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- thermal axion production

- misalignment, pre/post inflationary
- isocurvature fluctuations

- post-inflationary scenario

- cosmic strings and walls

- axion miniclusters



- PQ breaking after inflation - PQ breaking before inflation




Post inflationary PO breaking scenario

- PQ breaking after inflation
- No uncertainty over initial conditions

- All values of 00 realised in different
early causally disconnected patches
all inside our Universe today

- DM is inhomogeneous at small scales

- Small scale DM halos (Miniclusters)

- Problems with topological defects




Post inflationary PQ breaking scenario

PQ-phase transition
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axion dark matter abundance

- Misalignment contribution ... average over initial angles?
3 3
m A Ry 5 ma Ry
— (0 X t1 ( )
(R(t)> olx( )mA(tl) R(t)

this assumes exact zero mode, but correlation length is not infinite

- Most of the energy in the axion field is now NOT in the zero modes...

At PQ phase transition a network of GLOBAL COSMIC STRINGS FORM!  Kibble 76
Global string is a 1D region that is topologically (i.e. forced by boundry conditions) to take all values of ©

Formally, energy would be infinity, practice is requlated by the UV completion of axion theory



Simple model KSVZ

- Peccei-Quinn symmetry, color anomalous, spontaneously broken at  f,
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Global strings solution

-Force () = Uf(p)euo

i.e. © wraps 2pi around the origin...

- Static EOM for the radial field
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Global string network

- Strings have no end, form loops
z=17.161581

- Dynamics:
- Strings straighten, intersect, loops collapse
- Energy released in GWs, axions (mostly)
- relativistic speeds
- limited by causality
- scaling solution

string length d g

causal volume  d3,

- energy density of network

T2~ uH? ~ f2H?log —

typical distance between strings 0 ~~ d H = 1 / H



axion dark matter abundance at t

- Misalignment contribution ... H 1 =M A (tl )

p(tr) ~ faHT , ny~ fiH,

- Most of the energy in the axion field is in axion GRADIENTS around the strings

2 Saikawa 23
10° é. — pstrlng

stiHQIOg_ X€

string length
g _ causal volume

N = 2048
ZTH 10! —— N = 11264
H

3 4 5 6 7 8 9
log

density doubly log enhanced... xi grows logarithmically

Axions emitted from cosmic strings can easily superseed misalignment average!!!



axions from strings

- The AXION NUMBER radiated by strings depends on the AVERAGE RADIATED ENERGY

| | ko m, B 1 1 0 48100,
Differential energy transfer rate ]: ( R H? H ) o ( fa H )2 R3 5’t (R 8k )

q > 1 (IR modes dominate)
Many soft axions.
Enhancement of DM abundance.

r . N
g < 1 (UV modes dominate)

Few hard axions.
> . Suppression of DM abundance. )




numerical simulations

- Simulate complex scalar field in N*3 cartesian grids (N~11000)
- Calculate axion spectrum at several times
- Calculate time derivative and measure q

Energy density proyection plot Spectrum (PRS strings)
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extrapolation
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axion DM mass

- For which value of mA (fA) do we obtain the observed DM abundance in the post-inflationary scenario?

Mg eV

10°{ Mass determined from
Qa (ma) — QCDM
Gorghetto, Hardy and Villadoro ’
2007.04990 (4500° static-lattice)
- Kawasaki, KS and Sekiguchi (at Iarge |09)
1412.0789 (512 static-lattice)
102 ‘
TIS%tg%gggﬁMoore Buschmann, Foster and Safdi
(1600° static-lattice) 1906.00967 (2048 static-lattice
Buschmann et al. 2108.05368
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I + adaptive mesh refinement)
Klaer and Moore 1708.07521
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Domain walls and the end of the network

- The scaling solution continues as long as the U(1) is a good symmetry

- Axion potential becomes relevant around t1 to favour 6=0
- Domain walls form attached to the strings

- Regions of 6~ trapped by boundary conditions

(© wraps 2m around the string)
- Form membranes attached to strings

X><A><m;11

A
- AlL DW energy density (1 DW per Horizon)

- Energy / Area ~ ~ M ffx

ma fad3
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PDW =
- DWs VS strings ...
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ma
PDW ~ Ps — F ~ (t/tl)n/4+1 ~ 10g2

shortly after t1, they dominate and pull the strings to destruction




Domain Wall problem

- All said is fair for the simplest KSVZ model with exactly 1 extra quark
-When N>1 the situation is VERY different

- Peccei-Quinn symmetry, color anomalous, spontaneously broken at f,
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Domain wall problem

- The physical field theta can experience N times the QCD potential
- There are N degenerate CP conserving vacua
- There are N domain walls separating these pysically different vacua!

N =
< >
—Tfa TfA
o — _%” 0 =0 h — %“
- All these values are populated after the PQ phase transition

NS >

- But now cosmic strings have no preferred direction to collapse at t;, no preferred vacuum!



Domain wall problem

- The physical field theta can experience N times the QCD potential
- There are N degenerate CP conserving vacua
- There are N domain walls separating these pysically different vacua!

N =
< >
—Tfa TfA
o — _%” 0 =0 h — %“
- All these values are populated after the PQ phase transition

NS >

- But now cosmic strings have no preferred direction to collapse at t;, no preferred vacuum!



movie!



Domain wall problem

- String network cannot collapse
- Energy is dominated by domain walls

mAfid%{

PDW = B maH [}
PDW "~ 1 ~ i Radiation domination
t R?
1 1 o
PDW ™~ P 7252 Matter domination

- Energy density in the DW network redshifts much slower than Rad or Matter and
quickly dominates the Universe... (the problem is that we do not observe it!



Domain wall problem. ... solutions

- Break degeneracy between vacua (break explicitly PQ... expected to some extent
Viias(®) = —En° (<I>e_i‘S +h.c.)

_7-‘-fa4

>< >< ><

- But watch out not to spoil axion solution to strong CP problem (or overproduce DM)
Saikawa 2014
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Axion DM mass

I ° I - Stochastic Graham 2018
o——H - Kinetic mis/Parametric resonance Co 2020
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Alternative cosmologies
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Axion miniclusters

- Shortly after t, "ZERO" mode axions (Hi) are extremely non-relativistic [ "\ .
(mA continues to grow after Hy by a factor of 104or so...) E ? :
1\; -
- The density field essentially freezes ;
“Some non-linearities appear at very dense regions (axitons) B
T [GeV]
axions have attractive self-interactions AT P
recurrently collapse and explode as bose-novas > | Y
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- The density field essentially freezes but it has O(1) inhomogeities at ~L; distances
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Gravitational collapse

- 0(1) overdensities collapse gravitationally very early

PHYSICAL REVIEW D VOLUME 50, NUMBER 2 15 JULY 1994

Large-amplitude isothermal fluctuations and high-density dark-matter clumps

Edward W. Kolb*
NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510
and Department of Astronomy and Astrophysics, Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637

Igor 1. Tkachev' p

NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia Illinois 60510
and Institute for Nuclear Research of the Academy of Sciences of Russia, Moscow 117312, Russia
(Received 9 March 1994)

Large-amplitude isothermal fluctuations in the dark-matter energy density, parametrized by
®=8ppm/pom, are studied within the framework of a spherical collapse model. For ® X 1, a fluctuation
collapses in the radiation-dominated epoch and produces a dense dark-matter object. The final density
of the virialized object is found to be pp=1409*( P+ 1)p,, where p,, is the matter density at equal 47T 3
matter and radiation energy density. This expression is valid for the entire range of possible values of ®, M tot — -~ peq eq [ 1+ q)( § ) ]§
both for ®>>1 and ® << 1. Some astrophysical consequences of high-density dark-matter clumps are 3
discussed.

PACS number(s): 98.80.Cq, 05.30.Jp, 95.35.+d, 98.70.—f
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Numerical simulations

- MCs are not spherically symmetric... use output of simulations

DM density proyection (JR 2Q]18) with Gadget2 (Springer 2005)
- Sample densities into particles ...
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Numerical calculations

- Starting from results of Numerical simulations of QCD phase transition with strings+DWs ...

- Halo mass function (Mcs/mass/volume)

106 oo >—156786 4 L 2=2507 M
/ —e 2=99999 |] z=629
' —e 2=39240 |] [ z=250
10° oo 2=15677 H F 2=99 -
o ;" —e 2=6291 |1 L fit: a~—0.7 |1
[} 1 b
=) m \‘\
= 10* § ' E E
bov_'.o
% - -
=103 4t -
5 1 E 3
102 9 E =
] IIIIIII L L |I|ll|l 1 1 lIlIIlI 1 L IIIIIII 1 1 lllIIII 1 1 lllllll L 1 IIllIlI i rl 1 lllII 1 1 |I|Ill| 1 1 lllllll L L IlllllI 1 1 |Illlll 1 Loy 1 1 L
1015 1014 1013 1012 1011 1010 10° 1015 1014 1013 1012 1011 1010 10°

Myicu (Mg ] Mycu (Mg ]



Filling factor

- Most axions are trapped in these high-density Mcs
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- This leaves very few axions to be discovered!



Survival in the galaxy

- Simulations end around z~100 for technical reasons
- Next important event is galaxy formation

- MCs can be disrupted by encoutners with galactic stars

Dokuchaev 17
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) most of them actually survive!



- The average void density seems to converge around few %
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Observing miniclusters?

-Microlensing Subaru HSC dedicated search of PHBs along M31

Mpgy (M)

EROS/MACHO

HSC M31 constraint (95% limit)
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only extreme assumptions offer a window of opportunity!



- femtolensing

- minicluster encounters with NSs

- minicluster encounters with the Earth

- Bose-nova formation in miniclusters (and photon burst emission)



