Towards the $\mathrm{N}^{3} \mathrm{LO}$ evolution of the parton distribution functions

Giulio Falcioni
Theory Challenges in the Precision Era of the Large Hadron Collider

$$
\begin{gathered}
\text { Based on } 2203.11181,2302.07593,2307.04158, \ldots \\
\text { ongoing collaboration with }
\end{gathered}
$$

Franz Herzog, Sven Moch, Andreas Vogt and Andrea Pelloni

1\%-level phenomenology at the LHC

The HL-LHC will push the precision frontier to the \%-level E.g. Higgs measurements

- Systematic uncertainties (e.g. luminosity determination, resolution) around 1%
■ Statistical errors reduced by 20-fold increase of data collected
- Theory will be the most important source of errors.

Theory errors

	$Q[\mathrm{GeV}]$	$\delta \sigma^{\mathrm{N}^{3} \mathrm{LO}}$	δ (scale)	δ (PDF-TH)
$g g \rightarrow$ Higgs	m_{H}	3.5\%	${ }_{-2.37 \%}^{+0.21 \%}$	$\pm 1.2 \%$
$b \bar{b} \rightarrow$ Higgs	m_{H}	-2.3\%	$\begin{aligned} & +3.0 \% \\ & -4.8 \% \\ & \hline \end{aligned}$	$\pm 2.5 \%$
NCDY	$\begin{gathered} 30 \\ 100 \end{gathered}$	$\begin{aligned} & -4.8 \% \\ & -2.1 \% \end{aligned}$	$\begin{aligned} & +1.53 \% \\ & { }^{+1.54 \%} \\ & { }^{+2.54 \%} \\ & \hline-0.66 \% \end{aligned}$	$\begin{aligned} & \pm 2.8 \% \\ & \pm 2.5 \% \end{aligned}$
$\operatorname{CCDY}\left(W^{+}\right)$	$\begin{gathered} 30 \\ 150 \end{gathered}$	$\begin{aligned} & -4.7 \% \\ & -2.0 \% \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { } \\ { }_{-1.5 \%}^{2.7 \%} \\ \\ +0.5 \% \end{array}{ }_{-0.5 \%}^{+0.5 \%} \end{aligned}$	$\begin{aligned} & \pm 3.2 \% \\ & \pm 2.1 \% \end{aligned}$
$\operatorname{CCDY}\left(W^{-}\right)$	$\begin{gathered} 30 \\ 150 \end{gathered}$	$\begin{aligned} & \hline-5.0 \% \\ & -2.1 \% \end{aligned}$	$\begin{aligned} & \begin{array}{l} +1.6 \% \\ { }_{-1.6 \%}^{6} \\ +0.6 \% \\ \\ \hline-0.6 \% \end{array} \end{aligned}$	$\begin{aligned} & \pm 3.2 \% \\ & \pm 2.13 \% \end{aligned}$

J. Baglio, C. Duhr, B. Mistlberger, R. Szafron 2209.06138

$$
\delta(\mathrm{PDF}-\mathrm{TH})=\frac{1}{2} \frac{\left|\sigma^{\mathrm{NNLO}}(\mathrm{NNLO} \mathrm{PDF})-\sigma^{\mathrm{NNLO}}(\mathrm{NLO} \mathrm{PDF})\right|}{\sigma^{\mathrm{NNLO}}(\mathrm{NNLO} \mathrm{PDF})}
$$

Towards N ${ }^{3}$ LO PDFs

Scale evolution of the PDFs
(Gribov,Lipatov 1972; Lipatov 1975; Altarelli,Parisi 1977; Dokshitzer 1977)

$$
\mu^{2} \frac{d}{d \mu^{2}} f_{i}\left(x, \mu^{2}\right)=\int_{x}^{1} \frac{d y}{y} P_{i j}\left(\alpha_{s}, y\right) f_{j}\left(\frac{x}{y}, \mu^{2}\right), \quad i=g, u, d, s, \ldots
$$

Flavour decomposition of the quark contribution

$$
\begin{aligned}
f_{\mathrm{NS}, i k}^{ \pm} & =\left(f_{i} \pm f_{i}\right)-\left(f_{k} \pm f_{\bar{k}}\right), \quad i, k=u, d, s, \ldots \\
f_{\mathrm{S}} & =\sum_{i}\left(f_{i}+f_{\bar{i}}\right), \quad i=u, d, s, \ldots,
\end{aligned}
$$

Perturbative expansion

$$
P_{i j}\left(\alpha_{s}, x\right)=\underbrace{a P_{i j}^{(0)}}_{\mathrm{LO}}+\underbrace{a^{2} P_{i j}^{(1)}}_{\mathrm{NLO}}+\underbrace{a^{3} P_{i j}^{(2)}}_{\mathrm{NNLO}}+\underbrace{a^{4} P_{i j}^{(3)}}_{\mathrm{N}^{3} \mathrm{LO}}, a=\frac{\alpha_{s}}{4 \pi}
$$

Recent progress at $\mathrm{N}^{3} \mathrm{LO}$

■ Large- n_{f} limit (Gracey 1994, 1996; Davies,Vogt,Ruijl,Ueda,Vermaseren 2016)

- Flavour non-singlet: complete planar limit and approximate full QCD (Ruijl,Ueda,Vermaseren,Vogt 2017)
■ Four Mellin moments of the splitting kernels (Moch,Ruijl,Ueda,Vermaseren,Vogt 2021)
- Approximate N^{3} LO PDF fits (McGowan, Cridge,Harland-Lang,Thorne 2022; Hekhorn, Magni 2023)
- Complete n_{f}^{2} term in $P_{q q}^{(3)}$ (Gehrmann, von Manteuffel,Sotnikov, Yang 2023)

In this talk

- Theory framework to compute the Mellin moments of $P_{i j}$
- Results for $P_{q q}^{(3)}$ and $P_{q g}^{(3)}$ up to 10 moments.

Operators of leading twist

The Mellin moments of the PDFs are operator matrix elements (Collins,Soper 1981)

$$
\langle H(P)| \mathcal{O}_{\substack{i ;+, \ldots,+N \text { times }}}^{(N), \text { bare }}|H(P)\rangle=\left(P^{+}\right)^{N} \int_{0}^{1} d x x^{N-1} f_{i}^{\text {bare }}(x)
$$

$|H(P)\rangle$ proton state of momentum $P, \mathcal{O}_{i ; \mu_{1} \ldots \mu_{N}}^{(N)}$ operators of leading twist

$$
\begin{aligned}
& \mathcal{O}_{g: \mu_{1} \ldots \mu_{N}}^{(N)}=\frac{1}{2} \mathcal{S}_{T}\left\{F_{\rho \mu_{1}}^{a_{1}} D_{\mu_{2}}^{a_{1} a_{2}} \ldots D_{\mu_{N-1}}^{a_{N-2} a_{N-1}} F^{\left.a_{N} ; \rho_{\mu_{N}}\right\},}\right. \\
& \mathcal{O}_{q ; \mu_{1} \ldots \mu_{N}}^{(N)}=\frac{1}{2} \mathcal{S}_{T}\left\{\bar{\psi}_{i_{1}} \gamma_{\mu_{1}} D_{\mu_{2}}^{i_{1} i_{2}} \ldots D_{\mu_{N}}^{i_{N-1} i_{N}} \psi_{i_{N}}\right\}, \\
& \mathcal{O}_{n s ; \mu_{1} \ldots \mu_{N}}^{(N)}=\frac{1}{2} \mathcal{S}_{T}\left\{\bar{\psi}_{i_{1}}\left(\lambda^{\rho}\right) \gamma_{\mu_{1}} D_{\mu_{2}}^{i_{1} i_{2}} \ldots D_{\mu_{N}}^{i_{N-1} i_{N}} \psi_{i_{N}}\right\},
\end{aligned}
$$

$\lambda^{\rho} \rightarrow$ generator of $\operatorname{SU}\left(n_{f}\right)$.
$\mathcal{S}_{T} \rightarrow$ symmetrise over $\mu_{1} \ldots \mu_{N}$ and remove trace terms.

Scale dependence upon renormalisation

Scale dependence given by a matrix of renormalisation constants

$$
\mathcal{O}_{i}^{(N), \text { ren }}\left(\mu^{2}\right)=Z_{i j}^{(N)}\left(\alpha_{s}, \mu^{2}\right) \mathcal{O}_{j}^{(N), \text { bare }}
$$

The anomalous dimensions of $\mathcal{O}_{i}^{(N)}$,ren. control the evolution of the PDFs (Gross,Wilczek 1974; Politzer,Georgi 1974)

$$
\gamma_{i j}^{(N)} \equiv-\left(\mu^{2} \frac{d}{d \mu^{2}} Z_{i k}^{(N)}\right) Z_{k j}^{-1}=-\int_{0}^{1} d x x^{N-1} P_{i j}^{(N)}\left(x, \alpha_{s}\right)
$$

In minimal subtraction

$$
\gamma_{i j}^{(N)}=\left.a \frac{\partial}{\partial a} Z_{i j}^{(N)}\right|_{\frac{1}{\epsilon}}
$$

Computing the anomalous dimensions

Non-singlet case

$$
\mathcal{O}_{\mathrm{ns}}^{(N), R}\left(\mu^{2}\right)=Z_{\mathrm{ns}}^{(N)}\left(\mu^{2}\right) \mathcal{O}_{\mathrm{ns}}^{(N), \text { bare }}
$$

Computing the anomalous dimensions

Non-singlet case

$$
\mathcal{O}_{\mathrm{ns}}^{(N), R}\left(\mu^{2}\right)=Z_{\mathrm{ns}}^{(N)}\left(\mu^{2}\right) \mathcal{O}_{\mathrm{ns}}^{(N), \text { bare }}
$$

$$
\rightarrow-2 \times \xrightarrow{\mathrm{ns}} \underbrace{\infty}_{\text {, }}
$$

Singlet operators \rightarrow the alien issue (Gross,Wilczek 1974)

Multiloop renormalisation

$\Pi_{g}^{\text {ren }}$, i.e. renormalised 2-point functions with an insertion of $\mathcal{O}_{g}^{(N)}$, is finite

$$
Z_{3}\left(Z_{g} i \Pi_{i}\left(g_{\text {bare }}(g), \xi_{\text {bare }}(g, \xi)\right)\right)=\text { finite }
$$

Diagrammatically

Multiloop renormalisation

$\Pi_{g}^{\text {ren }}$, i.e. renormalised 2-point functions with an insertion of $\mathcal{O}_{g}^{(N)}$, is finite

$$
Z_{3}\left(Z_{g} i \Pi_{i}\left(g_{\text {bare }}(g), \xi_{\text {bare }}(g, \xi)\right)\right)=\text { finite }
$$

Diagrammatically

Alien operators, including ghost operators enter in subdivergences

Facts about aliens

Required aliens at 2-loop level (Dixon and Taylor 1974). Defining

$$
\partial \equiv \partial_{+}=\partial_{\mu} \Delta^{\mu}, \quad D=D_{\mu} \Delta^{\mu}, \quad A^{a}=A_{\mu}^{a} \Delta^{\mu}, \quad F_{\nu}^{a}=F_{\nu \mu}^{a} \Delta^{\mu},
$$

$$
\begin{aligned}
& \mathcal{O}_{A}^{(N)}=\eta F^{a ; \alpha} D_{\alpha}^{a b} \partial^{N-2} A^{b}-g f^{a b c} F_{\alpha}^{a} \sum_{i=1}^{N-2} \kappa_{i} \partial^{\alpha}\left[\left(\partial^{i-1} A^{b}\right)\left(\partial^{N-2-i} A^{c}\right)\right]+O\left(g^{2}\right), \\
& \mathcal{O}_{c}^{(N)}=-\eta \bar{c}^{a} \partial^{N} c^{a}-g f^{a b c} \sum_{i=1}^{N-2} \eta_{i}\left(\eta, \kappa_{i}\right) \bar{c}^{a} \partial\left[\left(\partial^{N-2-i} A^{b}\right)\left(\partial^{i} c^{c}\right)\right]+O\left(g^{2}\right),
\end{aligned}
$$

- η, κ_{i} chosen to cancel the divergences (Hamberg,van Neerven 1993)
- Joglekar and Lee (1976): generalisation of BRST implies that aliens are

■ Operators proportional to the equation of motion

- BRST-exact operators

Reminder: BRST invariance of the Yang-Mills lagrangian

$$
\mathcal{L}=\underbrace{-\frac{1}{4} F^{a ; \mu \nu} F_{\mu \nu}^{a}}_{\mathcal{L}_{0}}+\underbrace{s\left[\bar{c}^{a}\left(\partial^{\mu} A_{\mu}^{a}-\frac{\xi_{L}}{2} b^{a}\right)\right]}_{\text {Gauge fixing }+ \text { ghost }}
$$

- \mathcal{L}_{0} invariant under

$$
\delta A_{\mu}^{a}=\left(D_{\mu} \omega\right)^{a},
$$

with ω^{a} scalar function.
■ s is the BRST transformation obtained by $\omega^{a} \rightarrow c^{a}$

$$
s A_{\mu}^{a}=\left(D_{\mu} c\right)^{a}
$$

c^{a}, \bar{c}^{a} and b^{a} transform such that

$$
s^{2}(\text { anything })=0
$$

Introducing leading twist operators

$$
\widetilde{\mathcal{L}}=\underbrace{\mathcal{L}_{0}+c_{g} \mathcal{O}_{g}^{(N)}+\mathcal{O}_{\mathrm{EOM}}^{(N)}}_{\mathcal{L}_{\mathrm{GGI}}}+\underbrace{\mathrm{s}^{\prime}\left[\bar{c}^{a}\left(\partial^{\mu} A_{\mu}^{a}-\frac{\xi_{L}}{2} b^{a}\right)\right]}_{\text {Gauge fixing }+ \text { ghost }}
$$

$\mathcal{O}_{\text {EOM }}^{(N)}$ takes care of gluonic divergent (sub)diagrams

$$
\begin{aligned}
& \mathcal{O}_{\mathrm{EOM}}^{(N)}=\left(D^{\mu} F_{\mu}\right)^{a}[\underbrace{\eta \partial^{N-2} A^{a}}_{\mathcal{O}_{g}^{\prime}}+g f^{a a_{1} a_{2}} \sum_{i_{1}+i_{2}=N-3} \underbrace{\kappa_{i_{1} i_{2}}\left(\partial^{i_{1}} A^{a_{1}}\right)\left(\partial^{i_{2}} A^{a_{2}}\right)}_{\mathcal{O}_{g}^{I I}} \\
& +g^{2} \sum_{\substack{i_{1}+i_{2}+i_{3} \\
N-4}}(\underbrace{\left.\kappa_{i_{1} i_{2} i_{3}}^{(1)} f^{a a_{1} z} f^{a_{2} a_{3} z}+\kappa_{i_{1} i_{2} i_{3}}^{(2)} d_{4}^{a a_{1} a_{2} a_{3}}+\kappa_{i_{1} i_{2} i_{3}}^{(3)} d_{4 f f}^{a a_{1} a_{2} a_{3}}\right)\left(\partial^{i_{1}} A^{a_{1}}\right) . .\left(\partial^{i_{3}} A^{a_{3}}\right)}_{\mathcal{O}_{g}^{I I I}} \\
& +g^{3} \sum_{\substack{i_{1}+. .+i_{4} \\
N-5}}(\underbrace{\left.\kappa_{i_{1} \ldots i_{4}}^{(1)}(f f f)^{a a_{1} a_{2} a_{3} a_{4}}+\kappa_{i_{1} \ldots i_{4}}^{(2)} d_{4 f}^{a a_{1} a_{2} a_{3} a_{4}}\right)\left(\partial^{i_{1}} A^{a_{1}}\right) . .\left(\partial^{i_{4}} A^{a_{4}}\right)}_{\mathcal{O}_{g}^{I V}}+O\left(g^{4}\right)]
\end{aligned}
$$

Generalised Gauge and BRST transformations

$\mathcal{L}_{\mathrm{GGI}}$ is invariant under generalised gauge transformations. Given

$$
\mathcal{O}_{\mathrm{EOM}}^{(N)}=\left(D^{\mu} F_{\mu \nu}\right)^{a} \mathcal{G}_{\nu}^{a}\left(A^{b}, \partial A^{b}, \partial^{2} A^{b}, \ldots\right),
$$

the generalised transformation $A_{\mu}^{a} \rightarrow A_{\mu}^{a}+\delta^{\prime} A_{\mu}^{a}$ is shown to be

$$
\delta^{\prime} A_{\mu}^{a}=\delta A_{\mu}^{a}-\delta \mathcal{G}_{\mu}^{a}+g f^{a b c} \mathcal{G}_{\mu}^{b} \omega^{c}
$$

This defines immediately the generalised BRST transformations

$$
s^{\prime}\left(A_{\mu}^{a}\right)=s\left(A_{\mu}^{a}\right)-s\left(\mathcal{G}_{\mu}^{a}\right)+g f^{a b c} \mathcal{G}_{\mu}^{b} c^{c} \equiv s\left(A_{\mu}^{a}\right)+s_{\Delta}\left(A_{\mu}^{a}\right)
$$

such that $s^{\prime 2}($ anything $)=0$.

Generalised BRST symmetry at work

The general ansatz of $\mathcal{O}_{\text {EOM }}^{(N)}$ fixes the structure of the aliens

- Example: first moment $N=2$

$$
\begin{aligned}
\mathcal{G}_{\mu}^{a} & =\eta \Delta_{\mu} A^{a}, & s_{\Delta}\left[\bar{c}^{a} \partial^{\rho} A_{\rho}^{a}\right] & =-\bar{c}^{a} \partial\left[-\eta(D c)^{a}+\eta g f^{a b c} A^{b} c^{c}\right], \\
\mathcal{O}_{g}^{\prime} & =\eta\left(D^{\nu} F_{\nu}\right)^{a} A^{a}, & \mathcal{O}_{c}^{\prime} & =\eta \bar{c}^{a} \partial^{2} c^{a} .
\end{aligned}
$$

There is a single alien operator

$$
\mathcal{O}_{A}^{\prime}=\eta\left[\left(D^{\nu} F_{\nu}\right)^{a} A^{a}+\bar{c}^{a} \partial^{2} c^{a}\right] .
$$

η mixes the physical operator into gluon and ghost aliens, $Z_{g \text { alien }}$.

Quark operators

$\mathcal{O}_{q}^{(N)}$ has a much simpler mixing structure

The quark 2-point functions renormalise easily. Aliens occur only at 3 loops

Note: the aliens must include now also a quark contribution in the EOM.

Pure singlet: aliens

$$
\begin{array}{ll}
O_{g}^{\prime}=\eta\left(D^{\nu} F_{\nu}\right)^{2} \partial^{N-2} A^{a}, & O_{g}^{\prime \prime}=g f^{a b c}\left(D^{\nu} F_{\nu}\right)^{a} \sum_{i_{1}+i_{2}=N-3} \kappa_{i_{11} i_{2}}\left(\partial^{i_{1}} A^{b}\right)\left(\partial^{i_{2}^{c}} A^{c},\right. \\
O_{q}^{\prime}=\eta g\left(\bar{\psi} \Delta t^{a} \psi\right) \partial^{N-2} A^{a}, & O_{q}^{\prime \prime}=g^{2}\left(\bar{\psi} \Delta t^{a} \psi\right) \sum_{i_{1}+i_{2}=N-3} \kappa_{i_{1} i_{2}}\left(\partial^{i_{1}} A^{b}\right)\left(\partial^{i_{2}} A^{c}\right), \\
O_{c}^{\prime}=\eta \bar{c}^{a} \partial^{N} c^{a}, & O_{c}^{\prime \prime}=-\left(\partial \bar{c}^{a}\right) \sum_{i_{2}=N-3} \eta_{i_{1} i_{2}}\left(\partial^{i_{1}} A^{b}\right)\left(\partial^{i_{2}+1} c^{c}\right),
\end{array}
$$

BRST and antiBRST symmetry impose relations

$$
\eta_{i j}=2 \kappa_{i j}+\eta\binom{N-2}{i}=-\sum_{s=0}^{i}(-1)^{s+j}\binom{s+j}{s} \eta_{i-s, j+s}
$$

The mixing constant are found to factorise up to 2 loops

$$
\kappa_{i j}=\frac{\eta(N)}{8}\left[(-1)^{i}-3\binom{N-2}{i}+3\binom{N-2}{i+1}\right]
$$

η renormalise ghost 2pt functions. Agreement with (Gehmann,von Manteuffel,Yang 2023).

Pure singlet anomalous dimensions

The required 2pt functions computed with FORCER (Ruijl,Ueda,Vermaseren 2017) for moments up to $N=20$

$$
\begin{aligned}
\gamma_{\mathrm{ps}}^{(3)}(N=2) & =-691.5937093 n_{f}+84.77398149 n_{f}^{2}+4.466956849 n_{f}^{3} \\
\gamma_{\mathrm{ps}}^{(3)}(N=4) & =-109.3302335 n_{f}+8.776885259 n_{f}^{2}+0.306077137 n_{f}^{3} \\
\gamma_{\mathrm{ps}}^{(3)}(N=6) & =-46.03061374 n_{f}+4.744075766 n_{f}^{2}+0.042548957 n_{f}^{3} \\
& \cdots \\
\gamma_{\mathrm{ps}}^{(3)}(N=20) & =-0.442681568 n_{f}+0.805745333 n_{f}^{2}-0.020918264 n_{f}^{3} .
\end{aligned}
$$

■ Agreement with results up to $N=8$ (Moch,Ruijl,Ueda,Vermasersen, Vogt 2021), extended up to $N=12$ (Moch,Ruijl,Ueda,Vermaseren, Vogt to appear).

- Leading terms in the large- n_{f} limit agree with
(Davies,Moch,Ruijl,Ueda, Vermaseren,Vogt 2016)
- Terms n_{f}^{2} agree with (Gehrmann,von Manteuffel,Sotnikov, Yang 2023)

Approximations of $P_{q 9}^{(3)}(x)(1)$

Following (Moch,Ruijl,Ueda,Vermaseren,Vogt 2017): approximations of the x-space results from 80 trial functions matching

- Moments up to $N=20$
- Small-x limits
- Coefficients of $\frac{\log ^{2} x}{x}$ (Catani,Hautmann 1994)
- Coefficients of $\log ^{k} x$ with $k=6,5,4$ (Davies,Kom,Moch,Vogt 2022)

■ Large-x limits

- Coefficients of $(1-x)^{j} \log ^{k}(1-x)$ with $k=4,3$ and $\forall j \geq 1$ (Soar,Moch,Vermaseren, Vogt 2010)
while unknown coefficients are fitted
- Small-x: $\frac{\log x}{x}, 1 / x, \log ^{k} x$ with $k=3,2,1$
- Large-x: $(1-x) \log ^{k} x, k=2,1$

Approximations of $P_{q 9}^{(3)}(x)(I I)$

Impact of the $\mathrm{N}^{3} \mathrm{LO}$ corrections

$P_{q q}(x)$ including approximate $\mathrm{N}^{3} \mathrm{LO}$ corrections for fixed $\alpha_{s}=0.2$ (left). $P_{q q} \otimes f_{S}$ (right), where

$$
x f_{S}(x)=0.6 x^{-0.3}(1-x)^{3.5}\left(1+5.0 x^{0.8}\right)
$$

Results for $\gamma_{q g}^{(3)}$

Moments up to $N=20$ of $\gamma_{q g}^{(3)}$ were computed in the same approach

$$
\begin{aligned}
\gamma_{\mathrm{qg}}^{(3)}(N=2) & =-654.4627782 n_{f}+245.6106197 n_{f}^{2}-0.924990969 n_{f}^{3}, \\
\gamma_{\mathrm{qg}}^{(3)}(N=4) & =290.3110686 n_{f}-76.51672403 n_{f}^{2}-4.911625629 n_{f}^{3}, \\
\gamma_{\mathrm{qg}}^{(3)}(N=6) & =335.8008046 n_{f}-124.5710225 n_{f}^{2}-4.193871425 n_{f}^{3}, \\
& \cdots \\
\gamma_{\mathrm{qg}}^{(3)}(N=20) & =52.24329555 n_{f}-109.3424891 n_{f}^{2}-2.153153725 n_{f}^{3} .
\end{aligned}
$$

- Agreement with moments up to $N=8$ computed in (Moch,Ruijl,Ueda,Vermaseren,Vogt 2021), extended to $N=10$ (Moch,Ruijl,Ueda, Vermaseren, Vogt to appear)
■ Agreement with the large- n_{f} limit (Davies,Vogt,Ruijl,Ueda,Vermaseren 2016)

Approximations of $P_{q g}^{(3)}(I)$

The trial functions for $P_{q g}^{(3)}$ are constrained by the limits at

- Small-x:
- Coefficients of $\frac{\log ^{2} x}{x}$ (Catani,Hautmann 1994)
- Coefficients of $\log ^{k} x$ with $k=6,5,4$ (Davies,Kom,Moch,Vogt 2022)
- Large- x :
- Coefficients of $\log ^{k}(1-x)$ with $k=6,5,4$ (Soar,Moch,Vermaseren,Vogt 2010; Vogt 2010; Almasy,Soar, Vogt 2011)
- Coefficients of $(1-x) \log ^{k}(1-x)$ with $k=6,5,4$ (Soar,Moch, Vermaseren, Vogt 2010)

The coefficients of $\log ^{k}(1-x)$ with $k=1,2,3$ are now unknown \rightarrow uncertainties are larger compared to $P_{q q}$.

Approximations of $P_{q g}^{(3)}$ (II)

Impact of the $\mathrm{N}^{3} \mathrm{LO}$ corrections

$P_{q g}(x)$ including approximate $\mathrm{N}^{3} \mathrm{LO}$ corrections fixing $\alpha_{s}=0.2$ (left). $P_{q g} \otimes f_{g}$ (right), where

$$
x f_{g}(x)=1.6 x^{-0.3}(1-x)^{4.5}\left(1-0.6 x^{0.3}\right)
$$

Scale evolution of the quark distribution

Using approximate $P_{q q}$ and $P_{q g}$ one derives $\mu_{f}^{2} \frac{d}{d \mu_{f}^{2}} f_{S} \equiv \dot{q}_{S}=P_{q q} \otimes f_{S}+P_{q g} \otimes f_{g}$

The stability under variations of the renormalisation scale are quantified via

$$
\Delta_{\mu_{r}} \dot{q}_{s}=\frac{1}{2} \frac{\max \left[\dot{q}_{s}\left(\mu_{r}^{2}=\lambda \mu_{f}^{2}\right)\right]-\min \left[\dot{q}_{s}\left(\mu_{r}^{2}=\lambda \mu_{f}^{2}\right)\right]}{\text { average }\left[\dot{q}_{s}\left(\mu_{r}^{2}=\lambda \mu_{f}^{2}\right)\right]}, \quad \lambda=\frac{1}{4} \ldots 4
$$

Conclusions

Theory

- The moments of $P_{i j}(x)$ are computed efficiently from the renormalisation of 2-point correlators provided we take into account the mixing with alien operators.

■ A generalised BRST symmetry fixes the structure of the aliens.

- Classification in towers of contributions: $O_{k}^{\prime}, O_{k}^{\prime \prime}, O_{k}^{\prime \prime \prime}, \ldots$ with $k=g, c, q$
O_{k}^{\prime} include 2-, 3- and 4-point vertices, $O_{k}^{\prime \prime}$ include 3-, 4- and 5-point vertices, ...
- The renormalisation of quark operators requires few classes of terms.

Results

- The moments of $P_{q q}^{(3)}$ and $P_{q g}^{(3)}$ were computed up to $N=20$.
- The approximate expressions of $P_{q q}(x)$ and $P_{q g}(x)$ at $\mathrm{N}^{3} \mathrm{LO}$ are characterised by
- Small uncertainties at large-x, growing at small-x. E.g.

$$
\delta P_{q g}\left(x=10^{-4}\right) \sim \mathcal{O}(10 \%)
$$

- The convolution with PDFs dampens the uncertainty at small-x.
- Effect of the $\mathrm{N}^{3} \mathrm{LO}$ corrections to $\mu^{2} \frac{d}{d \mu^{2}} f_{S}\left(x, \mu^{2}\right)=\dot{q}_{S}$

$$
\delta_{\mathrm{N}^{3} \mathrm{LO}} \dot{q}_{S}\left(x=10^{-4}\right) \lesssim 1 \% .
$$

- Renormalisation scale uncertainties are small, e.g. $x=10^{-4} 2 \%$ vs compared to 5% at NNLO.

Outlook

- Ongoing work to compute the moments of $P_{g q}^{(3)}(x)$ and $P_{g g}^{(3)}(x)$.

■ Can we obtain the exact expressions? This requires results for all N. Only coefficient of Riemann- ζ numbers were reconstructed from the available moments

- $\gamma_{q q}(N) \rightarrow$ Coefficients of ζ_{5}, ζ_{4} and of $\zeta_{3} n_{f} \frac{d_{R R}}{n_{c}}$ and $\zeta_{3} n_{f}{ }^{2} C_{F}^{2}$
- $\gamma_{q g}(N) \rightarrow$ Coefficients of ζ_{5} and $\zeta_{3} n_{f} \frac{d_{R A}}{n_{A}}$ and $\zeta_{3} n_{f}^{2} \frac{d_{R R}}{n_{A}}$
- These do not translate to the same coefficients of ζ in x-space.
- All fits would improve significantly with knowledge of the terms $\sim \frac{\log x}{x}$ in $P_{i j}^{(3)}$.
- Different methods to attack the all-N problem.

Thank you!

