 cosh 1(0)}
& 213
“1p 2 [9(320%) 0 ueb 1609400243
+(cosh™ (o)) [ —— 2ein)

- o (8809—24004+24002—97 Y o gy |
+cosh™ (o) [(—1) FTomve
3(202-1)%(c2-1)2

(3—202) _ —1/1006+22004—127a +56
+(217L1(1 22) + (202 1) }



Energy crisis |

Let us first focus on the contribution from potential gravitons
e There is a log-divergent UR term
e In the opposite limit it matches all known PN data

We now include the RR contribution
e |t yields only odd PN terms (so they don’t spoil previous checks!)
e In the UR limit the log-divergent term cancel

The leading total UR contribution reads

26, i 4G3Z§mg [02 ( E _ 14+12)} 16G3b’2”1m2 2

Amati, Ciafaloni, Veneziano

A finite UR contribution to the 3PM angle ©3pm YR, @1PM

[t's universal: a consequence of the “graviton domlnance in the
Ultrahigh-Energy Scattering” (checked in several supergravity theories)

2008.12743; Bern, Ita, Parra-Martinez, Ruf
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Including radiation

The new ingredient is the classical 2 — 3 amplitude

Aj(q1,q2,k) =

Many gravitons are emitted classically during the scattering.

We expect that in A; exponentiates as well and yields an eikonal operator
including a coherent radiation. Schematically we have

2i8(by,by) __ ez/ﬂ(b)éiv/t [.4”3(/)‘./))«)3; (k)+A; (/;p/;»,k)ac(k)]

@

5 is real, see below for its relation with the elastic eikonal
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Eikonal operator

The in-state is described by the wavepackets ®;

wavepackets by = by — by impact parameter
W= [ [ am@alpa)e S gy, o)
—P1 Y P2

The out-state contains many gravitons (a coherent state)

N by pa—ibyps [ 4°Q1 [ dPQs
5\111)—/?3146 2 P /W/W%(meﬂ%(m*Qz)

X/del/dD.z‘z ei(b1—21)- Quti(b2—22)-Q2 6215(-171-'1‘3>‘p37p4’0>

p1+pa=Q1

P2 +p3 = Q2

(2i8(z1,22) _ / /dn~ —iQE—mrw2)+i23(0) i [ [A) (@152 )] (B)+-A] (@172 K)ay (R)]
(2m)P

26(be) = Red(o12,b) + Red(034,b)  Derived from the Derived from the 2 — 2 4 1gr amplitude

__ P1p2 ", — _ P3°Pa P 1
mims 0 34 = Timims 2 = 2 amplitude oo Moynihan, O'Connell, Ross, Sergola, White

012 =

A is the Fourier Transform of the 2 — 2 + 1gr classical amplitude

Goldberger, Ridgway; Luna, Nicholson, O'Connell, White; Mogull, Plefka, Steinhoff

12



Unitarity and classical constraints

Notice that Imd is now absent and the eikonal operator has a chance to
be (classically) unitary

When calculating the elastic transition (1)|S|), we use the BCH formula:
this should produce at the stationary point Imd (checked at 3PM)

For instance unitarity requires <1/)\5TS|1/J> ~ (¢[1p) = 1. It implies

020( N 0204 (be
(i — bi)y = W i [ &, 5527k)8Qu Wo1,00, k) = (01— 22)u+ 0(2(“)
H
: L 920,(b.)
Qin=(-1)""'Q, *7/A Ty, T2, )aT,LA(-Tl-%zv k) Qu Dh

These are stationary phase conditions for the integrals over Q;, C:),X,- and X

Classical observables are derived from expectation values ()|StOS|v)
Evaluating scalar products at the stationary point provides the classical
physics results (as usual)

13



Other observables at 3PM

Full inclusive radiative observables at 3PM: the total radiated energy, the
impulses, the the mechanical, gravitational angular momenta

L GPmimd L GPmimd L GPmimd . .
QI:—#uzf, szfﬁulf, P 2%(1L’f+u‘2)5
G m2md [eppled® 1 4 b o G3mim3 Bl rlanf
ALy~ =TI |0 Cppleg)| | god o 2018 2}'<b[ ) — el

I T T o
ALy =AL;(1 62,66 —b), at=22"" g W 7% o B o/ 1 g toE

02 -1 o2—-1 " m;

= 1 1

ocosh'o  C o+1 ocosh™'o F=E —-E=—-E +-E
+ —— - =g1+glo + 93— w -

fs W1 & tele St m— 2 2

2100° — 5520° + 3390* — 9120° + 314802 — 33360 + 1151

&
*:f1+f210?>
77 2

fi= 48(0% — 1)%

e 735{7l +600° — 15002 + 760 — 5 fom (202 — 3)(350* — 3002 + 11)

? 8VoZ 1 e 80— 1)

Herrmann, Parra-Martinez,Ruf, Zeng
10507 — 4110° 4 2400° 4 5370 — 6830° + 1110? + 3860 — 237 Manohar, Ridgway, Shen

o= 24(0% — 1) DHRV: 2210.12118

~350° = 900* — 700° + 160 + 1550 — 62 (207 =3) (350" — 600" — T00° + 720% + 190 — 12)
”= 402 -1) e 1(0% 1)

Conservations laws checked explicitly. Subtleties for J, L from
zero—frequency “gravitons” Damour; Veneziano, Vilkovisky; 2203.11915; Riva, Vernizzi, Wonng; Bini, Damour; ...

Many checks (and predictions) in the PN limit Bini, Geralico, Damour; ..
14



Energy crisis II: a UR threshold

A dangerous region w* ~ %

There is a cancellation between the leading terms in f3, g3 and f go! A
consequence of the radiation being focused along the the BH trajectories:
Qgr < 1/(wb), so at w* we have ng < 1/\/5 D'Eath; Colferai, Ciafaloni, Veneziano

However this is not sufficient to avoid another energy crisis in 724

Erad g RE(m1+ mo)E [3577
64

= 5 (1+2|n2)}

There is a threshold where the PM expansion breaks down: /7220 > 1
(it appears clearly in the soft energy spectrum) D'Eath 1978 (DHRV 2204.0237)

After crossing D'Eath’s threshold, Q, ... should stop increasing

Gruzinov, Veneziano; Ciafaloni, Colferai, Coradeschi, Veneziano

Transverse and longitudinal 3PM impulses Q; behave very differently in
the UR regime

15



Results at 4PM and en

At 3PM the transverse impulse (along b*) and the longitudinal one have
different UR behaviours: the first has a finite limit, while the second one
requires a resummation of the PM expansion

The full 4PM impulses Q; have been recently derived

Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, Zeng; Dlapa, Kalin, Liu, Neef, Porto

At low velocities this analysis agrees with recent PN results gini, bamour, Gerslico

In the UR limit the pattern seen at 3PM seems to be broken

e the transverse components diverge as Qupn ~ O%pp ———

£/ MmMypmy
E,

AT 4
£~ Olpy In [

e the longitudinal part is log-divergent

L}

mymy

Two possibilities: we should always resum the PM-expansion before
taking the UR limit or we have not disentangled radiative and
conservative effects at 4PM and there exists a transverse part of the 4PM
impulses with a finite UR limit

16



Connections to other approaches

The classical deflection angle in a spherically symmetric metric is
7 dr > G"

7/ r2,/p? — ,]—22 —V(r) VD= 77121 TTfn

In the b—Rj < 1 limit we can derive f,, from §,_1 ...after that, use the |hs

O=—-71+2J

to calculate © at by~ O(R) Damour and Rettegno; see yesterday's discussion lead by Ceresole and Rettegno

An observable exploring a range
velocities. From Damour Rettegno .

2211.01399

(minoy s a perturbative parameter (instead of G).

A large literature: the self-force approach). A very recent comparison

One can exploit v =

with 4PM data and self-force (with scalar interaction)
Barack, Bern, Herrmann, Long, Parra-Martinez, Roiban, Ruf, Shen, Solon, Teng, Zeng 2304.09200
17



Conclusion and outlook

We can use an amplitudes based approach to study gravitational binaries
It captures all aspects: conservative, radiation-reaction and real radiation

The approach is flexible and can be applied to different theories/objects
and yields explicit, Lorentz invariant expressions.

The high-energy (UR) limit provides challenges and useful tests

| discussed a UR threshold and different “energy crisis”. The study of the
UR limit is likely to play a useful role in the future. Open questions:
e at 4PM we have an unexpected pattern: the UR divergence in Q is
worse than in E*24 (true even in the m; = my case)
e understand better how to distinguish between conservative and
dissipative effects

(] exploit the recent NLO waveforms grandnuber, Brown, Chen, Angelis, Gowdy, Travaglini: Ekhidir,

0'Connell, Sergola, Vazquez-Holm; Herderschee, Roiban, Teng; Georgoudis, Heissenbergb, Vazquez-Holm

e refine the links with the EoB approach

18
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Dress the elastic scattering with soft gravitons (w < w* < §). The
emission of such gravitons exponentiate in momentum space
Bloch-Nordsieck, Weinberg; Laddha, Saha, Sahoo, Sen; Addazi, Bianchi, Veneziano

Combining this with the eikonal exponentiation we have

eider o exp (378, [H®al k) = £ (0 (0)]) )
t S-matrix with x [1 + 27"A(Uq b)] i Reg(20) \_/ fi (k) = E]“‘I(k> Zn ;f):lzn
soft gravitons
The fj's act on 6: Q"= p}' + p} :’m%fé) = %{’“2psin S =—(py +p4)

Reg(26) is the € part of the elastic eikonal. The IR-singular part of the

N

elastic process follows from normal ordering (via the BCH formula) ¢

<\I,0 |621‘S°’"‘>

W) ~ exp |— ((m)—ze) g 5 G i (02 . %> Fo | eiRea2)

—2€ nm

£ Im(24%18)

with
nPm T mamy (@) nunmarccoshonm,
ai\\ll()) =0 Onm = —Ni"j ;:nzr)nm an = f: (%Tk)r(y;mk) - ((w7)26 ) L n\/d:gcoilg
N = +1 (n, = —1) if n is a final (initial) state in the elastic process

19



The soft spectrum

The standard PM approach is a Taylor expansion in 2%22 (small

momentum exchange in comparison to the BH masses)

Q2
]:Fjj:17 0—14:1+2m§’
2

012 =034 =0, 013=024=0 — 3,77

in, ‘/ o a2—3)o =
[Im(?(is g)} = (_%e)% %PM |:38(a.2o 1) + ((32_1)33)/2(305}1 10'i| P ooc

Classical observables are derived as expected: (1/|e 21 O 2011, where
[1) is the initial (2-particle) state

rdd dQ I
For instance *0“ = (¢Yle e 2 Z/ 200 2; wa?a,-) e2i%sr |qp)

dE“““ o~ I|n2)[ 4elmdy]

DHRV 2101.05772

By using the expression above for Imd,, one obtains Smarr’s result smar 1077

Then, for the soft radiation, we get the relation

Is the cosh™ & term problematic?

20



Another ene crisis

The soft spectrum is reliable till w* < %

The PM-expanded energy emitted by soft gravitons diverges in the UR
limit: EXd ~ E(c; log(c) + c2) (ci are constant ~ ©3, ¢, is not universal)

Thus we should go back to exact soft answer (e e Gy (e
dE“‘Ei 4G 5 1\ cosh™!o 5 1\ cosh™! 0Q . 8
ﬁ = — |:2mlm2 (Jz = 5) 7 2myms Jé =5 gé = with g =0 — 2,371”2

2 2
Q°
(1 + 2m§) -1

There is no singularity at @ = 0, but, there is one at % = —2: it is an
unphysical singularity in the t-channel corresponding to the exchange of
two on-shell BH's (p; + ps)? = —(2m1)? or (p2 + p3)? = —(2my)?

Erad

sh ! Q* . -1 Q’
+mf mz( - Q? 2 1)cosh (1+m) +m§ 2( - Q? 2 1)cosh (1+W)
— —1 — | — 7)) —/—m——7% +—= —mi = —_—
2 ! 2m? 2 02 )2 2 2 2m

(1+3%) -1

It fixes the radius of convergence of the Q@ < m? expansion for

21



A UR threshold

In GR notation, the threshold matches that found by D'Eath D'Eath 1978
aC)
2m; m; m; 2m;

When 1/,/0 is of the order of © the P\ expansion breaks down

In the UR limit, the exact formula yields finite results. The fraction of
energy carried away by soft radiation is finite

dEsrjfci ~ Gse%PM 1+ log 24 : Eerfdt ~ G%PM 1+ log 24
dw s Co E 47 Cho

Gruzinov, Veneziano; Ciafaloni, Colferai, Veneziano

Again the UR limit seems to be universal: the soft energy spectrum of
GR and N = 8 supergravity agree above the UR threshold

Notice the non-analytic dependence of the exact answer on ©1py ~ G

22



	Extra slides

