Towards the N³LO evolution of the parton distribution functions

Giulio Falcioni Theory Challenges in the Precision Era of the Large Hadron Collider

Based on 2203.11181, 2302.07593, 2307.04158, ... ongoing collaboration with

Franz Herzog, Sven Moch, Andreas Vogt and Andrea Pelloni

Towards DGLAP@N3LO

1%-level phenomenology at the LHC

The HL-LHC will push the precision frontier to the %-level E.g. Higgs measurements

- Systematic uncertainties (e.g. luminosity determination, resolution) around 1%
- Statistical errors reduced by 20-fold increase of data collected
- Theory will be the most important source of errors.

CERN Yellow report

Theory errors

	Q [GeV]	$\delta \sigma^{N^3LO}$	$\delta(scale)$	δ (PDF-TH)
$gg ightarrow {\sf Higgs}$	m _H	3.5%	$^{+0.21\%}_{-2.37\%}$	$\pm 1.2\%$
$bar{b} o Higgs$	m _H	-2.3%	$^{+3.0\%}_{-4.8\%}$	$\pm 2.5\%$
NCDY	30	-4.8%	$^{+1.53\%}_{-2.54\%}$	±2.8%
	100	-2.1%	$^{+0.66\%}_{-0.79\%}$	$\pm 2.5\%$
$CCDY(W^+)$	30	-4.7%	$^{+2.5\%}_{-1.7\%}$	±3.2%
	150	-2.0%	$+0.5\% \\ -0.5\%$	$\pm 2.1\%$
$CCDY(W^{-})$	30	-5.0%	$^{+2.6\%}_{-1.6\%}$	±3.2%
	150	-2.1%	+0.6% -0.5%	$\pm 2.13\%$

J. Baglio, C. Duhr, B. Mistlberger, R. Szafron 2209.06138

$$\delta(\mathsf{PDF-TH}) = \frac{1}{2} \frac{\left|\sigma^{\mathrm{NNLO}}(\mathrm{NNLO~PDF}) - \sigma^{\mathrm{NNLO}}(\mathrm{NLO~PDF})\right|}{\sigma^{\mathrm{NNLO}}(\mathrm{NNLO~PDF})}$$

Towards N³LO PDFs

Scale evolution of the PDFs

(Gribov, Lipatov 1972; Lipatov 1975; Altarelli, Parisi 1977; Dokshitzer 1977)

$$\mu^2 \frac{d}{d\mu^2} f_i(x,\mu^2) = \int_x^1 \frac{dy}{y} P_{ij}(\alpha_s,y) f_j\left(\frac{x}{y},\mu^2\right), \quad i = g, u, d, s, \dots$$

Flavour decomposition of the quark contribution

$$f_{\mathsf{NS},ik}^{\pm} = (f_i \pm f_{\overline{i}}) - (f_k \pm f_{\overline{k}}), \qquad i, k = u, d, s, \dots$$
$$f_{\mathsf{S}} = \sum_i (f_i + f_{\overline{i}}), \qquad i = u, d, s, \dots,$$

Perturbative expansion

$$P_{ij}(\alpha_{s}, x) = \underbrace{a P_{ij}^{(0)}}_{\text{LO}} + \underbrace{a^{2} P_{ij}^{(1)}}_{\text{NLO}} + \underbrace{a^{3} P_{ij}^{(2)}}_{\text{NNLO}} + \underbrace{a^{4} P_{ij}^{(3)}}_{\text{N}^{3}\text{LO}}, a = \frac{\alpha_{s}}{4\pi}$$

Recent progress at N³LO

- Large-n_f limit (Gracey 1994, 1996; Davies, Vogt, Ruijl, Ueda, Vermaseren 2016)
- Flavour non-singlet: complete planar limit and approximate full QCD (Ruijl,Ueda,Vermaseren,Vogt 2017)
- Four Mellin moments of the splitting kernels (Moch,Ruijl,Ueda,Vermaseren,Vogt 2021)
- Approximate N³LO PDF fits (McGowan, Cridge, Harland-Lang, Thorne 2022; Hekhorn, Magni 2023)

Complete n_f^2 term in $P_{qq}^{(3)}$ (Gehrmann,von Manteuffel,Sotnikov,Yang 2023) In this talk

- Theory framework to compute the Mellin moments of P_{ij}
- Results for $P_{qq}^{(3)}$ and $P_{qg}^{(3)}$ up to 10 moments.

Operators of leading twist

The Mellin moments of the PDFs are operator matrix elements (Collins,Soper 1981)

$$\langle H(P) | \mathcal{O}_{i;+,\ldots,+}^{(N),\text{bare}} | H(P) \rangle = (P^+)^N \int_0^1 dx \, x^{N-1} \, f_i^{\text{bare}}(x)$$

|H(P)
angle proton state of momentum P, $\mathcal{O}^{(N)}_{i;\mu_1...\mu_N}$ operators of leading twist

$$\begin{split} \mathcal{O}_{g;\mu_{1}...\mu_{N}}^{(N)} &= \frac{1}{2} \, \mathcal{S}_{T} \left\{ F_{\rho\mu_{1}}^{a_{1}} D_{\mu_{2}}^{a_{1}a_{2}} \, \dots \, D_{\mu_{N-1}}^{a_{N-2}a_{N-1}} \, F^{a_{N};\rho}_{\ \mu_{N}} \right\}, \\ \mathcal{O}_{q;\mu_{1}...\mu_{N}}^{(N)} &= \frac{1}{2} \, \mathcal{S}_{T} \left\{ \bar{\psi}_{i_{1}} \, \gamma_{\mu_{1}} \, D_{\mu_{2}}^{i_{1}i_{2}} \, \dots \, D_{\mu_{N}}^{i_{N-1}i_{N}} \, \psi_{i_{N}} \right\}, \\ \mathcal{O}_{\mathrm{ns};\mu_{1}...\mu_{N}}^{(N),\rho} &= \frac{1}{2} \, \mathcal{S}_{T} \left\{ \bar{\psi}_{i_{1}} \left(\lambda^{\rho} \right) \gamma_{\mu_{1}} \, D_{\mu_{2}}^{i_{1}i_{2}} \, \dots \, D_{\mu_{N}}^{i_{N-1}i_{N}} \, \psi_{i_{N}} \right\}, \end{split}$$

 $\lambda^{
ho} \rightarrow \text{generator of } \mathrm{SU}(n_f).$

 $\mathcal{S}_T \rightarrow$ symmetrise over $\mu_1 \dots \mu_N$ and remove trace terms.

Towards DGLAP@N3LO

Scale dependence upon renormalisation

Scale dependence given by a matrix of renormalisation constants

$$\mathcal{O}_{i}^{(N),\mathsf{ren}}(\mu^2) = Z_{ij}^{(N)}(lpha_{\mathfrak{s}},\mu^2) \, \mathcal{O}_{j}^{(N),\mathsf{bare}}$$

The anomalous dimensions of $\mathcal{O}_i^{(N),\text{ren.}}$ control the evolution of the PDFs (Gross, Wilczek 1974; Politzer, Georgi 1974)

$$\gamma_{ij}^{(N)} \equiv -\left(\mu^2 \frac{d}{d\mu^2} Z_{ik}^{(N)}\right) Z_{kj}^{-1} = -\int_0^1 dx \, x^{N-1} \, P_{ij}^{(N)}(x, \alpha_s).$$

In minimal subtraction

$$\gamma_{ij}^{(N)} = a \frac{\partial}{\partial a} Z_{ij}^{(N)} \Big|_{\frac{1}{e}}$$

Computing the anomalous dimensions

Non-singlet case

$$\mathcal{O}_{\mathrm{ns}}^{(N),R}(\mu^2) = Z_{\mathrm{ns}}^{(N)}(\mu^2) \, \mathcal{O}_{\mathrm{ns}}^{(N),\mathsf{bare}}$$

Computing the anomalous dimensions

Non-singlet case

$$\mathcal{O}_{\mathrm{ns}}^{(N),R}(\mu^2) = Z_{\mathrm{ns}}^{(N)}(\mu^2) \, \mathcal{O}_{\mathrm{ns}}^{(N),\mathsf{bare}}$$

$$\rightarrow \underbrace{\stackrel{\mathrm{ns}}{\underset{}}_{\underset{}}}_{\underset{}} \rightarrow \underbrace{+2 \times \stackrel{\mathrm{ns}}{\underset{}}_{\underset{}}}_{\underset{}} \rightarrow \underbrace{+2 \times \stackrel{\mathrm{ns}}{\underset{}}}_{\underset{}} \rightarrow \underbrace{+2 \times \stackrel{\mathrm{ns}}{\underset{}} \rightarrow \underbrace{+2 \times \stackrel{\mathrm{ns}}{\underset{}}}_{\underset{}} \rightarrow \underbrace{+2 \times \stackrel{\mathrm{ns}}{\underset{}} \rightarrow \underbrace{+2 \times \underbrace{+2 \times \underset{}} \rightarrow \underbrace{+2 \times \underbrace{+2 \times \underbrace{+2 \times \underset{}} \rightarrow \underbrace{+2 \times \underbrace{+2$$

Singlet operators \rightarrow the alien issue (Gross,Wilczek 1974)

$$\mathcal{O}_{g}^{(N),R}(\mu^{2}) = Z_{gi}^{(N)}(\mu^{2}) \mathcal{O}_{i}^{(N),\text{bare}}$$

$$\mathcal{O}_{g}^{(N),R}(\mu^{2}) = Z_{gi}^{(N)}(\mu^{2}) \mathcal{O}_{i}^{(N),\text{bare}}$$

$$\mathcal{O}_{g}^{(N),R}(\mu^{2}) = Z_{gi}^{(N)}(\mu^{2}) \mathcal{O}_{i}^{(N),\text{bare}}$$

$$-\sum_{i\neq g} \frac{\gamma_{g\,i}^{(N)}}{\epsilon} \xrightarrow{i} + O(\epsilon^{0})$$
Alien operators

G. Falcioni (University of Edinburgh)

Towards DGLAP@N3LO

28 Aug 2023

Multiloop renormalisation

 $\Pi_g^{\rm ren},$ i.e. renormalised 2-point functions with an insertion of $\mathcal{O}_g^{(N)},$ is finite

 $Z_3(Z_{g\,i} \prod_i (g_{bare}(g), \xi_{bare}(g, \xi))) = finite$

Diagrammatically

Multiloop renormalisation

 $\Pi_g^{\rm ren},$ i.e. renormalised 2-point functions with an insertion of $\mathcal{O}_g^{(N)},$ is finite

$$Z_3(Z_{g\,i} \prod_i (g_{bare}(g), \xi_{bare}(g, \xi))) = finite$$

Diagrammatically

Alien operators, including ghost operators enter in subdivergences

Facts about aliens

Required aliens at 2-loop level (Dixon and Taylor 1974). Defining

$$\partial \equiv \partial_+ = \partial_\mu \, \Delta^\mu, \quad D = D_\mu \Delta^\mu, \quad A^a = A^a_\mu \Delta^\mu, \quad F^a_\nu = F^a_{\nu\mu} \Delta^\mu,$$

$$\mathcal{O}_{A}^{(N)} = \eta F^{a;\alpha} D_{\alpha}^{ab} \partial^{N-2} A^{b} - g f^{abc} F_{\alpha}^{a} \sum_{i=1}^{N-2} \kappa_{i} \partial^{\alpha} \left[\left(\partial^{i-1} A^{b} \right) \left(\partial^{N-2-i} A^{c} \right) \right] + O(g^{2}),$$

$$\mathcal{O}_{c}^{(N)} = -\eta \, \bar{c}^{a} \partial^{N} c^{a} - g f^{abc} \sum_{i=1}^{N-2} \eta_{i}(\eta, \kappa_{i}) \, \bar{c}^{a} \partial \left[\left(\partial^{N-2-i} A^{b} \right) \left(\partial^{i} c^{c} \right) \right] + O(g^{2}),$$

- η , κ_i chosen to cancel the divergences (Hamberg, van Neerven 1993)
- Joglekar and Lee (1976): generalisation of BRST implies that aliens are
 - Operators proportional to the equation of motion
 - BRST-exact operators

Reminder: BRST invariance of the Yang-Mills lagrangian

$$\mathcal{L} = \underbrace{-\frac{1}{4} F^{a;\mu\nu} F^{a}_{\mu\nu}}_{\mathcal{L}_{0}} + \underbrace{s \left[\bar{c}^{a} \left(\partial^{\mu} A^{a}_{\mu} - \frac{\xi_{L}}{2} b^{a} \right) \right]}_{\text{Gauge fixing + ghost}}$$

*L*₀ invariant under

$$\delta A^{a}_{\mu} = (D_{\mu}\omega)^{a},$$

with ω^a scalar function.

 \blacksquare s is the BRST transformation obtained by $\omega^a \rightarrow c^a$

$$sA^a_\mu = (D_\mu c)^a,$$

 c^a , \bar{c}^a and b^a transform such that

 $s^2(anything) = 0.$

Introducing leading twist operators

$$\widetilde{\mathcal{L}} = \underbrace{\mathcal{L}_{0} + c_{g} \, \mathcal{O}_{g}^{(N)} + \mathcal{O}_{EOM}^{(N)}}_{\mathcal{L}_{GGI}} + \underbrace{\mathbf{s'} \left[\overline{c}^{a} \left(\partial^{\mu} A_{\mu}^{a} - \frac{\xi_{L}}{2} b^{a} \right) \right]}_{\text{Gauge fixing + ghost}}$$

 $\mathcal{O}_{\mathsf{EOM}}^{(N)}$ takes care of *gluonic* divergent (sub)diagrams

$$\mathcal{O}_{\text{EOM}}^{(N)} = (D^{\mu}F_{\mu})^{a} \left[\underbrace{\eta \partial^{N-2}A^{a}}_{\mathcal{O}_{g}^{'}} + gf^{aa_{1}a_{2}} \sum_{i_{1}+i_{2}=N-3} \underbrace{\kappa_{i_{1}i_{2}}(\partial^{i_{1}}A^{a_{1}})(\partial^{i_{2}}A^{a_{2}})}_{\mathcal{O}_{g}^{''}} \right] \\ + g^{2} \sum_{i_{1}+i_{2}+i_{3}} \left(\underbrace{\kappa_{i_{1}i_{2}i_{3}}^{(1)}f^{aa_{1}z}f^{a_{2}a_{3}z} + \kappa_{i_{1}i_{2}i_{3}}^{(2)}d_{4}^{aa_{1}a_{2}a_{3}} + \kappa_{i_{1}i_{2}i_{3}}^{(3)}d_{4ff}^{aa_{1}a_{2}a_{3}}} \right) (\partial^{i_{1}}A^{a_{1}})..(\partial^{i_{3}}A^{a_{3}})}_{\mathcal{O}_{g}^{'''}} \\ + g^{3} \sum_{i_{1}+...+i_{4}} \left(\underbrace{\kappa_{i_{1}...i_{4}}^{(1)}(fff)^{aa_{1}a_{2}a_{3}a_{4}} + \kappa_{i_{1}...i_{4}}^{(2)}d_{4f}^{aa_{1}a_{2}a_{3}a_{4}}}_{\mathcal{O}_{g}^{''}} \right) (\partial^{i_{1}}A^{a_{1}})..(\partial^{i_{4}}A^{a_{4}})}_{\mathcal{O}_{g}^{''}} + O(g^{4}) \right]$$

Generalised Gauge and BRST transformations

 \mathcal{L}_{GGI} is invariant under generalised gauge transformations. Given

$$\mathcal{O}_{\mathsf{EOM}}^{(N)} = (D^{\mu} F_{\mu\nu})^{a} \mathcal{G}_{\nu}^{a} (A^{b}, \partial A^{b}, \partial^{2} A^{b}, \dots),$$

the generalised transformation $A^a_\mu o A^a_\mu + \delta' A^a_\mu$ is shown to be

$$\delta^{\prime} A^{\rm a}_{\mu} = \delta A^{\rm a}_{\mu} - \delta \mathcal{G}^{\rm a}_{\mu} + {\rm g} \, f^{\rm abc} \, \mathcal{G}^{\rm b}_{\mu} \, \omega^{\rm c}$$

This defines immediately the generalised BRST transformations

$$s'(A^a_\mu) = s(A^a_\mu) - s(\mathcal{G}^a_\mu) + g f^{abc} \mathcal{G}^b_\mu c^c \equiv s(A^a_\mu) + s_\Delta(A^a_\mu)$$

such that $s'^2(anything) = 0$.

Generalised BRST symmetry at work

The general ansatz of $\mathcal{O}_{EOM}^{(N)}$ fixes the structure of the aliens • Example: first moment N = 2

$$\begin{split} \mathcal{G}^{a}_{\mu} &= \eta \Delta_{\mu} A^{a}, \qquad s_{\Delta} \left[\bar{c}^{a} \partial^{\rho} A^{a}_{\rho} \right] = -\bar{c}^{a} \partial \left[-\eta \left(Dc \right)^{a} + \eta g f^{abc} A^{b} c^{c} \right], \\ \mathcal{O}^{I}_{g} &= \eta \left(D^{\nu} F_{\nu} \right)^{a} A^{a}, \qquad \mathcal{O}^{I}_{c} = \eta \ \bar{c}^{a} \partial^{2} c^{a}. \end{split}$$

There is a **single** alien operator

$$\mathcal{O}_{\mathcal{A}}^{I} = \eta \left[(D^{\nu} F_{\nu})^{a} \mathcal{A}^{a} + \bar{c}^{a} \partial^{2} c^{a} \right].$$

 η mixes the physical operator into gluon and ghost aliens, Z_{galien} .

14/30

Quark operators

The quark 2-point functions renormalise easily. Aliens occur only at 3 loops

Note: the aliens must include now also a **quark** contribution in the EOM.

Pure singlet: aliens

$$\begin{aligned} O_{g}^{l} &= \eta \left(D^{\nu} F_{\nu} \right)^{a} \partial^{N-2} A^{a}, \qquad O_{g}^{ll} &= g f^{abc} \left(D^{\nu} F_{\nu} \right)^{a} \sum_{i_{1}+i_{2}=N-3} \kappa_{i_{1}i_{2}} (\partial^{i_{1}} A^{b}) (\partial^{i_{2}} A^{c}), \\ O_{q}^{l} &= \eta g (\bar{\psi} \Delta t^{a} \psi) \partial^{N-2} A^{a}, \qquad O_{q}^{ll} &= g^{2} (\bar{\psi} \Delta t^{a} \psi) \sum_{i_{1}+i_{2}=N-3} \kappa_{i_{1}i_{2}} (\partial^{i_{1}} A^{b}) (\partial^{i_{2}} A^{c}), \\ O_{c}^{l} &= \eta \bar{c}^{a} \partial^{N} c^{a}, \qquad O_{c}^{ll} &= -(\partial \bar{c}^{a}) \sum_{i_{1}+i_{2}=N-3} \eta_{i_{1}i_{2}} (\partial^{i_{1}} A^{b}) (\partial^{i_{2}+1} c^{c}), \end{aligned}$$

BRST and antiBRST symmetry impose relations

$$\eta_{ij} = 2\kappa_{ij} + \eta \left(\begin{array}{c} \mathsf{N} - 2\\i\end{array}\right) = -\sum_{s=0}^{\prime} (-1)^{s+j} \left(\begin{array}{c} s+j\\s\end{array}\right) \eta_{i-s,j+s}$$

The mixing constant are found to factorise up to 2 loops

$$\kappa_{ij} = \frac{\eta(N)}{8} \Big[(-1)^i - 3 \begin{pmatrix} N-2 \\ i \end{pmatrix} + 3 \begin{pmatrix} N-2 \\ i+1 \end{pmatrix} \Big]$$

 η renormalise ghost 2pt functions. Agreement with (Gehmann,von Manteuffel,Yang 2023).

Pure singlet anomalous dimensions

The required 2pt functions computed with FORCER (Ruijl,Ueda,Vermaseren 2017) for moments up to N = 20

$$\begin{split} \gamma^{(3)}_{\rm ps}(N\!=\!2) &= -691.5937093 \, n_{\rm f} + 84.77398149 \, n_{\rm f}^2 + 4.466956849 \, n_{\rm f}^3 \,, \\ \gamma^{(3)}_{\rm ps}(N\!=\!4) &= -109.3302335 \, n_{\rm f} + 8.776885259 \, n_{\rm f}^2 + 0.306077137 \, n_{\rm f}^3 \,, \\ \gamma^{(3)}_{\rm ps}(N\!=\!6) &= -46.03061374 \, n_{\rm f} + 4.744075766 \, n_{\rm f}^2 + 0.042548957 \, n_{\rm f}^3 \,, \\ & \dots \\ \gamma^{(3)}_{\rm ps}(N\!=\!20) &= -0.442681568 \, n_{\rm f} + 0.805745333 \, n_{\rm f}^2 - 0.020918264 \, n_{\rm f}^3 \,. \end{split}$$

- Agreement with results up to N = 8 (Moch,Ruijl,Ueda,Vermasersen,Vogt 2021), extended up to N = 12 (Moch,Ruijl,Ueda,Vermaseren,Vogt to appear).
- Leading terms in the large-n_f limit agree with (Davies,Moch,Ruijl,Ueda,Vermaseren,Vogt 2016)
- Terms n_f^2 agree with (Gehrmann, von Manteuffel, Sotnikov, Yang 2023)

Approximations of $P_{qq}^{(3)}(x)$ (I)

Following (Moch,Ruijl,Ueda,Vermaseren,Vogt 2017): approximations of the x-space results from 80 trial functions matching

- Moments up to N = 20
- Small-x limits
 - Coefficients of $\frac{\log^2 x}{x}$ (Catani, Hautmann 1994)
 - Coefficients of $\log^{k} x$ with k = 6, 5, 4 (Davies, Kom, Moch, Vogt 2022)
- Large-x limits
 - Coefficients of $(1 x)^j \log^k (1 x)$ with k = 4, 3 and $\forall j \ge 1$ (Soar,Moch,Vermaseren,Vogt 2010)

while unknown coefficients are fitted

• Small-x:
$$\frac{\log x}{x}$$
, $1/x$, $\log^k x$ with $k = 3, 2, 1$

• Large-x:
$$(1 - x) \log^k x$$
, $k = 2, 1$

Calculations and results

Approximations of $P_{qq}^{(3)}(x)$ (II)

Impact of the N³LO corrections

 $P_{qq}(x)$ including approximate N³LO corrections for fixed $\alpha_s = 0.2$ (left). $P_{qq} \otimes f_S$ (right), where

Results for $\gamma_{qg}^{(3)}$

Moments up to N=20 of $\gamma^{(3)}_{qg}$ were computed in the same approach

$\gamma_{\rm qg}^{(3)}(N=2)$	=	$-654.4627782 {\it n_{\! f}}+245.6106197 {\it n_{\! f}}^2-0.924990969 {\it n_{\! f}}^3,$
$\gamma_{ m qg}^{(3)}(N\!=\!4)$	=	290.3110686 n _f - 76.51672403 n _f ² - 4.911625629 n _f ³ ,
$\gamma_{ m qg}^{(3)}(N\!=\!6)$	=	$335.8008046 \ \textit{n_{f}} - 124.5710225 \ \textit{n_{f}}^2 - 4.193871425 \ \textit{n_{f}}^3 ,$
$\gamma_{\rm qg}^{(3)}(N=20)$	=	$52.24329555 n_{\rm f} - 109.3424891 n_{\rm f}^2 - 2.153153725 n_{\rm f}^3$.

 Agreement with moments up to N = 8 computed in (Moch,Ruijl,Ueda,Vermaseren,Vogt 2021), extended to N = 10 (Moch,Ruijl,Ueda,Vermaseren,Vogt to appear)

Agreement with the large-n_f limit (Davies, Vogt, Ruijl, Ueda, Vermaseren 2016)

Approximations of $P_{qg}^{(3)}$ (I)

The trial functions for $P_{qg}^{(3)}$ are constrained by the limits at

- Small-x:
 - Coefficients of $\frac{\log^2 x}{x}$ (Catani, Hautmann 1994)
 - Coefficients of $\log^{k} x$ with k = 6, 5, 4 (Davies, Kom, Moch, Vogt 2022)
- Large-x:
 - Coefficients of log^k(1 x) with k = 6,5,4 (Soar, Moch, Vermaseren, Vogt 2010; Vogt 2010; Almasy, Soar, Vogt 2011)
 - Coefficients of (1 x) log^k(1 x) with k = 6, 5, 4 (Soar, Moch, Vermaseren, Vogt 2010)

The coefficients of $\log^{k}(1-x)$ with k = 1, 2, 3 are now **unknown** \rightarrow uncertainties are larger compared to P_{qq} .

Calculations and results

Approximations of $P_{qg}^{(3)}$ (II)

Impact of the N³LO corrections

 $P_{qg}(x)$ including approximate N³LO corrections fixing α_s = 0.2 (left). $P_{qg}\otimes f_g$ (right), where

$$x f_g(x) = 1.6 x^{-0.3} (1-x)^{4.5} (1-0.6 x^{0.3})$$

G. Falcioni (University of Edinburgh)

Scale evolution of the quark distribution

Using approximate P_{qq} and P_{qg} one derives $\mu_f^2 \frac{d}{d\mu_c^2} f_S \equiv \dot{q}_S = P_{qq} \otimes f_S + P_{qg} \otimes f_g$

The stability under variations of the renormalisation scale are quantified via

$$\Delta_{\mu_r} \dot{q}_S = \frac{1}{2} \frac{\max[\dot{q}_S(\mu_r^2 = \lambda \mu_f^2)] - \min[\dot{q}_S(\mu_r^2 = \lambda \mu_f^2)]}{\operatorname{average}[\dot{q}_S(\mu_r^2 = \lambda \mu_f^2)]}, \qquad \lambda = \frac{1}{4} \dots 4$$

Conclusions

- The moments of P_{ij}(x) are computed *efficiently* from the renormalisation of 2-point correlators **provided** we take into account the mixing with alien operators.
- A generalised BRST symmetry fixes the structure of the aliens.
 - Classification in towers of contributions: O^I_k, O^{II}_k, O^{III}_k, ... with k = g, c, q
 O^I_k include 2-, 3- and 4-point vertices,
 O^{II}_k include 3-, 4- and 5-point vertices, ...
 - The renormalisation of quark operators requires few classes of terms.

Results

- The moments of $P_{qq}^{(3)}$ and $P_{qg}^{(3)}$ were computed up to N = 20.
- The approximate expressions of $P_{qq}(x)$ and $P_{qg}(x)$ at N³LO are characterised by
 - Small uncertainties at large-x, growing at small-x. E.g. $\delta P_{qg}(x = 10^{-4}) \sim \mathcal{O}(10\%)$
 - The convolution with PDFs dampens the uncertainty at small-x.
- Effect of the N³LO corrections to $\mu^2 \frac{d}{d\mu^2} f_S(x,\mu^2) = \dot{q}_S$

$$\delta_{\mathrm{N^3LO}}\dot{q}_S(x=10^{-4})\lesssim 1\%.$$

Renormalisation scale uncertainties are small, e.g. $x = 10^{-4} 2\%$ vs compared to 5% at NNLO.

Outlook

- Ongoing work to compute the moments of $P_{gq}^{(3)}(x)$ and $P_{gg}^{(3)}(x)$.
- Can we obtain the exact expressions? This requires results for all N.
 Only coefficient of Riemann-ζ numbers were reconstructed from the available moments
 - $\gamma_{qq}(N) \rightarrow \text{Coefficients of } \zeta_5, \ \zeta_4 \text{ and of } \zeta_3 n_f \frac{d_{RR}}{n_c} \text{ and } \zeta_3 n_f^2 C_F^2$
 - $\gamma_{qg}(N) \rightarrow \text{Coefficients of } \zeta_5 \text{ and } \zeta_3 n_f \frac{d_{RA}}{n_A} \text{ and } \zeta_3 n_f^2 \frac{d_{RR}}{n_A}$
 - These do not translate to the same coefficients of ζ in x-space.
- All fits would improve significantly with knowledge of the terms $\sim \frac{\log x}{x}$ in $P_{ij}^{(3)}$.
- Different methods to attack the all-N problem.

Thank you!