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Regge pole and Regge cuts In full colour

Motivation

Understand the high-energy behaviour of partonic gauge-theory scattering amplitudes
* considering the Regge Iimit (leading power) leads to major simplifications

* unigue access to multi-loop and multi-leg amplitudes

Study multi-loop and multi-leg amplitudes in full colour (rather than the planar limit)

Study properties of towers of high-energy logarithms to all orders and establish
connection with the singularity structure in the complex angular momentum plane.

| earn about IR factorisation



The high-energy limit of 2 = 2 gauge-theory amplitudes

e Simplification at leading power in t/s: helicity is conserved:;
gluon exchanges in the t-channel are dominant in any process gg—g9g, gg—dg, 9g—qg

Reggeization: S S s \ 9 (t) gluon Regge trajectory:
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® Regge-pole factorization amounts to a relation between gg—gg, gg—qg, 9g—qqg
® [his holds for the real part of the amplitude through NLL.

Beyond that it is violated by non-planar corrections associated with multi-Reggeon
exchange forming Regge cuts. These effects are now much better understood.



2 — 2 amplitudes: signature and reality properties

® Defining signature even and odd amplitudes under s < u
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e Expanding the amplitude in the signature-symmetric log, L,
the coefficients in M*) are imaginary, while in M) real.

[See 1701.05241 Caron-Huot,

-G, Vernazza]



The singularity structure of 2 = 2 amplitudes in the
complex angular momentum plane: pole vs. cut

® The signature-odd amplitude admits Yoo dj
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singularity amplitude asymptotics
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® Reggeization of the signhature-odd amplitude (NLL): a manifestation of a pure Regge pole.

e But what happens more generally”?
f both Regge pole and Regge cut are present - can we disentangle them at fixed order”?




The origin of Regge cuts in 2 — 2 scattering: non-planar integrals

e \andelstam (1963) has shown that Regge cuts exist in 2 = 2 scattering
IN certain non-planar diagrams starting from 3 loops.

1. — Introduction.

In the previous paper (!), hereafter referred to as I, it was shown that the
cuts in the angular-momentum plane proposed by AMATI, FUBINI and STAN-
GHELLINI (AFS) (?) were cancelled in the actual diagrams examined by them.
We also pointed out that our reasoning could not be extended to diagrams such
as Fig. 1. The distinguishing feature of these diagrams is that, if the ladder
is contracted into a single line, both the left- and right-hand portions have
third double-spectral funections in the ¢-channel, ¢.e. double-spectral func-

tions A,,.

® [hus, Regge cuts exist,
are associated with special non-planar
diagrams, and with the exchange of

at least two

Reggeons In the t channel.

Fig. 1. — The simplest diagram
where the cut in the Il-plane is
actually present.



Non-linear rapidity evolution equations

e [he colliding particles are replaced by (sets of) infinite lightlike Wilson lines

U(x) = Pexp {z’gs / dzT A% (27,27 = 0; X)T“}

e Rapidity evolution equation [Balitsky-JIMWLK]

— — U(x1)...U(xp)| = H[U(x1)...U(xy)]
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O X0i * X0j a a a a ab a b a b
H = ) /dXidedXo X2 2 (Tz’,LTj,L + T3 RTS r — Usj(%0) (15, T} g _l_Tj,LTi,R))
T, =TU(x;) 0 T U(x;)T" g
i oU (x;) . OU (x;)

Provides complete separation between the light-cone directions
and the transverse plane: 2-dimensional dynamics



Defining the Reggeon

® |n the perturbative regime U(x) ~ 1 It IS natural to expand in terms of W  Simon Caron-Huot (2013)

® Scattered particles are expanded in states of a definite numlber of
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e Amplitudes are governed by rapidity evolution
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Computing multi-Regge exchanges using non-linear rapidity evolution
1701.05241 Caron-Huot, EG, Vernazza
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Projectile |?7DZ> —
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transition Hamiltonian Z H, .. S e
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Signature, number of Reggeons and t-channel colour flow

® [he signature odd and even sectors decouple

1 Regge 1 — — _ — _
Q_SMij%ij = 9 ¢ (Mfgg—)mg _|_M7(,j+—>>z]) — W]( >‘€ HLWz( )> + W;-H‘@ HL‘¢§+)>

® odd/even signature amplitude is governed by the exchange
of an odd/even number of Reggeons.

® Bose symmetry in gg — gg correlates odd/even signature with
odd/even colour representations in the t channel.

More generally we use channel colour operators: T3 iseven, T2 =2 "% is odd



The Soft Anomalous Dimension in the Regge limit

IR singularities in scattering amplitudes exponentiate

p: L[ dN? p:
M (;,as,e) Pexp{ — 5/0 VI‘ ()\,ozs()\Q,e)) }7—[ (;,as)

in terms of the soft anomalous dimension I'. In 2 — 2 scattering, at leading power in t/s:
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This may be compared with the exponentiation of rapidity logarithms (Reggeization)
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— G O And at higher orders also to non-dipole corrections A

Del Duca, Duhr, EG, Magnea, White (2011)



Signature-even 2 — 2 amplitude in full colour: NLL to any order from BFKL

Defining the Reduced Amplitude PR~ PLEN
QL;M’@HM = (e H DLy = (e X [yy) A QJE E—kém‘
The evolution of the signature-even amplitude (NLL) TODRKL 9005
IS governed by the BFKL equation: QD (p, k)
MG

QU (p,k)=HQ"D(pk),  H=(204—T}) H;+(Ca—T}) Hy,
- -
C11 CQ
H; (p, k) = / DK'] f(p, k. k') | (p, k') = W(p, k)|, Integrate Multiply

Hy W(p, k) = J(p, k) ¥(p, k)

ne wave function is IR safe!
Nis equation has been solved iteratively to high loop orders

Caron-Huot, EG, Reichel, Vernazza, JHEP 1803 (2018) 098; JHEP 08 (2020) 116




Signature-odd amplitudes: Regge-pole factorisation and its breaking

MEJ_—)MQ — C”L (t) eag(t) Cal C] (t)./\/l;;;e_em] + MR

T

Colour octet exchange in the t channel: single Reggeon, factorize  Regge factorisation breaking

(starting at 2 loops) can be
inferred from comparing

S

Lt
/ LL oy log” (_t> S — @ one-loop Regge trajectory qq, 99, gg amplitudes

[Del Duca, Glover '01]
[Del Duca, Falcioni, Magnea, Vernazza ’14]

But until recently unknown
two-loop Regge trajectory how to account for it

one-loop impact factors

three-loop Regge trajectory

two-loop impact factors




Signature-odd 2 — 2 amplitudes: understanding the NNLL tower

e Using non-linear rapidity evolution, the NNLL tower Is determined Te Tb T
to all orders in terms of one and three Reggeon exchanges

OF

® Expandingin X = —rplL
T
_M — (_) (Jili1) F7T Z , J3|H3—>3‘23
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Caron-Huot, EG, Vernazza
JHEP 06 (2017) 016
Falcioni, EG, Milloy, Vernazza

e All diagrams computed to four loops Phys. Rev. D 103 (2021) L111501




Signature odd 2 — 2 amplitude at NNLL: Regge pole and cut,
and the cancellation of planar contributions

Having defined a

Requiring that the Regge cut

M= MEDTE M

S stric

Regge

the separation between

ly non-planar fixes ij—1) ij—ij

pole vs. Regge cut

Falcioni, EG, Maher, Milloy, Vernazza
Phys.Rev.Lett. 128 (2022) 13, 13;

JHEP 03 (2022) 053

planar

cannot contribute beyond 3 loops: the NNLL

planar

Reggeon W(x) by U(x) = e19: "W () \we obtain definite predictions for MR

(=) MR 1+ MTIMR
L= L nonplanar

planar

must be universal (99, ga, qg) to be absorbed in the factorizing pole term.

Regge pole term has no free parameters!

Indeed, at 4 loops planar contributions conspire to cancel!

Partial cancellation of planar contributions between MR channels occurs at 3 loops, and becomes complete at 4 loops.
Prediction: M R at 5 loop and above must also vanish in planar limit.




Signhature odd amplitude at NNLL: properties of Regge pole and cut

All-order structure through NNLL for any gauge theory, any representation:

0O
tree nrn—2 \4(£,n,n—2) cut
M5+ E a"L"" "M
n=2

Regge pole Regge cut
S - @ . o
- single Reggeon; colour octet : - multiple Reggeons, various colour reps.
- dominant in planar limit G > - suppressed in plezmar limit
- factorizes; parameters at NNLL fully fixed at 3 loops in QCD - proportional to

upon matching to Caola et al. JHEP 10 (2021) 206 - No factorization: non-trivial at all loops
- N0 dependence on the matter content:

|
- IR singularities in impact factors z, the same for any gauge theory:

and trajectory fixed by the dipole formula.
Singularities of the Regge trajectory are related

to the cusp anomalous dimension, |t g2
generalising the 2-loop relation ~ @9(t) = —7 /0 ~7 K (@s(A) + O(”)
by Korchemskaya & Korchemsky (1995).

- Sensitive to soft singularities beyond
the dipole formula.



Signature odd 2 — 2 amplitude at NNLL: results

e All-order structure through NNLL for any gauge theory, any representation:

00
tree E : nrn—2 \4(£,n,n—2) cut
n=2

® Explicit results for the cut through 4 loops:
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Regge pole and Regge cuts In full colour

Progress of the past few years:

e Simplification of multi-loop amplitude computation in the Regge limit using rapidity evolution equations (2 dim!)

® Results based on direct computation of Multi-Reggeon contributions
- NLL for the signature even amplitudes (all orders)
- NNLL for the signature odd amplitudes (currently to four loops).

® The cut is non-planar, allowing us to separate between Regge pole and cut contributions,
and determine the Regge-pole parameters at NNLL from three-loop amplitudes.
The singularities of the gluon Regge trajectory are related to the cusp anomalous dimension.
Constraints on the soft anomalous dimension.

Future prospects:

® Scope for applications to 5-point two-loop amplitudes and beyond:
Caron-Huot, Chicherin, Henn, Zhang, Zoia, JHEP 10 (2020) 188
On-going work with Samuel Abreu, Giulio Falcioni, Calum Milloy and Leonardo Vernazza.

o Complementary approaches: Expansion by Regions, Glauber SCET [Rothstein, Stewart, .. .]



Regge-pole factorisation for multi-leg amplitudes in MRK

Multi-Regge Kinematics (MRK) Regge (pole) factorization in MRK

4-momentum »=®",p7;p)

target  p1 = (0,p;;0) Pn
projectile  py = (p3,0;0) N\ Impact factor

strong hierarchy of light-cone components s >pi > ..>p;
Py Kpy X ... <Kp,
No ordering of transverse components P3| ~ |pa| ~ ... ~ |pn|

Regge (pole) factorization holds in MRK for the
dispersive (real part) of the amplitudes through NLL;
established using unitarity [Fadin et al. 2000] Do < Ci(t1) O D3

Planar limit:

e Four- and five-point planar amplitudes have only Regge poles. Essential for the BDS ansatz in SYM.

e Six and higher point planar amplitudes have also Regge cuts in some (non-physical) kinematic regions
[Bartels, Lipatov, Sabio Vera (2008)]




All orders solution for the soft approximation

Solving for the wavefunction

INn the soft approximation: 1
1| p2\ ’ |
Js(p, k)= — |1— | = = (p?/k* g
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All-order result:
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The amplitude in the soft approximation

Having solved for the wavefunction we can
compute the amplitude.

Summing over the two soft limits, we get (at

any given order):

MG
() (BO)€ / Dk p2 Q(é—l) L T2 (tree)
MNLL — ”T(g_ 1)! [ ] kz(p_ k)g (Pa ) sy M

All IR divergences can be resumed into a closed form expression:

1T
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= —2(3 € — 3Ca et — 6Gs€” — (10¢s — 2¢3) €© + O(€N).

— 1



Signature-even 2 — 2 amplitude: lterating the BFKL Hamiltonian in two dimensions

Caron-Huot, EG, Reichel, Vernazza, JHEP 08 (2020) 116
The 2d wavefunction computed in terms of pure Single-Valued Harmonic Polylogarithms (SVHPLS)

O (2,2) = Hyg 2 (2, 2)

The action of the Hamiltonian on SVHPL amounts to the following DEs:
dilzﬁgd,iﬁo,a(z, z) = ﬁQd’iia(Z’ ?)

d -~ H Lo(z,2 1L ,(2,2
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B 120,0(27 Z) + 251,0(27 2) o [EO,O'(w7 U_j) + Ll,a(wa ’U_J)]w,u_)—>oo
4 1 —2z

An algorithm is set up to iteratively determine the wavefunction to any loop order. Computed

explicitly to 12 loops.
D y D Qéﬁf = %CZ (Lo +2L4)

1 1
Q%) = 5022 (Loo+2Lo1+2L10+4L11) + 10102 (—Lo1—L10—2L11)
3
ngi) = ZCS (Lo00+2Loo01+2Lo10+4Lo11+2L100+4L101+4L110+8L111)
1
+ 101022 (2¢3 —2Lp 01 —3Lo1.0—TLo11—2L100—TL101—TL110—14L111)

1
+ EC%CQ (Lo,0,1 +2Lo1,0+4Lo1,1 + L1000 +4L101 +4L1,1,0+8L11,1)



The full signature-even amplitude at NLL

Caron-Huot, EG, Reichel, Vernazza
JHEP 1803 (2018) 098
JHEP 08 (2020) 116

The soft wavetunction alone generates all IR singularities in the amplitude.
We can therefore split the wavefunction into soft and hard: oo, k) = Quaa(p, k) + Qeor (p, k)
and use dim. reg. only for the soft: QED (2 2) = lim Qpara = QCD (2, 2) — QY (2, 7)

hard \*~» c50 ? soft

The full amplitude Is recovered by summing two integrals:

2
(+, NLL) . p d°z (2d) 2 (tree)
Mzg—)zj <—t) — 1T |:/[Dk] k‘Q(p o k) Soft p7 /—Qhard :| TS UM’L]—HJ

¥ve explicitly computed It 1o 13 loops. The soft amplitude can be resummed to all orders in z = ~L:

The first few orders are: i

~ 1 M _ v 20 (Ca—T?)z 1) [ 1 Ca R B 1

ML) = oy, {Q—G}Ti_uwree, M T L(C4 - T ( -1) (1- R
A ’1“2 ( 1 ree x _CAT—%T%

N2 EF T }[Tf, T2 JMiree R F(l —(Cg — T%)x) (F(1 +(Cg — T?b)) }T2 e
) B0l 11 y F(l 4 (Cy — T%)x) F(l —(Cy— T2)g)

M(+’3 2) — =5 S—I" \ @ — 1 ° }[T?, [T?, T? u]]Mt 9

4 3(1 —e)I(1 +¢)

a3y T ) (G, 3G 2 2 M2 o 1 e o 2 2 tree Rle) = ——Fq . — 1

D) — i 4)36 # e ) (T2 (012 VTR — T2 (T (T2, T2 ) A -2
Constraint on the A resummed result for the finite, hard part

4-loop soft anom. dim. (with SV MZVs) is yet unknown.



The soft anomalous dimension In the
high-energy limit — three loops

1
AB®) —0L2 4 ir [T%, T2, T2 ]} —GL+O(L°)

S—U

. Almelid, C. Duhr, EG Phys. Rev. Lett. 117, 172002

Absence of szLk for k > 1 in the real part Caron-Huot, EG, Vernazza JHEP 06 (2017) 016
and for &k > 2 in the imaginary part,

IS a non-trivial prediction from rapidity evolution,
which underpins the structure of corrections to the dipole formula.

The only term in the real part of the soft anom. dim. linear in the high-energy logarithm is the cusp anomalous

dimension, generalising the Korchemskaya & Korchemsky relation between the gluon Regge trajectory and
cusp to 3 loops.



The soft anomalous dimension In the
high-energy limit — four loops

Falcioni, EG, Maher, Milloy, Vernazza (2021)
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All Regge-limit constraints at four loops:
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