

Heavy Flavours at High pt

Theory Challenges in the Precision Era of the Large Hadron Collider 28th August - 1st September 2023 Galileo Galilei Institute, Florence

Simone Marzani Università di Genova and INFN Sezione di Genova

• Introduction and motivation: heavy-flavour at the LHC

• A consistent resummation of mass and soft logarithms

• Outlook: prospects for heavy-flavoured jet substructure

https://cds.cern.ch/record/2771727/plots

Heavy Flavours at the LHC

- heavy-flavour processes (charm and beauty) are central to the LHC Higgs program
- important for QCD studies too: PDFs, fragmentation etc.
- they are identified exploiting B (D) hadron lifetime: displaced vertices
- from theory viewpoint, m_b & m_c set perturbative scales: high accuracy (NNLO) QCD calculations Z+b/c (jet) now exist

HF jets: experiment vs theory

- jets are powerful bridge between theory and experiment However jets with identified flavour are not straightforward
- Experimental procedure:
 - cluster jets using the anti-kt algorithm
 - run *b* (*c*)-tagging

- Theory calculation:
 - compute real and virtual
 - cluster jets using an IRC safe (flavour) algorithm θ

BUT counting the flavour of an anti-kt jet is NOT IRC Safe beyond NLO!

see Giovanni Stagnitto's talk

4 new idease the the sast year!

Les Houches 2023 studies

- it is important to investigate IRC safety, resilience against non-perturbative effects and experimental viability of the 4 algorithms
- a detailed comparison of these 4 algorithms was started at Les Houches
- current results are very preliminary, they will be refined and will appear in the proceedings

interesting shape difference at low pt: it deserves further investigation!

first hadron-level studies show larger differences... something to investigate further

A consistent resummation of mass and soft logarithms

in collaboration with (Daniele Gaggero) Andrea Ghira and Giovanni Ridolfi

Run: 350440 Event: 1105654304 2018-05-16 23:55:11 CEST

All-orders calculations with HF

- jets are not the only way to investigate HF
- we can study more exclusive processes with an identified B (or D) hadron (plus unmeasured QCD radiation)
- in both cases we face the challenge to describe processes which are characterised by multiple energy scales
 - hard scale of the process Q (c.o.m energy, jet p_T , ...)
 - heavy flavour mass m (much larger than $\Lambda_{\textit{OCD}}$)
 - scale vQ set by the HF property we want to measure (e.g. its energy or a jet's substructure variable)
 - (multiple) resummations become relevant and it is important to understand the hierarchy between the different scales

Heavy Flavour production

- as a toy example we consider the energy spectrum of an identified b-quark produced by a colour-singlet decay
- similar considerations hold for HF decay and HF deep-inelastic scattering

• two dimensionless ratios

$$\xi = \frac{m^2}{q^2}, \quad x = \frac{2p_b \cdot q}{q^2} = \frac{E_b}{E_h/2}$$

• we consider Mellin moments of the differential decay rate

$$\tilde{\Gamma}(N,\xi) = \int_0^1 dx \, x_{10}^{N-1} \frac{d\Gamma}{dx}$$

Massless vs Massive scheme

massless scheme (5 flv)

- quark mass used as a regulator
- cross section computed as a convolution of a coefficient function times a fragmentation function
- logs of ξ resummed through DGLAP evolution

massive scheme (4 flv)

- full mass dependence taken
 into account
- kinematics treated correctly at every order
- large mass logs spoil the convergence of the series

• the two approaches are usually combined (e.g. FONLL)

$$\tilde{\Gamma}^{FONLL}(N,\xi) = \tilde{\Gamma}^{(5)}(N,\xi) + \tilde{\Gamma}^{(4)}(N,\xi) - d \cdot c \,.$$

Infra-red effects

 both calculations exhibit large logs in 1-x (or logs of N, in moment space) of soft and/or collinear origin

massless scheme (5 flv)

 $\sum_{l=0} \alpha_s^l d_l \log^{2l} N + \dots$

 double logs of N in coefficient function and fragmentation function initial condition

$$\tilde{\Gamma}^{(5,res)}(N,\xi) = \tilde{C}^{res}\left(N,\frac{\mu^2}{q^2}\right) e^{\int_{\mu_0^2}^{\mu_0^2} \frac{d\kappa}{\kappa}\gamma(N,\alpha_s(\kappa))} \\ \times \tilde{D}^{res}\left(N,\frac{m^2}{\mu_0^2}\right) \\ \simeq \left(\sum_{k=0}^{\infty} \alpha_s^k c_k \log^{2k} N + \dots\right) \left(\sum_{k=0}^{\infty} \alpha_s^h A^{(h)} \log^h \xi \log N + \dots \times \left(\sum_{k=0}^{\infty} \alpha_s^l d_k \log^{2l} N + \dots\right)\right) Cacciari, Catani (2001)$$

massive scheme (4 flv)

• single logs of *N* with massdependent coefficients

$$\widetilde{\Gamma}^{(4,res)}(N,\xi) = \widetilde{K}(\xi) e^{\int_{1/\bar{N}}^{1} \frac{d\kappa}{\kappa} \gamma_{soft}(\xi,\alpha_{s}(\kappa))}$$

$$\simeq \sum_{k=0}^{\infty} \alpha_{s}^{k} c_{k}(\xi) \log^{k} \bar{N}$$

$$\simeq \sum_{k=0}^{\infty} \alpha_{s}^{k} \left(\widetilde{c}_{k} \log^{k} \xi + \dots \right) \log^{k} \bar{N}$$

Laenen, Oderda, Sterman (1998)

Difficulties with matching

- we would like to combine the two calculations, with their all-order log *N* resummation
- however, they have different log structure and we cannot identify an allorder "double counting" term to subtract
- note that all the contributions of the 5-flv calculation could recombine to give something consistent with the small mass limit of the 4-flv calculation. This happens for instance for DY kinematics (more on the next slide)
- additional oddity

$$K(\xi) \simeq 1 + \frac{\alpha_s C_F}{2\pi} \log^2 \xi + \dots$$

while DGLAP evolution predicts only single logs of the mass

Origin of the mismatch (I)

in order to better understand, we can look at the NLO calculation

massless scheme (5 flv)

massive scheme (4 flv)

- the $x \to 1$ and $\xi \to 0$ limits do not commute, one needs to decide what is the hierarchy
- this crucially depends on the observable and on the process we are looking at, e.g. DIS has the same issue, while DY is fine
- issue investigated also in HF decay

Corcella and Mitov (2003), Aglietti et al (2007), Gaggero, Ghira, SM, Ridolfi (2022)

Origin of the mismatch (II)

 at NLL, the 5-flv doubly resummed calculation can be written as the product of two independent jet functions

$$\tilde{\Gamma}^{(5,res)}(N,\xi) = \left(1 + \alpha_s C^{(1)}\right) \left(1 + \alpha_s D^{(1)}\right) \mathscr{E}^{sub}(N,\xi)$$
$$\times \exp\left[J(N,\xi) + \bar{J}(N)\right] \qquad \mu^2 = q^2, \mu_0^2 = m^2$$

- measured jet function for the b quark

$$J(N,\xi) \simeq -\frac{\alpha_s C_F}{\pi} \left(-\log^2 \bar{N} + \log \xi \log \bar{N} + \log^2 \bar{N} \right) = -\frac{\alpha_s C_F}{\pi} \log \xi \log \bar{N}$$

- unmeasured (recoil) jet function for the b quark

$$\bar{J}(N) \simeq -\frac{\alpha_s C_F}{2\pi} \log^2 \bar{N}$$

• double logs of *N* purely stem from the recoil jet function

Towards a solution

 the calculation of the measured jet function is performed in the quasi-collinear limit in order to account for mass logs

$$k_t^2 \to 0, m^2 \to 0, \text{ but } \frac{k_t^2}{m^2} \text{ fixed}$$

• the recoil jet function is instead computed at m = 0, while we should compute it too in the quasi-collinear limit

see also Aglietti et al (2007)

- furthermore, because we are matching massive (4 flv) and massless (5 flv) calculation, we should pay attention to the quark mass thresholds when performing integrals over the running coupling
- interpretation of these thresholds not transparent in Mellin space, so we perform a momentum-space analysis

Lund plane - a short review

- Lund planes are a powerful way to visualise the kinematics of soft/collinear emissions
- Observables \mathcal{V} have different parametrisation (V, \bar{V}) in the two collinear regions
- Coloured areas represent the NLL Sudakov form factors (i.e. the resummed exponents)

Lund plane with masses

- The presence of masses introduce new vertical (purple) boundaries, the socalled dead-cone effect
- the horizontal (red) line marks the $n_f = 4, 5$ boundary

Behaviour of the observable

- in order to apply this formalism to our case, we have to work out the observable parametrisation in the two quasi-collinear limits
- we have $\mathcal{V} = 1 x$, which leads to

 $V(z, \theta, \xi) = z$ energy fraction of the quasi-collinear gluon

$$\bar{V}(z,\theta,\xi) = \bar{z}(\frac{\bar{\theta}^2}{4} + \xi) \simeq \frac{\bar{z}\bar{\theta}^2}{4}$$
 invariant mass of the recoil jet

- now we have to turn the crank and compute the two jet functions, taking into account flavour-threshold and dead-cone boundaries on the Lund plane
- this is very similar to what we've been doing for jet substructure observables for the past 10 years
- technical aside: we use the two-loop running coupling in the CMW scheme

Region 1: $1 - x > \sqrt{\xi}$

- we find three different regions
- in the first region we recover the known massless result

 in this region we have double logs of 1-x and single logs of the mass

back to Mellin space

$$= 1 \qquad J^{(1)}(N,\xi) = j^{(1)}(1-x,\xi) \Big|_{1-x=\bar{N}^{-1}}$$

$$\bar{J}^{(1)}(N,\xi) = \bar{j}^{(1)}(1-x,\xi) \Big|_{1-x=\bar{N}^{-1}}$$

Region 2 :
$$\xi < 1 - x < \sqrt{\xi}$$

- we find three different regions:
- the second region is a smoothly matches $n_f = 5$ to $n_f = 4$

in this region 5 flv

back to Mellin space

= 1
$$J^{(2)}(N,\xi) = j^{(2)}(1-x,\xi)\Big|_{1-x=\bar{N}^{-1}}$$

 $\bar{J}^{(2)}(N,\xi) = \bar{j}^{(2)}(1-x,\xi)$

Region 3 : $1 - x < \xi$

- we find three different regions:
- the third region is consistent with the massive calculations (with mass logs exponentiated)

N space results (for real **N**)

- we plot our results on the real-*N* axis for two values of q^2
- curves are shown in solid in the real-*N* intervals corresponding to the 1-x regions
- region 3 is visible only for small q^2 , and the result in region 2 differs very little from the one of region 1
- we have also applied our formalism can be applied also to DIS, for which we have data in a wide Q^2 region (numerics are work in progress)

Outlook:

prospects for heavy-flavoured jet substructure

HF-jet substructure

- in order to achieve a consistent resummation of mass and soft logarithms we had to understand jet functions in the quasi-collinear limit
- we can apply this very same formalism to a wide class of jet observables, opening up a novel HF-jet substructure program for LHC Run 3

in collaboration with Prasanna Dhani, Oleh Fedkevych, Andrea Ghira, Gregory Soyez

Grooming to expose the dead-cone

 jet substructure techniques are being exploited to measure the dead-cone effect at the LHC

ALICE collaboration (2022)

 jet grooming removes soft-wide angle radiation and enables us to expose collinear dynamics giving rising to the dead-cone

Cunqueiro, Napoletano, Soto-Ontoso (2023)

• Soft Drop is a very-well understood grooming techniques (high-precision calculation, many measurements) and we have recently begun studying the properties of groomed HF jets.

Conclusions

- high-p_T processes with identified flavour (hadron or jets) offer a complementary handle to study bottom and charm physics
- the presence of multiple scales often requires (more than one) resummation
- we aim to exploit the past-decade improvement in our understanding of jets and their structure to provide new insights into flavour physics
- Higgs Centre Workshop: Heavy Flavours at High pT 29th Nov - 1st Dec 2023, Edinburgh

THANKS FOR YOUR ATTENTION