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• Introduction and motivation: heavy-flavour at the LHC 


• A consistent resummation of mass and soft logarithms


• Outlook: prospects for heavy-flavoured jet substructure 

Outline
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Introduction and 
motivation:  

Heavy Flavour  
at the LHC  

3

H → cc̄

https://cds.cern.ch/record/2771727/plots

https://cds.cern.ch/record/2771727/plots


• heavy-flavour processes (charm 
and beauty) are central to the 
LHC Higgs program


• important for QCD studies too: 
PDFs, fragmentation etc.


• they are identified exploiting B 
(D) hadron lifetime: displaced 
vertices


• from theory viewpoint, mb & mc 
set perturbative scales: high 
accuracy (NNLO) QCD 
calculations Z+b/c (jet) now exist 

Heavy Flavours at the LHC

4

Gauld et a. (2020)

the flavor-kT algorithm originally proposed in [10]. As
compared to standard jet algorithms, the clustering pro-
cedure for this algorithm must have both the flavor and
momentum information of the input particles. First, the
flavor of pseudo(jets) is defined by the net flavor of its
constituents, assigning þ1 (−1) if a flavored quark (anti-
quark) is present. Second, the definition of the distance
measure of this algorithm (which determines the clustering
outcome) depends on the flavor of the pseudojet being
clustered. These steps are necessary to avoid situations
where soft quarks can alter the flavor of a jet, as described
above. In addition, the net flavor criterion also ensures that
jets that contain (quasi)collinear quark pairs are not assigned
anoverall flavor basedon such splittings.Moredetails canbe
found in [10,19].
Comparison with 8 TeV CMS data.—In this section, we

perform a comparison of the Z þ b-jet CMS data at 8 TeV
provided in [8] and validate our implementation of Eq. (1).
Before doing so we summarize the numerical setup and
present details on the unfolding procedure that is applied to
these data to make a consistent comparison with our
theoretical predictions possible.
Numerical inputs: All predictions are provided with the

NNPDF3.1 NNLO PDF set [57] with αsðMZÞ ¼ 0.118 and
nmax
f ¼ 5, where both the PDF and αs values are accessed

via LHAPDF [58]. The results are obtained using the Gμ
scheme with the following values for the input para-
meters: Mos

Z ¼ 91.1876 GeV, Γos
Z ¼ 2.4952 GeV,

Mos
W ¼ 80.385 GeV, Γos

W ¼ 2.085 GeV, and Gμ ¼
1.16638 × 10−5 GeV−2. Including also the universal cor-
rections to the ρ parameter when determining the numerical
values of α and sin2 θW as in [59], leads to αeff ¼ 0.007779
and sin2 θW;eff ¼ 0.2293. An uncertainty due to the impact
of missing higher-order corrections is assessed in the
predictions by varying the values of μF and μR by a factor
of 2 around the central scale μ0 ≡ ET;Z, with the additional
constraint that 1

2 ≤ μF=μR ≤ 2. The scales are treated as
correlated between the coefficients appearing in Eq. (1). We
follow the specific setup of the flavor-kT algorithm adopted
in [48], where a value of α ¼ 2 is used and a beam distance
measure that includes a sum over both QCD partons as well
as the reconstructed gauge boson is introduced.
Unfolding: As already highlighted, the fixed-order pre-

diction for a flavored-jet cross section as defined in Eq. (1)
must be performed with an infrared-safe definition of jet
flavor. However, there are no data available for the process
pp → Z þ b-jet [8,60–65] (or in fact any process) that uses
such a definition of jet flavor. To address this issue, we have
computed a correction to the CMS data [8] as
described below.
These data have been presented for anti-kT b-jets, with a

flavor assignment based on whether the jet contains B
hadron decay products and the additional requirement that
ΔRðB; jetÞ < 0.5. To correct these data to the level of
partonic flavor-kT jets, we apply an unfolding procedure

with the RooUnfold [66] package using the iterative Bayes
method [67]. The input to this procedure is a theoretical
model for the original data using both the anti-kT algorithm
(which is measured) and the flavor-kT algorithm (which we
wish to unfold to).
This model is provided with an NLOþ PS prediction for

Z þ b-jet using aMC@NLO [5] interfaced to PYTHIA8.243

[68]. The parton-level flavor-kT prediction is obtained
using the input QCD partons, which are identical to those
that enter the hadronization process. For the central value,
we use a 5 fs prediction of Z þ jet, where the b-jet
contribution of this sample is extracted. The benefit of
this approach is that the fragmentation component (e.g.,
g → bb̄) is resummed by the PS. To assess the uncertainty
of this procedure, the unfolding is repeated, taking into
account the impact of scale variations in the model.
Additionally, the whole procedure is repeated with a 4 fs
prediction, and the envelope of all of these results is
assigned as an uncertainty. Finally, the unfolding procedure
was also performed with a bin-by-bin unfolding method,
which led to almost identical results for the considered
distributions.
Fiducial cross section: In Fig. 1, the cross section

predictions for the process pp → Z þ b-jet are shown
within the fiducial region defined according to
pT;b > 30 GeV, jηbj < 2.4, pT;l > 20 GeV, jηlj < 2.4,
and Mll̄ ∈ ½71; 111& GeV. The b-jets are reconstructed
with the flavor-kT algorithm with R ¼ 0.5, with the addi-
tional constraint of ΔRðb;lÞ > 0.5. As discussed above,
this matches the fiducial region of the data [8] with the
exception of the choice of the jet clustering algorithm.
The cross section defined according to Eq. (1) is labeled

as FONLL, and predictions are shown at both Oðα2sÞ and
Oðα3sÞ as a function of mb [as it arises explicitly in the
parenthesis on the rhs of Eq. (1)]. The filled band indicates
the uncertainty due to scale variation alone, the small error
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FIG. 1. Fiducial cross section for the process pp →
Z þ b-jetþ X at

ffiffiffi
s

p
¼ 8 TeV. The FONLL predictions are

provided as a function of mb and are compared to the 5 fs
predictions.

PHYSICAL REVIEW LETTERS 125, 222002 (2020)

222002-3 see Oleksandr Zenaiev’s talk

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.222002


6 Practical Jet Flavour Through NNLO
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q̄

Fig. 1 The configuration that renders jet flavour definition infrared unsafe at NNLO is

depicted: a quark Q emits an intermediate soft gluon that subsequently splits into a quark–

anti-quark qq̄ pair. Only one of the gluon’s decay products, say q, is clustered with the

original quark Q and so the jet flavour is determined by soft physics. Note that the dotted

oval can either represent the boundary of the original jet or the e↵ective boundary induced

by SD.

2.2.1 Elimination of Soft Quark Ambiguities

The configuration in Fig. 1 in which the dashed oval represents the jet bound-
ary is essentially the same configuration of particles that are the leading
contribution to non-global logarithms (NGLs) [12]. Though at NNLO, the jet
consists of only two particles, and so the implementation of SD on the jet is
identical to that at NLO. The softer of the two constituents of the jet is elim-
inated by the groomer if it fails the SD constraint. With a finite value of zcut

and �, an arbitrarily soft quark q will always fail the SD constraint, and so
after grooming the jet will consist exclusively of the hard quark Q. Thus, in the
soft limit, the jet flavour would be identified as the same flavour as Q, which
is also the flavour of the jet from corresponding virtual corrections. Thus, this
configuration has no infrared ambiguities. 1

Further, because of the relationship to NGLs, all-orders statements about
the jet flavour from this configuration can be made. It has been proven that
SD and mMDT grooming eliminate NGLs of observables like the jet mass
to all orders in perturbation theory [13, 14, 22]. NGLs arise from soft par-
ticles that are sensitive to the boundary of the jet. Correspondingly, the jet
flavour as defined by application of SD has no infrared divergences arising from
soft emissions near the boundary of the jet. By contrast, SD is inclusive over
collinear emissions at the jet center, and we will demonstrate that this feature
is problematic for jet flavour.

2.2.2 Failure of IRC Safety of SD with kT Clustering

In the original and most widely-studied definitions of SD grooming, emissions
in the jet are re-clustered with a generalised kT algorithm, typically the Cam-
bridge/Aachen (C/A) algorithm [3–5] in which emissions are ordered by their
relative angle. While this prescription does eliminate the NGL-like infrared

1Kinematically, the two quarks Q and q can become collinear, thus passing the SD condition.
However, no collinear singularity is associated with this configuration.

• Experimental procedure:  

• cluster jets using the anti-kt 
algorithm


• run b (c)-tagging

HF jets: experiment vs theory
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• Theory calculation: 

• compute real and virtual


• cluster jets using an IRC 
safe (flavour) algorithm

BUT counting the flavour of an anti-kt jet is NOT IRC Safe beyond NLO!

splitting of a soft 
gluon can affect jet 
flavour

Banfi Salam Zanderighi (2006)

  

“Naive” anti-kT  avour

8

u
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g

d

d

g

b-jet

Net flavour of an anti-kT jet

is not IRC safe at NNLO because jet 
flavour can be determined by soft 
radiation.

The issue of jet flavour 
acquires particular 
relevance when   

discussing heavy quarks.

• jets are powerful bridge between theory and experiment  
However jets with identified flavour are not straightforward

https://link.springer.com/article/10.1140/epjc/s2006-02552-4
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Interleaved Flavour Neutralisation (IFN) 2 / 12

I Cluster particles with a generalised-kt algorithm (e.g.
anti-kt and C/A),
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NGL logs ~ jet  avour NNLO issue
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~

● The two 
phenomena are 
generated by 
similar kinematical 
contributions

● We know NGLs can 
be eliminated by 
Soft Drop

What’s the impact of 
SD on jet flavour?

x
1. use Soft Drop to remove soft 

quarks

needs JADE as 
a recluster, know 
to fail at 3 loops

Caletti, Larkoski, SM, 
Reichelt (2022)

4 new ideas in the past year!

4. interleaved flavour neutralisation

neutralise = remove 
the (opposite) flavour 
of both 1 & 2 while 
maintaining kinematics 

Caola, Grabarczyk, 
Hutt, Salam, Scyboz, 

Thaler (2023)

3. construct a flavour dressing for a given jet
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Gauld, Huss, Stagnitto (2022)

i.e. the transverse momentum of the softer pseudo-jet. The algorithm is made infrared safe

by the following modified distance measure [5]:

d
(F )
ij = R

2
ij ⇥

(⇥
max(kT,i, kT,j)

⇤↵ ⇥
min(kT,i, kT,j)

⇤2�↵
, if softer of i, j is flavoured,

min(k2
T,i, k

2
T,j) , if softer of i, j is unflavoured,

(2.3)

where 0 < ↵  2 and most analyses are performed with ↵ = 2. This jet algorithm modification

prevents the unwanted soft-hard recombination if the softer pseudo-jet is flavoured, while

it still leads to soft-soft recombination. One can additionally require recombination into

pseudo-jets of well-defined flavour only, by forbidding, for example, charm and beauty to be

recombined. This is the “bland” version of the algorithm in Ref. [5].

Until now, we have ignored initial state radiation and the related singularities. In the

standard kT algorithm, one defines a distance to the beam, d
iB̄

( ) = k
2
T,i. If it is minimal, then

the pseudo-jet i is removed from the list of pseudo-jets in the inclusive formulation. In the

flavoured kT algorithm, the distance to the beam is modified as well. Indeed this is necessary,

since if i contains a soft flavoured quark while there is another soft anti-quark of the same

flavour that would not be removed from the list, but rather clustered with a hard jet, then

infrared safety would be spoiled. The beam distance is thus defined in analogy to the case of

final-state pseudo-jets as follows:

d
(F )

iB̄
( ) =

8
<

:

⇥
max(kT,i, kT,B̄

( )(yi))
⇤↵ ⇥

min(kT,i, kT,B̄
( )(yi))

⇤2�↵
, if softer of i, j is flavoured,

min(k2
T,i, k

2
T,B̄

( )(yi)) , if softer of i, j is unflavoured.

(2.4)

The now required transverse momentum of the beam, B, and “anti-”beam, B̄, is taken to be

[5]:

kT,B(y) =
X

i

kT,i
�
⇥(yi � y) + ⇥(y � yi) eyi�y

�
, (2.5)

kT,B̄(y) =
X

i

kT,i
�
⇥(y � yi) + ⇥(yi � y) ey�yi

�
, (2.6)

with ⇥(0) = 1/2.

2.3 The flavoured anti-kT algorithm

The distance measure of the standard anti-kT algorithm [27] is:

dij = R
2
ij min(k�2

T,i, k
�2
T,j) . (2.7)

In this case, condition 1) is not fulfilled, since the double-soft limit, Ei, Ej ! 0, does not lead

to a vanishing dij . We propose the following modification:

d
(F )
ij ⌘ dij ⇥

8
<

:
Sij , if both i and j have non-zero flavour of opposite sign,

1 , otherwise.
(2.8)
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Figure 3. Comparison of di↵erential distributions of the hardest jet’s rapidity (left panel) and trans-
verse momentum (right panel) for the process pp ! Z/�

⇤(! `¯̀) + b-jet obtained using di↵erent jet
algorithms at NNLO accuracy.
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Figure 4. Same as Fig. 3 but with NLO+PS (parton shower simulation matched at NLO QCD)
accuracy.

in the di↵erence between the flavoured anti-kT and the standard anti-kT algorithm. This

cannot be studied at NNLO QCD, since the standard algorithm is IR safe only through NLO,

but we can still employ a parton shower event-generator matched at NLO in QCD. We use

MadGraph5 aMC@NLO [35] v.3.1.1 and refer to the results as NLO+PS. As expected,

the NLO+PS distributions obtained with the new algorithm shown in Fig. 4 are closest to

those of the standard anti-kT algorithm for the smallest value of a, while for the largest value

of a the di↵erences between the distributions obtained with these two algorithms amount to

about 5%. This is consistent with the 10% di↵erence between distributions obtained with the

flavoured kT and the standard anti-kT algorithm.

In order to study the influence of the a-parameter on perturbative convergence, we plot

– 12 –

2. define a flavour algorithm that 
resembles anti-kt

Czakon, Mitov, 
Poncelet (2022)

flavour-dependent 
metric, still needs 
some (small) 
unfolding

see Giovanni Stagnitto’s talk

https://arxiv.org/pdf/2306.07314.pdf
https://arxiv.org/pdf/2208.11138.pdf
https://arxiv.org/pdf/2205.11879.pdf
https://arxiv.org/pdf/2205.11879.pdf
https://arxiv.org/pdf/2205.11879.pdf
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Les Houches 2023 studies
• it is important to investigate IRC safety, resilience against non-perturbative effects and 

experimental viability of the 4 algorithms


• a detailed comparison of these 4 algorithms was started at Les Houches


• current results are very preliminary,  they will be refined and will appear in the proceedings 
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deserves further investigation!

Z+b jet @ NNLO 
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first hadron-level studies show larger 
differences… something to investigate further



A consistent 
resummation 
of mass and 
soft logarithms

8

H → cc̄

in collaboration with (Daniele Gaggero) 
Andrea Ghira and Giovanni Ridolfi
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All-orders calculations with HF
• jets are not the only way to investigate HF


• we can study more exclusive processes with an identified B (or D) hadron 
(plus unmeasured QCD radiation)


• in both cases we face the challenge to describe processes which are 
characterised by multiple energy scales

• hard scale of the process Q (c.o.m energy, jet pT, …)


• heavy flavour mass m (much larger than  ) 


• scale vQ set by the HF property we want to measure (e.g. its energy 
or a jet’s substructure variable)

ΛQCD

• (multiple) resummations become relevant and it is important to understand 
the hierarchy between the different scales
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Heavy Flavour production

• as a toy example we consider the energy spectrum of an identified 
b-quark produced by a colour-singlet decay


• similar considerations hold for HF decay and HF deep-inelastic 
scattering

• two dimensionless ratios 


               ξ =
m2

q2
, x =

2pb ⋅ q
q2

=
Eb

Eh/2

• we consider Mellin moments of the differential decay rate

Γ̃(N, ξ) = ∫
1

0
dx xN−1 dΓ

dx
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Massless vs Massive scheme
massless scheme (5 flv) 

• quark mass used as a regulator


• cross section computed as a 
convolution of a coefficient 
function times a fragmentation 
function


• logs of  resummed through 
DGLAP evolution

ξ

massive scheme (4 flv) 

• full mass dependence taken 
into account


• kinematics treated correctly at 
every order


• large mass logs spoil the 
convergence of the series

• the two approaches are usually combined (e.g. FONLL)

Γ̃FONLL(N, ξ) = Γ̃(5)(N, ξ) + Γ̃(4)(N, ξ) − d . c .
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Infra-red effects

massless scheme (5 flv) 

• double logs of N in coefficient 
function and fragmentation 
function initial condition

massive scheme (4 flv) 

• single logs of N with mass-
dependent coefficients

• both calculations exhibit large logs in 1-x (or logs of N, in moment 
space) of soft and/or collinear origin

Cacciari, Catani (2001) Laenen, Oderda, Sterman (1998)

a lot of recent (NNLL) progress, 

see Bakar Chargeishvili’s talk

Γ̃(5,res)(N, ξ) = C̃res (N,
μ2

q2 ) e
∫μ2

μ2
0

dκ
κ γ(N,αs(κ))

× D̃res (N,
m2

μ2
0 )

Γ̃(4,res)(N, ξ) = K̃ (ξ) e ∫1
1/N̄

dκ
κ γsoft(ξ,αs(κ))

≃
∞

∑
k=0

αk
s ck(ξ)logk N̄

≃
∞

∑
k=0

αk
s (c̃k logk ξ + …) logk N̄≃ (

∞

∑
k=0

αk
s ck log2k N + …) (

∞

∑
k=0

αh
s A(h) logh ξ log N + …)

× (
∞

∑
l=0

αl
sdl log2l N + …)

https://arxiv.org/pdf/hep-ph/0107138.pdf
https://arxiv.org/pdf/hep-ph/9806467.pdf


Difficulties with matching

• we would like to combine the two calculations, with their all-order log N 
resummation


• however, they have different log structure and we cannot identify an all-
order “double counting” term to subtract


• note that all the contributions of the 5-flv calculation could recombine to 
give something consistent with the small mass limit of the 4-flv 
calculation. This happens for instance for DY kinematics (more on the 
next slide)


• additional oddity 


while DGLAP evolution predicts only single logs of the mass

K(ξ) ≃ 1 +
αsCF

2π
log2 ξ + …

13



Origin of the mismatch (I)
• in order to better understand, we can look at the NLO 

calculation
massless scheme (5 flv) massive scheme (4 flv)

• the  and  limits do not commute, one needs to decide what 
is the hierarchy 


• this crucially depends on the observable and on the process we are 
looking at, e.g. DIS has the same issue, while DY is fine


• issue investigated also in HF decay

x → 1 ξ → 0

Corcella and Mitov (2003), Aglietti et al (2007), 
Gaggero, Ghira, SM, Ridolfi (2022)14

https://arxiv.org/pdf/hep-ph/0308105.pdf
https://arxiv.org/pdf/0707.2010.pdf
https://arxiv.org/pdf/2207.13567.pdf


Origin of the mismatch (II)
• at NLL, the 5-flv doubly resummed calculation can be written as 

the product of two independent jet functions

Γ̃(5,res)(N, ξ) = (1 + αsC(1)) (1 + αsD(1)) ℰsub(N, ξ)

× exp [J(N, ξ) + J̄(N)] μ2 = q2, μ2
0 = m2

• measured jet function for the  quarkb

J(N, ξ) ≃ −
αsCF

π (−log2 N̄ + log ξ log N̄ + log2 N̄) = −
αsCF

π
log ξ log N̄

• unmeasured (recoil) jet function for the  quarkb̄

J̄(N) ≃ −
αsCF

2π
log2 N̄

• double logs of N purely stem from the recoil jet function

15



Towards a solution
• the calculation of the measured jet function is performed in the 

quasi-collinear limit in order to account for mass logs

k2
t → 0, m2 → 0, but

k2
t

m2
fixed

• the recoil jet function is instead computed at , while we 
should compute it too in the quasi-collinear limit

m = 0

see also Aglietti et al (2007)

• furthermore, because we are matching massive (4 flv) and massless 
(5 flv) calculation, we should pay attention to the quark mass 
thresholds when performing integrals over the running coupling

• interpretation of these thresholds not transparent in Mellin 
space, so we perform a momentum-space analysis

16

https://arxiv.org/pdf/0707.2010.pdf


log
k2

t

q2

z̄ = 1z = 1

V(z, θ) = v

V̄(z̄,
θ̄)

>
vV(z, θ) >

v
hemisphere 
collinear to p

hemisphere 
collinear to p̄

η

V̄(z̄, θ̄) = v

−log
θ
2 −log

θ̄
2
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Lund plane - a short review
• Lund planes are a powerful way to visualise the kinematics of soft/collinear emissions


• Observables  have different parametrisation (  in the two collinear regions


• Coloured areas represent the NLL Sudakov form factors (i.e. the resummed 
exponents)

𝒱 V, V̄ )



log
k2

t

q2

z̄ = 1z = 1

V̄(z̄, θ̄, ξ) = vV(z, θ, ξ) = v

hemisphere quasi 
collinear to p

hemisphere quasi 
collinear to p̄

ηη =
1
2

log ξ η = −
1
2

log ξ

V(z, θ, ξ) >
v V̄(z̄,

θ̄, ξ
) >

v

k2
t

q2
= ξ nf = 5

nf = 4

−log
θ
2 −log

θ̄
2
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Lund plane with masses
• The presence of masses introduce new vertical (purple) boundaries, the so-

called dead-cone effect


• the horizontal (red) line marks the  boundarynf = 4, 5

dead-cone effect  
collinear radiation off 
massive quarks is not 

logarithmically enhanced

dead-cone effect  
collinear radiation off 
massive quarks is not 

logarithmically enhanced
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Behaviour of the observable
• in order to apply this formalism to our case, we have to work out the 

observable parametrisation in the two quasi-collinear limits


• we have , which leads to 𝒱 = 1 − x

V(z, θ, ξ) = z

V̄(z, θ, ξ) = z̄(
θ̄2

4
+ ξ) ≃

z̄θ̄2

4

energy fraction of the quasi-collinear gluon

invariant mass of the recoil jet

• now we have to turn the crank and compute the two jet functions, taking 
into account flavour-threshold and dead-cone boundaries on the Lund plane


• this is very similar to what we’ve been doing for jet substructure observables 
for the past 10 years


• technical aside: we use the two-loop running coupling in the CMW scheme



k2
t

q2
= ξj →

J =
D 0

+ E + Δ
j̄ →

J̄

1 − x = ξ

1 − x = ξ

z̄ = 1z = 1

1 − x = z

1 − x = z̄ ( θ̄2

4
+ ξ) ≃

z̄θ̄2

4

nf = 5

nf = 4

log
k2

t

q2
≃ log

z̄2θ̄2

4

−log
θ
2

−log
θ̄
2

θ = 2 ξ θ̄ = 2 ξ

20

Region 1:  1 − x > ξ

• we find three different regions


• in the first region we recover the known massless result 

• in this region we 
have double logs 
of 1-x and single 
logs of the mass

J(1)(N, ξ) = j(1)(1 − x, ξ)
1−x=N̄−1

J̄(1)(N, ξ) = j̄ (1)(1 − x, ξ)
1−x=N̄−1

back to Mellin space
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Region 2 :  ξ < 1 − x < ξ

• we find three different regions:


• the second region is a smoothly matches  to nf = 5 nf = 4

• in this region 5 flv 
is frozen, while 4 
flv continues to 
evolve

1 − x = ξ

1 − x = ξ

z̄ = 1z = 1

nf = 5

nf = 4

1 − x = z

θ = 2 ξ

k2
t

q2
= ξ

j̄ →
J̄

j →
J =

D 0
+ E + Δ

−log
θ
2

−log
θ̄
2

θ̄ = 2 ξ

1 − x = z̄ ( θ̄2

4
+ ξ) ≃

z̄θ̄2

4

log
k2

t

q2
≃ log

z̄2θ̄2

4

J(2)(N, ξ) = j(2)(1 − x, ξ)
1−x=N̄−1

J̄(2)(N, ξ) = j̄ (2)(1 − x, ξ)
1−x=N̄−1

back to Mellin space
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Region 3 :  1 − x < ξ
• we find three different regions:


• the third region is consistent with the massive calculations (with 
mass logs exponentiated) 

• in this region we 
have double logs 
of m and single 
logs of 1-x

1 − x = ξ

1 − x = ξ

z̄ = 1z = 1

nf = 5

nf = 4

1 − x = z̄ ( θ̄2

4
+ ξ)

≃
z̄θ̄2

4

k2
t

q2
= ξ j̄ →

J̄
j →

J =
D 0

+ E + Δ

−log
θ
2

−log
θ̄
2

θ = 2 ξ θ̄ = 2 ξ

log
k2

t

q2
≃ log

z̄2θ̄2

4

J(2)(N, ξ) = j(2)(1 − x, ξ)
1−x=N̄−1

J̄(3)(N, ξ) = j̄ (3)(1 − x, ξ)
1−x=N̄−1

back to Mellin space
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N space results (for real N)

2 4 6 8 10 12 14 16
0.0

0.5

1.0

1.5

2 4 6 8 10 12 14 16
0.0

0.5

1.0

1.5

• we plot our results on the real-N axis for two values of 


• curves are shown in solid in the real-N intervals corresponding to the 1-x regions


• region 3 is visible only for small , and the result in region 2 differs very little from the one of 
region 1


• we have also applied our formalism can be applied also to DIS, for which we have data in a 
wide  region (numerics are work in progress)

q2

q2

Q2



Outlook:  

prospects for 
heavy-flavoured 
jet substructure 
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H → cc̄
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HF-jet substructure

25
in collaboration with Prasanna Dhani, Oleh Fedkevych, Andrea Ghira, Gregory Soyez

• in order to achieve a consistent resummation of mass and soft logarithms we had 
to understand jet functions in the quasi-collinear limit


• we can apply this very same formalism to a wide class of jet observables, 
opening up a novel HF-jet substructure program for LHC Run 3 


• for instance jet angularities and energy correlations functions

z = 1

θdc =
m
pt

λnp = μ̃np

λα = zθα

κ = μ̃np

κ = θdc

α > 1λdc = θα
dc

log κ
= log

kt

pt
−log θ

= log
R
Δ

z = 1

θdc =
m
pt

λnp = μ̃np

λ1 = zθ

κ = μ̃np

α = 1
λdc = θdcκ = θdc

log κ
= log

kt

pt

−log θ
= log

R
Δ

z = 1

λnp1
= μ̃α

np

α < 1
λα = zθα

θdc =
m
pt

λdc = θα
dc

λnp2
= μ̃npθα−1

dc

κ = θdc

κ = μ̃np

log κ
= log

kt

pt

−log θ
= log

R
Δ

jet thrust jet width LHA

λα = ∑
i∈jet

pTi

pTjet ( Δi

R )
α



z = 1

κ = zc

kt

pt
= ξ

kt

pt
= μ̃np

θdc =
m
pt

κ = θdc

κ = μ̃np

log κ
= log

kt

pt

θg = θ

β > 0

−log θ
= log

R
Δ

• jet substructure techniques are being exploited to measure the dead-cone effect at the 
LHC 


• jet grooming removes soft-wide angle radiation and enables us to expose collinear 
dynamics giving rising to the dead-cone


• Soft Drop is a very-well understood grooming techniques (high-precision calculation, many 
measurements) and we have recently begun studying the properties of groomed HF jets. 

Grooming to expose the dead-cone
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in collaboration with Simone Caletti and Andrea Ghira

ALICE collaboration (2022)

Cunqueiro, Napoletano, Soto-Ontoso (2023)

z = 1

λnp = z
1 − α
1 + β
c μ̃

α + β
1 + β
np

λα = zθα

κ = zc

kt

pt
= ξ

kt

pt
= μ̃np

θdc =
m
pt

λdc = θα
dc α > 1

β ≥ 0

λdc2
= zcθ

α+β
dc

κ = θdc

κ = μ̃np

log κ
= log

kt

pt

β > 0

−log θ
= log

R
Δ

Soft Drop jet thrust

grooming angle

https://www.nature.com/articles/s41586-022-04572-w
https://arxiv.org/pdf/2211.11789.pdf


Conclusions 
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• high-pT processes with identified flavour (hadron or jets) offer a 
complementary handle to study bottom and charm physics


• the presence of multiple scales often requires (more than one) 
resummation


• we aim to exploit the past-decade improvement in our 
understanding of jets and their structure to provide new insights 
into  flavour physics


• Higgs Centre Workshop: Heavy Flavours at High pT                    
29th Nov - 1st Dec 2023, Edinburgh

THANKS FOR YOUR ATTENTION 

https://higgs.ph.ed.ac.uk/workshops/heavy-flavours-at-high-pT/

