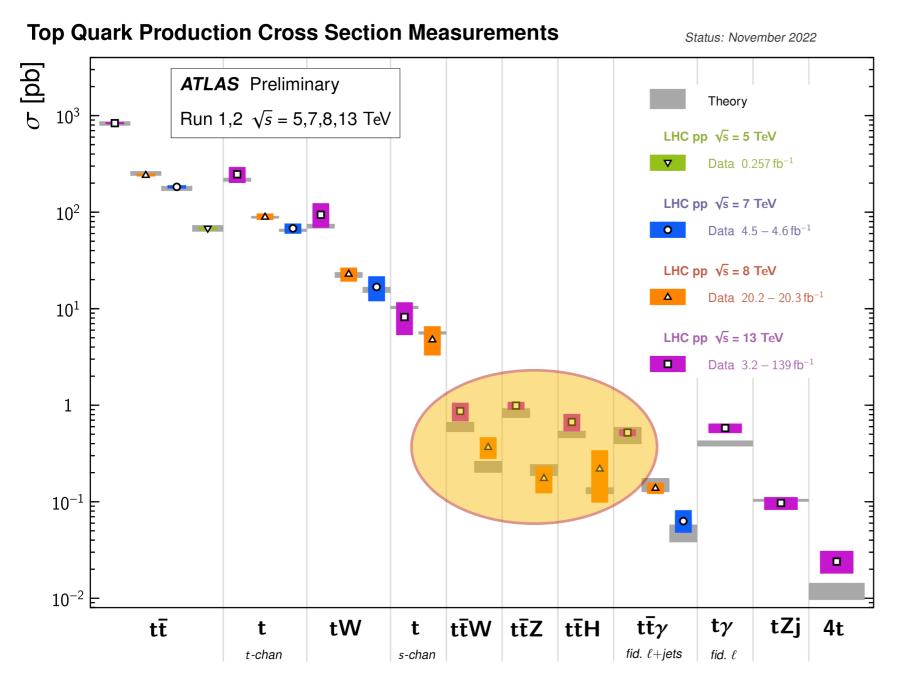
Precise predictions for the associated production of Higgs and W bosons with a *tī* pair at the LHC

> Massimiliano Grazzini University of Zurich

GGI Conference "Theory Challenges in the Precision Era of the Large Hadron Collider", August 29, 2023

QQF

The production of a top-quark pair together with a vector or Higgs boson is among the most massive SM signatures at hadron colliders

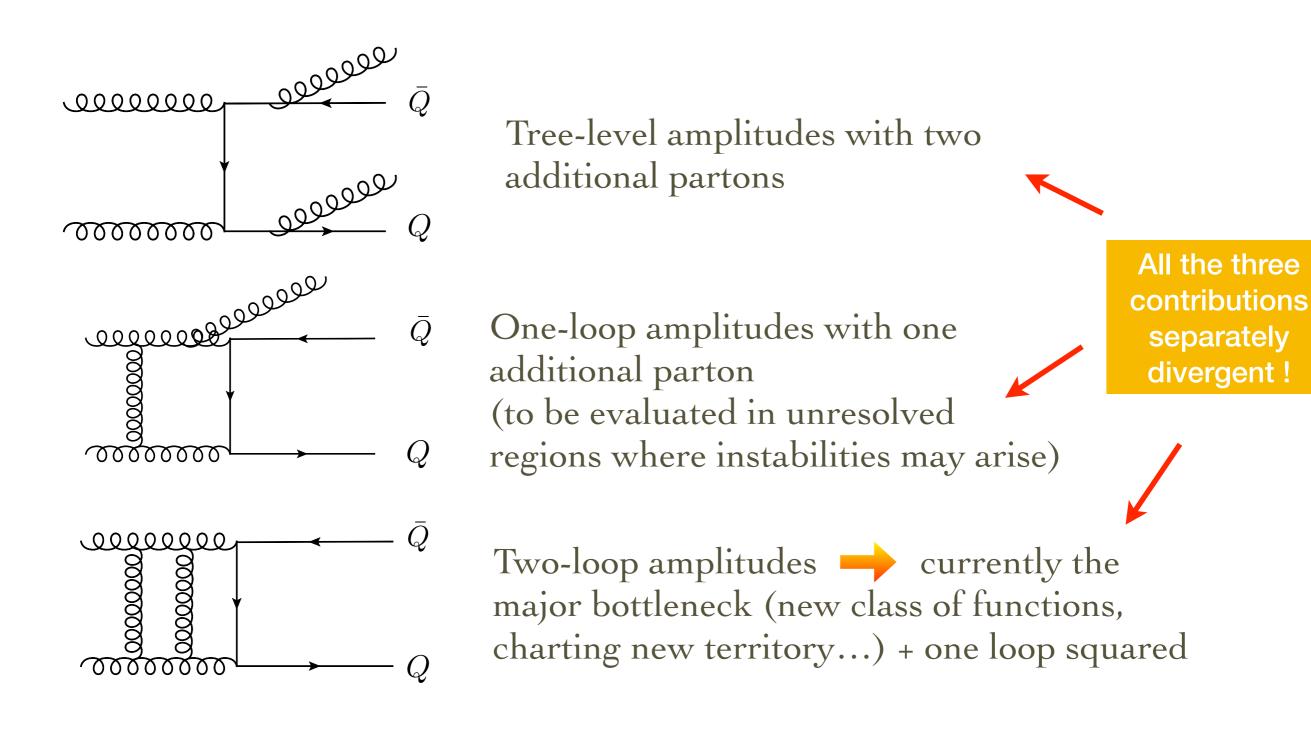


The cross sections are much smaller than tt but already measured

A deep understanding of these processes is crucial to characterise the top-quark interactions

NNLO QCD corrections needed

NNLO: building blocks



Crucial to keep the calculation fully differential: corrections for fiducial and inclusive rates may be significantly different (H in VBF, WW...)

Our method

Catani, MG (2007)

Consider the hard-scattering process $pp \rightarrow F + X$ F colourless system

(vector, Higgs Boson(s)...)

Use a dimensionless resolution variable $r > r_{cut}$ (e.g. $r = q_T/Q$)

Real contribution with one additional resolved jet, divergent as $r_{cut} \rightarrow 0$

Subtraction counterterm that cancels the $r_{cut} \rightarrow 0$ singularity

$$d\sigma_{NNLO}^{F+X} = \mathcal{H}_{NNLO}^{F} \otimes d\sigma_{LO}^{F} + \left[d\sigma_{NLO}^{F+\text{jets}} - d\sigma_{NNLO}^{CT,F} \right] + \mathcal{O}(r_{\text{cut}}^{p})$$

Virtual contribution after subtraction of IR singularities + collinear and large-angle soft radiation (beam, jet and soft function)

Power suppressed contribution whose size determines the efficiency of the computation

Structure of \mathcal{H}^F and $d\sigma^{CT,F}$ can be obtained from all-order resummation: now known even at N³LO

The resummation formula

J.Collins, D.Soper, G.Sterman (1984) S.Catani, D. de Florian, MG (2000); S.Catani, MG (2010)

$$\frac{d\sigma_{F}^{(\text{sing})}(p_{1}, p_{2}; \mathbf{q_{T}}, M, y, \Omega)}{d^{2}\mathbf{q_{T}} dM^{2} dy \, d\Omega} = \frac{M^{2}}{s} \sum_{c=q,\bar{q},\bar{q},g} \left[d\sigma_{c\bar{c},F}^{(0)} \right] \int \frac{d^{2}\mathbf{b}}{(2\pi)^{2}} e^{i\mathbf{b}\cdot\mathbf{q_{T}}} S_{c}(M, b)$$

$$\times \sum_{a_{1},a_{2}} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{1}} \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} \left[H^{F}C_{1}C_{2} \right]_{c\bar{c};a_{1}a_{2}} f_{a_{1}/h_{1}}(x_{1}/z_{1}, b_{0}^{2}/b^{2}) f_{a_{2}/h_{2}}(x_{2}/z_{2}, b_{0}^{2}/b^{2})$$

$$= \int_{a_{1},a_{2}} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{1}} \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} \left[H^{F}C_{1}C_{2} \right]_{c\bar{c};a_{1}a_{2}} f_{a_{1}/h_{1}}(x_{1}/z_{1}, b_{0}^{2}/b^{2}) f_{a_{2}/h_{2}}(x_{2}/z_{2}, b_{0}^{2}/b^{2})$$

$$= \int_{a_{1},a_{2}} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{2}} \int_{x_{2}} \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} \left[H^{F}C_{1}C_{2} \right]_{c\bar{c};a_{1}a_{2}} f_{a_{1}/h_{1}}(x_{1}/z_{1}, b_{0}^{2}/b^{2}) f_{a_{2}/h_{2}}(x_{2}/z_{2}, b_{0}^{2}/b^{2})$$

$$= \int_{a_{1},a_{2}} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{2}} \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} \left[H^{F}C_{1}C_{2} \right]_{c\bar{c};a_{1}a_{2}} f_{a_{1}/h_{1}}(x_{1}/z_{1}, b_{0}^{2}/b^{2}) f_{a_{2}/h_{2}}(x_{2}/z_{2}, b_{0}^{2}/b^{2})$$

$$= \int_{a_{1},a_{2}} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{2}} \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} \left[H^{F}C_{1}C_{2} \right]_{c\bar{c};a_{1}a_{2}} f_{a_{1}/h_{1}}(x_{1}/z_{1}, b_{0}^{2}/b^{2}) f_{a_{2}/h_{2}}(x_{2}/z_{2}, b_{0}^{2}/b^{2})$$

$$= \int_{a_{1},a_{2}} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{1}} \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} \left[H^{F}C_{1}C_{2} \right]_{c\bar{c};a_{1}a_{2}} f_{a_{1}/h_{1}}(x_{1}/z_{1}, b_{0}^{2}/b^{2}) f_{a_{2}/h_{2}}(x_{2}/z_{2}, b_{0}^{2}/b^{2})$$

$$= \int_{a_{1},a_{2}} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{1}} \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} \left[H^{F}C_{1}C_{2} \right]_{c\bar{c};a_{1}a_{2}} f_{a_{2}/h_{2}}(x_{1}/z_{1}) f_{a_{1}/h_{1}}(x_{1}/z_{1}) f_{a_{2}/h_{2}}(x_{2}/z_{2}) f_{a_{2}/h_{2}}$$

Catani, Torre, MG (2014)

$$\frac{d\sigma^{(\operatorname{sing})}(P_{1}, P_{2}; \mathbf{q_{T}}, M, y, \Omega)}{d^{2}\mathbf{q_{T}} dM^{2} dy \, d\Omega} = \frac{M^{2}}{2P_{1} \cdot P_{2}} \sum_{c=q,\bar{q},\bar{q},\bar{q}} \left[d\sigma^{(0)}_{c\bar{c}} \right] \int \frac{d^{2}\mathbf{b}}{(2\pi)^{2}} e^{i\mathbf{b}\cdot\mathbf{q_{T}}} S_{c}(M, b)$$

$$\times \sum_{a_{1,a_{2}}} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{1}} \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} \left[(\mathbf{H}\,\Delta) C_{1}C_{2} \right]_{c\bar{c};a_{1}a_{2}} f_{a_{1}/h_{1}}(x_{1}/z_{1}, b_{0}^{2}/b^{2}) f_{a_{2}/h_{2}}(x_{2}/z_{2}, b_{0}^{2}/b^{2})$$

$$= \int f_{a} \int_{x_{T}}^{k_{T}} \frac{dz_{1}}{z_{2}} \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} \left[(\mathbf{H}\,\Delta) C_{1}C_{2} \right]_{c\bar{c};a_{1}a_{2}} f_{a_{1}/h_{1}}(x_{1}/z_{1}, b_{0}^{2}/b^{2}) f_{a_{2}/h_{2}}(x_{2}/z_{2}, b_{0}^{2}/b^{2})$$

$$= \int f_{a} \int \int \frac{d^{2}\mathbf{b}}{C_{ca}} \int_{x_{T}}^{k_{T}} \frac{dq^{2}}{z_{2}} \left[A_{c}(\alpha_{S}(q^{2})) \ln \frac{M^{2}}{q^{2}} + B_{c}(\alpha_{S}(q^{2})) \right] \right\}$$

$$= \int \int \int \int \frac{d^{2}\mathbf{b}}{C_{ca}} \int_{x_{T}}^{k_{T}} \frac{dq^{2}}{q^{2}} \left[A_{c}(\alpha_{S}(q^{2})) \ln \frac{M^{2}}{q^{2}} + B_{c}(\alpha_{S}(q^{2})) \right] \right\}$$

$$= \int \int \int \int \frac{d^{2}\mathbf{b}}{C_{ca}} \int_{x_{T}}^{k_{T}} \frac{dq^{2}}{q^{2}} \left[A_{c}(\alpha_{S}(q^{2})) \ln \frac{M^{2}}{q^{2}} + B_{c}(\alpha_{S}(q^{2})) \right] \right\}$$

$$= \int \int \int \int \frac{d^{2}\mathbf{b}}{C_{ca}} \int \int \frac{d^{2}\mathbf{b}}{dx_{T}} \int \frac{d^{$$

Catani, Devoto, Kallweit, Mazzitelli, Sargsyan, MG (2019)

We obtain a similar structure for the subtraction formula with some differences

$$d\sigma_{(N)NLO}^{t\bar{t}} = \mathcal{H}_{(N)NLO}^{t\bar{t}} \otimes d\sigma_{LO}^{t\bar{t}} + \left[d\sigma_{(N)LO}^{t\bar{t}+\text{jets}} - d\sigma_{(N)LO}^{CT} \right]$$

Catani, Devoto, Kallweit, Mazzitelli, Sargsyan, MG (2019)

We obtain a similar structure for the subtraction formula with some differences

$$d\sigma_{(N)NLO}^{t\bar{t}} = \mathcal{H}_{(N)NLO}^{t\bar{t}} \otimes d\sigma_{LO}^{t\bar{t}} + \left[d\sigma_{(N)LO}^{t\bar{t}+\text{jets}} - d\sigma_{(N)LO}^{CT} \right]$$

Modified subtraction counterterm fully known

Additional perturbative ingredient: soft anomalous dimension Γ_t known at NNLO

Mitov, Sterman, Sung (2009) Neubert et al (2009)

Catani, Devoto, Kallweit, Mazzitelli, Sargsyan, MG (2019)

We obtain a similar structure for the subtraction formula with some differences

$$d\sigma_{(N)NLO}^{t\bar{t}} = \mathcal{H}_{(N)NLO}^{t\bar{t}} \otimes d\sigma_{LO}^{t\bar{t}} + \left[d\sigma_{(N)LO}^{t\bar{t}+\text{jets}} \leftarrow d\sigma_{(N)LO}^{CT} \right]$$

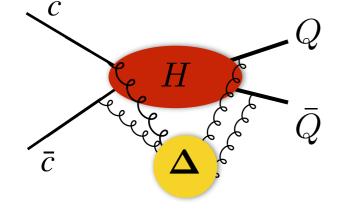
Modified subtraction counterterm fully known

Additional perturbative ingredient: soft anomalous dimension Γ_t known at NNLO

Mitov, Sterman, Sung (2009) Neubert et al (2009)

Additional soft contributions needed to evaluate $\mathcal{H}_{NNLO}^{t\bar{t}}$

Catani, Devoto, Mazzitelli, MG (2023)



They can be computed by integrating a suitably subtracted soft current

Soft contributions at NLO

Catani, Torre, MG (2014)

Standard soft current contain the correct soft behaviour but also additional initial state collinear singularities

$$-\mathbf{J}(k)^2 = \sum_{i,j=1}^4 \frac{p_i \cdot p_j}{(p_i \cdot k)(p_j \cdot k)} \mathbf{T}_i \cdot \mathbf{T}_j$$

These singular contributions are already accounted for in the calculation of colour-singlets

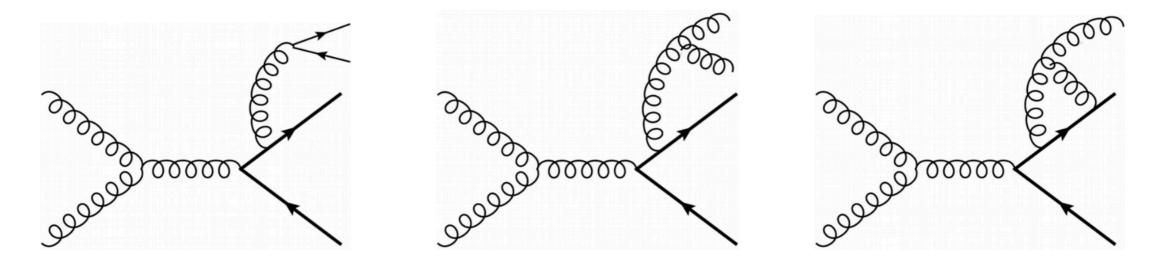
We define a suitably subtracted soft current

$$-\mathbf{J}(k)^{2}|_{\mathrm{sub}} = \sum_{J=3,4} \left[\frac{p_{J}^{2}}{(p_{J}\cdot k)^{2}} \mathbf{T}_{J}^{2} + \sum_{i=1,2} \left(\frac{p_{i}\cdot p_{J}}{p_{J}\cdot k} - \frac{p_{1}\cdot p_{2}}{(p_{1}+p_{2})\cdot k} \right) \frac{2\mathbf{T}_{i}\cdot \mathbf{T}_{J}}{p_{i}\cdot k} \right] + \frac{2p_{3}\cdot p_{4}}{(p_{3}\cdot k)(p_{4}\cdot k)} \mathbf{T}_{3}\cdot \mathbf{T}_{4}$$
final state (heavy-quark) emitters
Initial state (massless) emitters

Note: subtraction of colourless contributions ensures that no rapidity divergences are present in our soft function, contrary to what happens in SCET

Soft contributions at NNLO

Catani, Devoto, Mazzitelli, MG (2023)



Three classes of contributions: singular structure fully known

- Emission of a soft quark-antiquark pair
- Emission of two soft gluons
- Soft-gluon emission at one loop

Catani, MG (2000)

Catani, MG (2000) Czakon (2011)

Catani, MG (2000) Bierenbaum, Czakon, Mitov (2011) Czakon, Mitov (2018)

Construct suitably subtracted soft current for each of these contribution Intermediate results contain $1/\epsilon^3$ poles \longrightarrow add up to $1/\epsilon^2$ in the end

MATRIX v2.1.0

Kallweit, Wiesemann, MG (June 2017) + Buonocore, Devoto, Mazzitelli, Rottoli......

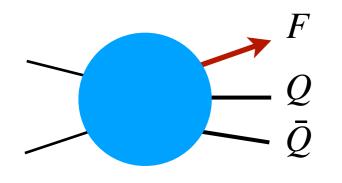
process_id		process		description
 pph21	>>	рр> Н	>>	on-shell Higgs production (NNLO)
ppz01	>>	p p> Z	>>	on-shell Z production (NNLO,NLO EW)
ppw01	>>	p p> W^-	>>	on-shell W- production with CKM (NNLO)
ppwx01	>>	p p> W^+	>>	on-shell W+ production with CKM (NNLO)
ppeex02	>>	pp> e^- e^+	>>	Z production with decay (NNLO,NLO EW)
ppnenex02	>>	p p> v_e^- v_e^+	>>	Z production with decay (NNLO,NLO EW)
ppenex02	>>	p p> e^- v_e^+	>>	W- production with decay and CKM (NNLO,NLO EW)
ppexne02	>>	p p> e^+ v_e^-	>>	W+ production with
ppaa02	>>	p p> gamma gamma	>>	gamma gamma production with NNLO QCD + NLO EW fo
ppeexa03	>>	p p> e^- e^+ gamma	>>	Z gamma production all the single and massive
ppnenexa03	>>	$p p = -> v_e^- v_e^+ gamma$	>>	a gamma produceron
ppenexa03	>>	$p p> e^- v_e^+ gamma$	>>	W- gamma production diboson processes
ppexnea03	>>	$p p = -> e^+ v_e^- gamma$	>>	W+ gamma production with decay (MALO)
ppzz02	>>	pp> Z Z	>>	on-shell ZZ production (NNLO)
ppwxw02	>>	p p> W^+ W^-	>>	on-shell WW production (NNLO)
ppemexmx04	>>	$p p> e^- mu^- e^+ mu^+$	>>	ZZ production with deca
ppeeexex04	>>	p p> e^- e^- e^+ e^+	>>	ZZ production with deca NLO QCD for loop
ppeexnmnmx04	>>	p p> e^- e^+ v_mu^- v_mu^+	>>	ZZ production with deca induced gg contribution
ppemxnmnex04	>>	$p p = -> e^{-} mu^{+} v_mu^{-} v_e^{+}$	>>	
ppeexnenex04	>>	p p> e^- e^+ v_e^- v_e^+	>>	ZZ/WW production with d for WW and ZZ
ppemexnmx04	>>	$p p = -> e^{-} mu^{-} e^{+} v_mu^{+}$	>>	W-Z production with decay (margines in)
ppeeexnex04	>>	$p p = -> e^{-} e^{-} e^{+} v_{e}^{+}$	>>	W-Z production with decay (NNLO,NLO EW)
ppeexmxnm04	>>	p p> e^- e^+ mu^+ v_mu^-	>>	W+Z production with decay (NNLO,NLO EW)
		p p> e^- e^+ e^+ v_e^-	>>	W+Z production with decay (NNLO,NLO EW)
ppttx20		p p> top anti-top	>>	on-shell top-pair production (NNLO)
ppaaa03		p p> gamma gamma gamma	>>	gamma gamma gamma production (NNLO)

MATRIX v2.1.0

Kallweit, Wiesemann, MG (June 2017) + Buonocore, Devoto, Mazzitelli, Rottoli......

process_id	11	process	11	description
pph21	>>	рр> Н	>>	on-shell Higgs production (NNLO)
ppz01	>>	pp> Z	>>	on-shell Z production (NNLO,NLO EW)
ppw01	>>	p p> W^-	>>	on-shell W- production with CKM (NNLO)
ppwx01	>>	pp> W^+	>>	on-shell W+ production with CKM (NNLO)
ppeex02	>>	p p> e^- e^+	>>	Z production with decay (NNLO,NLO EW)
ppnenex02	>>	p p> v_e^- v_e^+	>>	Z production with decay (NNLO,NLO EW)
ppenex02	>>	p p> e^- v_e^+	>>	W- production with decay and CKM (NNLO,NLO EW)
ppexne02	>>	p p> e^+ v_e^-	>>	W+ production with
ppaa02	>>	p p> gamma gamma	>>	gamma gamma product NNLO QCD + NLO EW for
ppeexa03	>>	$p p> e^- e^+ gamma$	>>	Z gamma production all the single and massive
ppnenexa03	>>	$p p> v_e^- v_e^+ gamma$	>>	
ppenexa03	>>	$p p> e^- v e^+ gamma$	>>	W- gamma production diboson processes
ppexnea03	>>	$p p> e^+ v e^- gamma$	>>	W+ gamma production with decay (MNLO)
ppzz02	>>	pp> Z Z	>>	on-shell ZZ production (NNLO)
ppwxw02	>>	p p> W^+ W^-	>>	on-shell WW production (NNLO)
ppemexmx04	>>	$p p> e^- mu^- e^+ mu^+$	>>	ZZ production with deca
ppeeexex04	>>	p p> e^- e^- e^+ e^+	>>	ZZ production with deca NLO QCD for loop
ppeexnmnmx04	>>	p p> e^- e^+ v_mu^- v_mu^+	>>	ZZ production with deca induced gg contribution
ppemxnmnex04	>>	$p p> e^- mu^+ v mu^- v e^+$	>>	WW production with deca made a gg contribution
ppeexnenex04	>>	p p> e^- e^+ v e^- v e^+	>>	ZZ/WW production with d for WW and ZZ
ppemexnmx0	a strain t		>>	W-Z production with decay (mile, mile in,
ppeeexnex0 t	t and	$\gamma \gamma \gamma$ now available v_e^+	>>	W-Z production with decay (NNLO,NLO EW)
preexil nm0	<i>i</i> and	v mu^-	>>	W+Z production with decay (NNLO,NLO EW)
ppeexexne04	>>		>>	W+Z production with decay (NNLO,NLO EW)
ppttx20	>>		>>	on-shell top-pair production (NNLO)
ppaaa03	>>		>>	gamma gamma gamma production (NNLO)

QQF



When the heavy quark pair is accompanied by a colourless system the resummation and subtraction formalisms can be applied in an analogous way with just two additional complications Catani, Fabre, Kallweit, MG (2020)

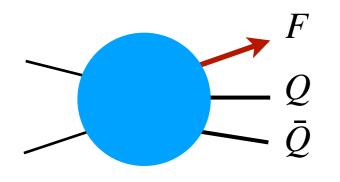
• The colourless system takes away momentum and the computation of the soft function has to be extended accordingly Devoto, Mazzitelli, (to appear)

For some important processes ($t\bar{t}Z$, $WWb\bar{b}$) three-parton correlators are non vanishing and also contribute to the soft integrals (this is not the case for $t\bar{t}$ and $t\bar{t}H$ and $t\bar{t}W$)

How about two loop amplitudes ?

Two loop $2 \rightarrow 3$ amplitudes are at the frontier: several massless computations now completed ($\gamma\gamma\gamma$, $\gamma\gamma$ + jet, γ + 2jets, 3jets, *W* + 4 partons..) typically first using the leading colour approximation but not with masses around !

QQF



When the heavy quark pair is accompanied by a colourless system the resummation and subtraction formalisms can be applied in an analogous way with just two additional complications Catani, Fabre, Kallweit, MG (2020)

• The colourless system takes away momentum and the computation of the soft function has to be extended accordingly Devoto, Mazzitelli, (to appear)

For some important processes ($t\bar{t}Z$, $WWb\bar{b}...$) three-parton correlators are non vanishing and also contribute to the soft integrals (this is not the case for $t\bar{t}$ and $t\bar{t}H$ and $t\bar{t}W$)

Use approximated form of two-loop contribution to obtain first NNLO results for $t\bar{t}H$, $Wb\bar{b}$ and $t\bar{t}W$

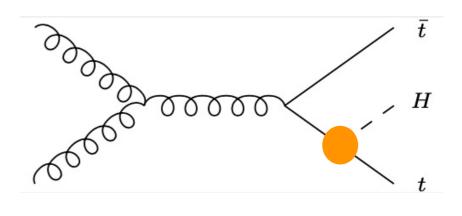
Catani, Devoto, Kallweit, Mazzitelli, Savoini, MG (2022) Buonocore, Devoto, Kallweit, Mazzitelli, Rottoli, Savoini (2022) Buonocore, Devoto, Kallweit, Mazzitelli, Rottoli, Savoini, MG (2023)

ttH

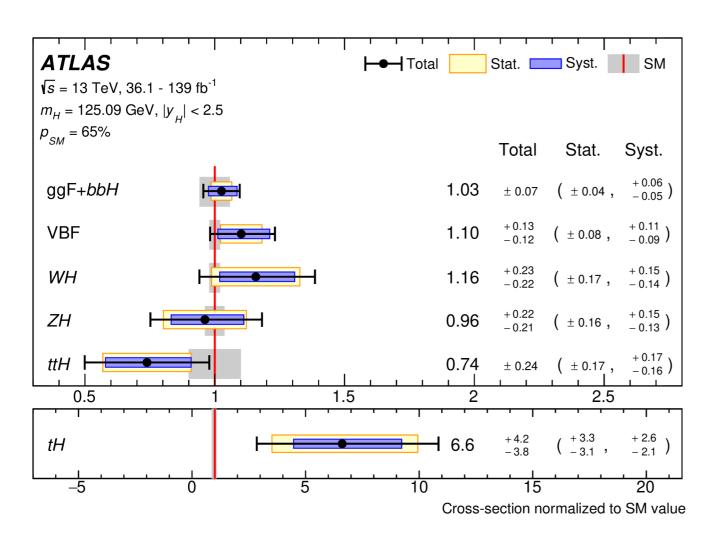
The associated production of the Higgs boson with a top-quark pair is a crucial process at the LHC

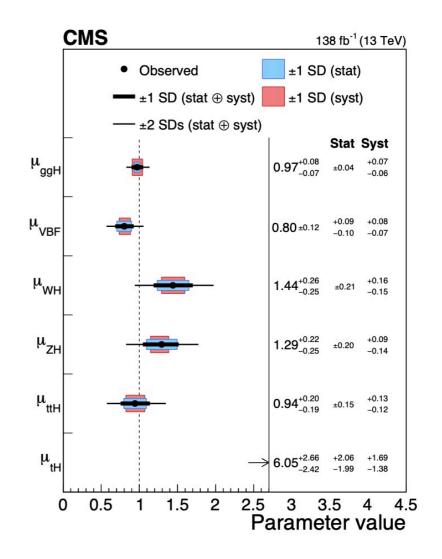
It allows a direct extraction of the top Yukawa

Catani, Devoto, Kallweit, Mazzitelli, Savoini, MG (2022)



Experimental uncertainties are now at the O(20%) level



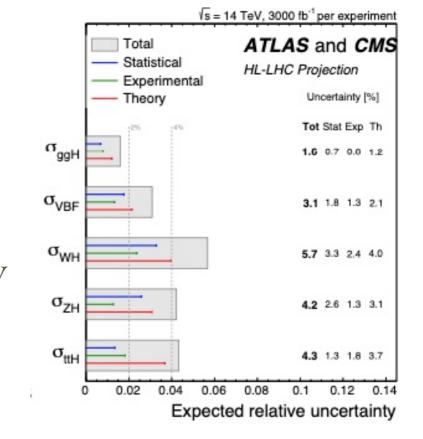


ttH

Experimental precision expected to get to the O(2%)level at the end of HL-LHC

Current predictions based on NLO QCD+EW (+ resummations) and affected by *O*(10%) uncertainty

NNLO QCD needed to bring theory uncertainty down to the O(2%) level expected

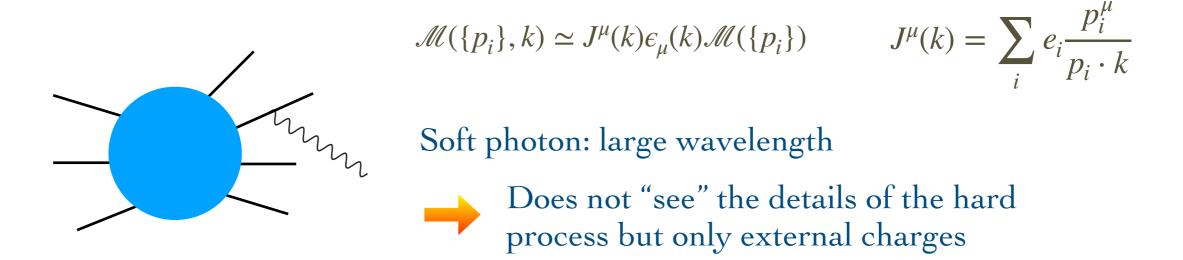


First step completed by evaluation of the contribution of the off-diagonal partonic channels Catani, Fabre, Kallweit, MG(2020)

Missing ingredients are the two-loop $gg \rightarrow t\bar{t}H$ and $q\bar{q} \rightarrow t\bar{t}H$ amplitudes

The idea: use a soft-Higgs approximation only for the missing two-loop amplitude

When a soft photon (or gluon) is emitted in a high-energy process the corresponding amplitudes obey well known factorisation formulae



An analogous formula holds for the emission of a soft scalar off heavy quarks

 $\mathcal{M}(\{p_i\},k)\simeq J(k)\mathcal{M}(\{p_i\})$

At tree level it is straightforward to show that

$$J(k) = \sum_{i} \frac{m}{v} \frac{m}{p_i \cdot k}$$
heavy-quark momenta

This formula can be extended to all orders in the QCD coupling α_S

 $\mathcal{M}(\{p_i\},k) \simeq F(\alpha_S(\mu_R);m/\mu_R) J(k) \mathcal{M}(\{p_i\})$

This formula can be extended to all orders in the QCD coupling α_S

 $\mathcal{M}(\{p_i\},k) \simeq F(\alpha_S(\mu_R);m/\mu_R) J(k)\mathcal{M}(\{p_i\})$

Physical picture: Higgs soft current essentially "abelian": no corrections beyond LO except for over all normalisation

This formula can be extended to all orders in the QCD coupling α_S

 $\mathcal{M}(\{p_i\},k) \simeq F(\alpha_S(\mu_R);m/\mu_R) J(k)\mathcal{M}(\{p_i\})$

Physical picture: Higgs soft current essentially "abelian": no corrections beyond LO except for over all normalisation

The perturbative function $F(\alpha_S(\mu_R); m/\mu_R)$ can be extracted from the soft limit of the scalar form factor of the heavy quark

Bernreuther et al (2005) Blümlein et al (2017)

$$F(\alpha_{S}(\mu_{R}); m/\mu_{R}) = 1 + \frac{\alpha_{S}(\mu_{R})}{2\pi} \left(-3C_{F}\right) + \left(\frac{\alpha_{S}(\mu_{R})}{2\pi}\right)^{2} \left(\frac{33}{4}C_{F}^{2} - \frac{185}{12}C_{F}C_{A} + \frac{13}{6}C_{F}(n_{L}+1) - 6C_{F}\beta_{0}\ln\frac{\mu_{R}^{2}}{m^{2}}\right) + \mathcal{O}(\alpha_{S}^{3})$$

Alternatively, it can be derived by using Higgs low-energy theorems

See e.g. Kniehl and Spira (1995)

We have done several checks of our factorisation formula by assuming a very light and soft Higgs boson

 $\mathcal{M}(\{p_i\}, k) \simeq F(\alpha_S(\mu_R); m/\mu_R) J(k) \mathcal{M}(\{p_i\})$

- We have tested it numerically with Openloops up to one-loop order in the case of $t\bar{t}H$ production
- We have tested it numerically with Recola up to one-loop order in the case of $t\bar{t}t\bar{t}H$ production

The formula can be useful to cross check future exact calculations of QCD amplitudes with heavy quarks and a Higgs boson

Can it be used to complete the NNLO calculation for $t\bar{t}H$ production ?

Remarkably, yes !

The computation

The starting point is again the q_T subtraction formula

$$d\sigma = \mathcal{H} \otimes d\sigma_{\rm LO} + \left[d\sigma_{\rm R} - d\sigma_{\rm CT} \right]$$

All the ingredients in this formula for $t\bar{t}H$ are now available and implemented in MATRIX except the two-loop virtual amplitudes entering \mathcal{H}

We define

$$\mathcal{H} = H\delta(1 - z_1)\delta(1 - z_2) + \delta\mathcal{H} \qquad \qquad H^{(n)} = \frac{2\text{Re}\left(\mathcal{M}_{\text{fin}}^{(n)}\mathcal{M}^{(0)*}\right)}{|\mathcal{M}^{(0)}|^2}$$

with

$$H = 1 + \frac{\alpha_{S}(\mu_{R})}{2\pi} H^{(1)} + \left(\frac{\alpha_{S}(\mu_{R})}{2\pi}\right)^{2} H^{(2)} + \dots \qquad |\mathcal{M}_{fin}(\mu_{IR})\rangle = \mathbb{Z}^{-1}(\mu_{IR}) |\mathcal{M}\rangle$$

IR subtraction

For n = 2 this definition allows us to single out the only missing ingredient in the NNLO calculation, that is, the coefficient $H^{(2)}$

Note that all the remaining terms are computed exactly (including $|\mathcal{M}_{fin}^{(1)}|^2$)

We have used our factorisation formula to construct approximations of the $H^{(1)}$ and $H^{(2)}$ coefficients

Since the Higgs is not at all soft, in order to use the factorisation formula we have to introduce a mapping that from a $t\bar{t}H$ event defines a $t\bar{t}$ event with no Higgs boson

To this purpose we use the q_T recoil prescription

Catani, Ferrera, de Florian, MG (2016)

With this prescription the momentum of the Higgs boson is equally reabsorbed by the initial state partons, leaving the top and antitop momenta unchanged

The required tree-level and one-loop amplitudes are obtained using **Openloops**

The $q\bar{q} \rightarrow t\bar{t}$ and $gg \rightarrow t\bar{t}$ two-loop amplitudes needed to apply our approximation are those provided by Czakon et al.

Bärnreuther, Czakon, Fiedler (2013)

Setup: NNPDF31 NNLO partons with 3-loop α_S $m_H = 125 \text{ GeV}$ and $m_t = 173.3 \text{ GeV}$

> Central values for factorisation and renormalisation scales $\mu_F = \mu_R = (2m_t + m_H)/2$ ¹⁹

Our first check is on the LO cross sections: we find that the soft approximation overestimates it by

- gg channel: a factor of 2.3 at $\sqrt{s} = 13$ TeV and a factor of 2 at $\sqrt{s} = 100$ TeV
- $q\bar{q}$ channel: a factor of 1.11 at $\sqrt{s} = 13$ TeV and a factor of 1.06 at $\sqrt{s} = 100$ TeV

These are absolute LO predictions: in our calculation we will actually need to approximate $H^{(1)}$ and $H^{(2)}$ that are normalised to LO matrix elements

$$H^{(n)} = \frac{2\operatorname{Re}\left(\mathscr{M}_{\operatorname{fin}}^{(n)}\mathscr{M}^{(0)*}\right)}{|\mathscr{M}^{(0)}|^2}$$

We expect this approximation to work better than simply computing $2\text{Re}\left(\mathcal{M}_{\text{fin}}^{(n)}\mathcal{M}^{(0)*}\right)$: effective reweighing of LO cross section

When computing virtual amplitudes we will set the infrared subtraction scale μ_{IR} to the invariant mass of the final state system

	$\sqrt{s} =$	$13\mathrm{TeV}$	$\sqrt{s} = 100 \mathrm{TeV}$		
$\sigma~\mathrm{[fb]}$	gg	qar q	gg	qar q	
$\sigma_{ m LO}$	261.58	129.47	23055	2323.7	
$\Delta\sigma_{ m NLO,H}$	88.62	7.826	8205	217.0	
$\Delta \sigma_{ m NLO,H} _{ m soft}$	61.98	7.413	5612	206.0	

We now move to NLO and compare the exact contribution from $H^{(1)}$ to the one computed in the soft approximation

The hard contribution computed in the soft approximation is underestimated by just 30 % in the *gg* channel and by 5 % in the $q\bar{q}$

The mismatch that we observe at NLO can be used to estimate the uncertainty of our approximation at NNLO

The quality of our final result will depend on the size of the contribution we approximate

	$\sqrt{s} = 1$	$3{ m TeV}$	$\sqrt{s} = 100 \mathrm{TeV}$		
$\sigma~\mathrm{[fb]}$	gg	qar q	gg	q ar q	
$\sigma_{ m LO}$	261.58	129.47	23055	2323.7	
$\Delta \sigma_{ m NLO,H}$	88.62	7.826	8205	217.0	
$\Delta\sigma_{ m NLO,H} _{ m soft}$	61.98	7.413	5612	206.0	
$\Delta \sigma_{ m NNLO,H} _{ m soft}$	-2.980(3)	2.622(0)	-239.4(4)	65.45(1)	

At NNLO the hard contribution is about 1% of the LO cross section in the gg channel and 2% in the $q\bar{q}$ channel

We can therefore anticipate that at NNLO the uncertainties due to the soft approximation will be rather small.

But how can we estimate these uncertainties ?

We have carefully studied the stability of our results under variations of the approximation procedure

• We have varied the recoil procedure: reabsorbing the Higgs momentum in just one of the initial state partons leads to negligible differences

We have repeated our computation by using different subtraction scales at which the finite part of the two-loop virtual amplitude in $H^{(2)}$ is defined

When varying μ_{IR} from *M*/2 to 2*M* and adding the exact evolution terms from these scales back to *M*

- In the gg channel we find $^{+164\%}_{-25\%}$ at 13 TeV and $^{+142\%}_{-20\%}$ at 100 TeV
- In the $q\bar{q}$ channel we find $^{+4\%}_{-0\%}$ at 13 TeV and $^{+3\%}_{-0\%}$ at 100 TeV

To define our uncertainties we start from the NLO result: the hard contribution computed in the soft approximation is underestimated by just 30% in the gg channel and by 5% in the $q\bar{q}$ therefore the NNLO uncertainty cannot be smaller than these values

We multiply these uncertainties by a tolerance factor of 3 We finally combine the *gg* and $q\bar{q}$ uncertainties linearly $\implies \pm 0.6\%$ on σ_{NNLO}

Results

σ [pb]	$\sqrt{s} = 13 \mathrm{TeV}$	$\sqrt{s} = 100 \mathrm{TeV}$
$\sigma_{ m LO}$	$0.3910^{+31.3\%}_{-22.2\%}$	$25.38^{+21.1\%}_{-16.0\%}$
$\sigma_{ m NLO}$	$0.4875^{+5.6\%}_{-9.1\%}$	$36.43^{+9.4\%}_{-8.7\%}$
$\sigma_{ m NNLO}$	$0.5070(31)^{+0.9\%}_{-3.0\%}$	$37.20(25)^{+0.1\%}_{-2.2\%}$

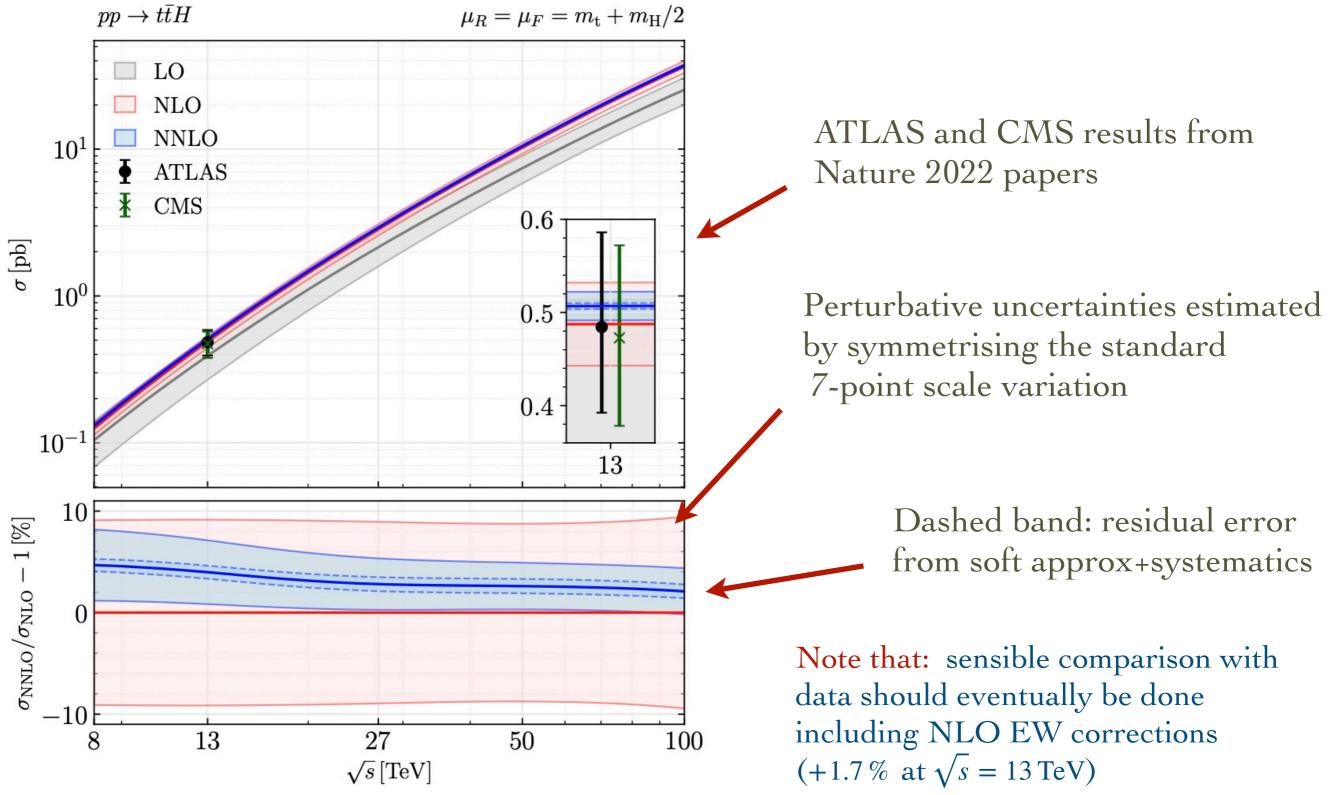
NLO effect is about +25% at 13 TeV and +44% at 100 TeV

NNLO effect is about +4% at 13 TeV and +2% at 100 TeV

Significant reduction of perturbative uncertainties

Errors in bracket obtained combining uncertainty from the soft approximation and the q_T subtraction systematics (same procedure used in MATRIX)

Results



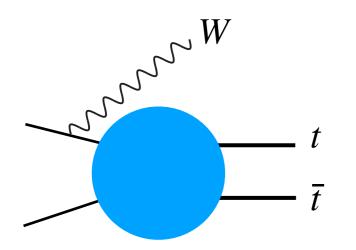
Buonocore, Devoto, Kallweit, Mazzitelli, Rottoli, Savoini, MG (2023)

Among the ttV signatures, ttW is special because it involves both EW and top sectors

It is at the same time a signal and a background to ttH and tttt and new physics searches

Since the top quark quickly decays into a W and a b jet, the signature is characterised by 3 W bosons

It provides an irreducible source of same-sign dilepton pairs relevant for many BSM searches

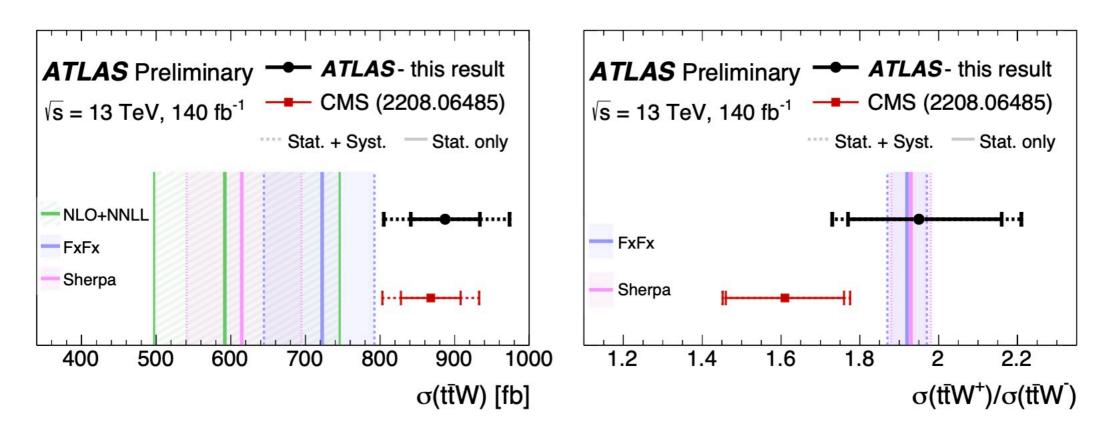


It is special compared to other $ttF(F = H, Z, \gamma)$ signatures because the W can only be emitted by the initial-state light quarks (no *gg* channel at LO)

Measurements by ATLAS and CMS at $\sqrt{s} = 8$ TeV and $\sqrt{s} = 13$ TeV showed that the ttW rate is consistently higher than the SM prediction

This discrepancy is also confirmed by indirect measurements of ttW in the context of ttH and 4top analyses

The most recent measurements confirm this picture with a slight excess at the $1\sigma - 2\sigma$ level



Theory predictions still essentially based on NLO QCD and EW predictions

 Badger, Campbell, Ellis (2010); Campbell, Ellis (2012); Dror, Farina, Salvioni, Serra (2015); Frixione, Hirschi, Pagani, Shao, Zaro (2015); Bevilacqua et al. (2020); Denner, Pelliccioli (2020) Broggio et al (2016); Kulesza et al (2019)
 + multijet merging (FxFx) Current theory reference

NNLO computation could be carried out analogously to ttH if the two-loop Wtt amplitude were available

Can we obtain an estimate of the missing two-loop contribution ? Yes !

We constructed and tested **two different approximations** of the two-loop amplitude

1) Use soft approximation for W emission with momentum k and polarisation $\varepsilon(k)$ to express ttW amplitude in terms of the $q\bar{q} \rightarrow t\bar{t}$ amplitude

$$\mathcal{M}(\{p_i\}, k, \mu_R; \epsilon) \simeq \frac{g}{\sqrt{2}} \left(\frac{p_2 \cdot \varepsilon^*(k)}{p_2 \cdot k} - \frac{p_1 \cdot \varepsilon^*(k)}{p_1 \cdot k} \right) \mathcal{M}_L(\{p_i\}, \mu_R; \epsilon)$$

$$q_L \bar{q}_R \to t\bar{t} \text{ virtual amplitude}$$

Bärnreuther et al. (2013) Mastrolia et al (2022)

2) Start from massless W+4 parton amplitudes

Abreu et al. (2021)

Use a "massification" procedure to obtain the leading terms in a $m_Q/Q \ll 1$ expansion

Penin (2006) Moch, Mitov (2007) Becher, Melnikov (2007)

Successfully applied to the NNLO computation of Wbb

Buonocore, Devoto, Kallweit, Mazzitelli, Rottoli, Savoini (2023)

As done for $t\bar{t}H$ we have used our factorisation formulas to construct approximations of the $H^{(1)}$ and $H^{(2)}$ coefficients

To properly define our approximations we need momentum mappings

- For the soft-W approximation we absorb the W momentum into the top quarks, thus preserving the invariant mass of the event

- For the massification we map the momenta of the massive top quarks into massless momenta by preserving the four-momentum of the pair

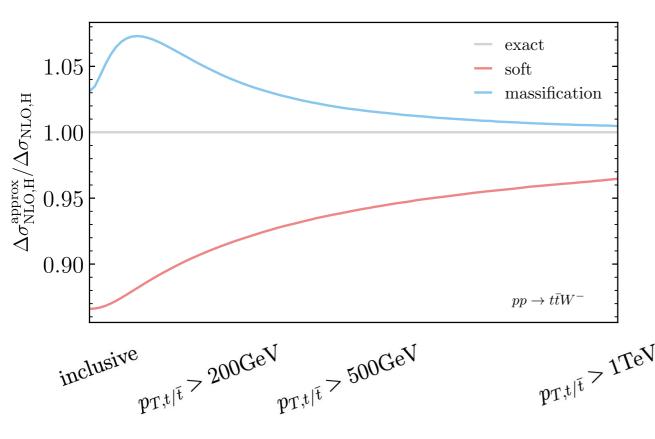
Required tree-level and one-loop amplitudes obtained using Openloops and Recola

- The $q\bar{q} \rightarrow t\bar{t}$ two-loop amplitudes needed to apply our soft approximation are those provided by Czakon et al. Bärnreuther, Czakon, Fiedler (2013); Mastrolia et al (2022)

- The W+4 parton massless two-loop amplitudes needed to use massification are those from Abreu et al (leading colour approximation) Abreu et al (2021)

Setup: NNPDF31_nnlo_as_0118_luxqed partons with 3-loop α_S $\sqrt{s} = 13 \text{ TeV}$ Central values for factorisation and renormalisation scales $\mu_F = \mu_R = (2m_t + m_W)/2 \equiv = M/2$

Buonocore, Devoto, Kallweit, Mazzitelli,Rottoli, Savoini, MG (2023)

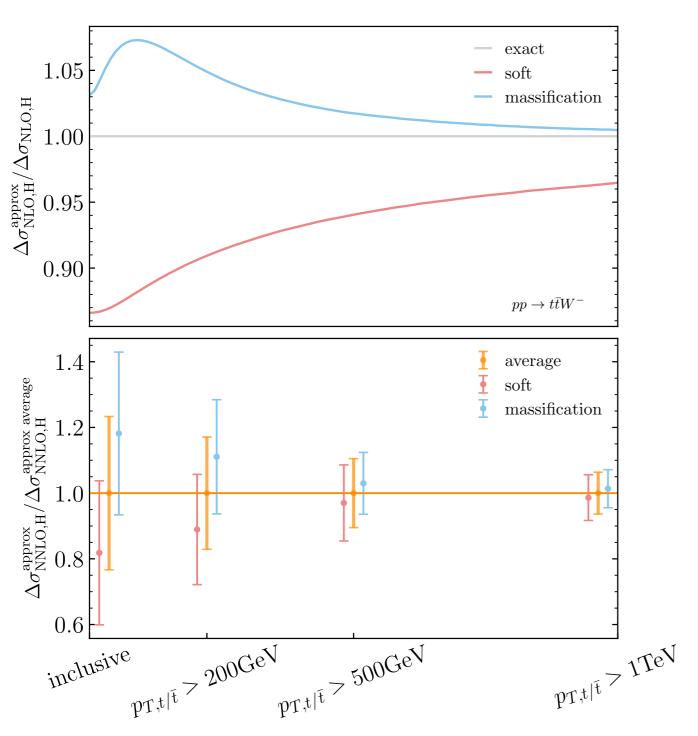


Both approximations provide a good estimate of the exact one-loop contribution

Soft approximation undershoots the exact results while massification tends to $p_{T,t|\tilde{t}^{7}}$ Trev overshoot it

Clear asymptotic behaviour towards exact result for high p_T of the top quarks where both approximations are expected to work

Buonocore, Devoto, Kallweit, Mazzitelli,Rottoli, Savoini, MG (2023)



The pattern is preserved at NNLO: massified result systematically higher than soft approximation

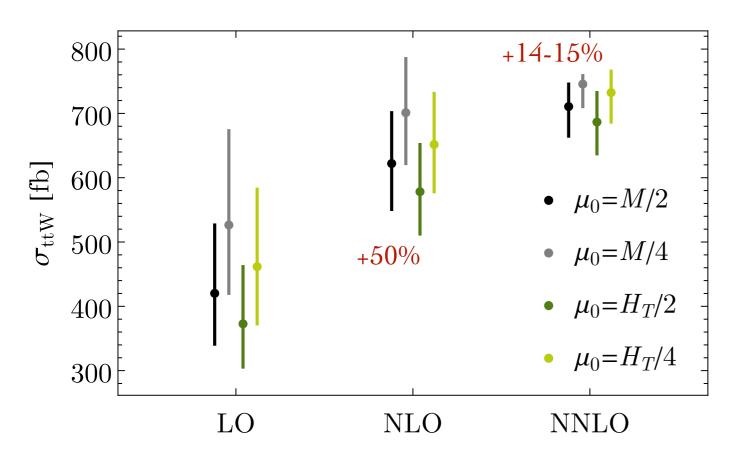
We define the uncertainty of each approximation as the maximum between what we obtain varying the subtraction scale $1/2 \le \mu_{\text{IR}}/Q \le 2$ and twice the NLO deviation

Our best prediction obtained as average of the two with linear combination of uncertainties

Final uncertainty on two-loop contribution about 25% and similar to what obtained in recent $2 \rightarrow 3$ calculations in leading color approximation

Impact of two-loop virtual contribution: 6-7% of NNLO cross section

Perturbative uncertainties



Our predictions are obtained by using $\mu_0 = M/2$ as central scale and performing standard 7-point scale variations

We have repeated our calculation using $H_T/2$, $H_T/4$ and M/4 as central scales

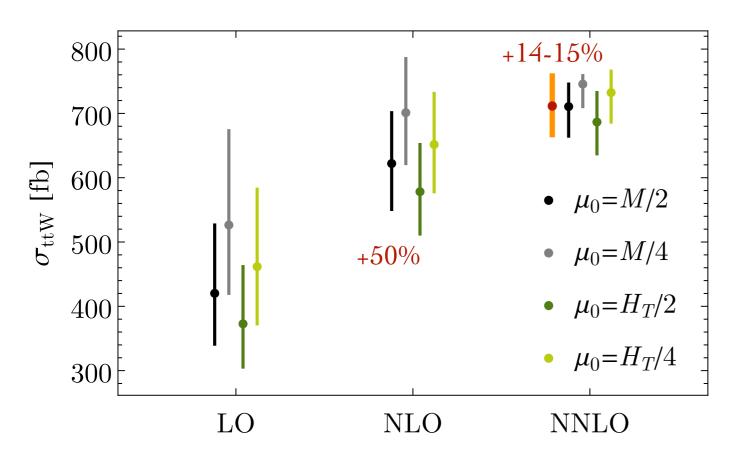
The four predictions are fully consistent within their uncertainties

Symmetrising the *M*/2 scale uncertainty we obtain an upper bound that is almost identical to that of $\mu_0 = M/4$ and $\mu_0 = H_T/4$

We find that the NNLO correction is dominated by virtual and real corrections in the qg channel: no new large contribution from channels opening up at NNLO (as gg)

We take the $\mu_0 = M/2$ as reference and use symmetrised scale variations as estimate of our uncertainties

Perturbative uncertainties



Our predictions are obtained by using $\mu_0 = M/2$ as central scale and performing standard 7-point scale variations

We have repeated our calculation using $H_T/2$, $H_T/4$ and M/4 as central scales

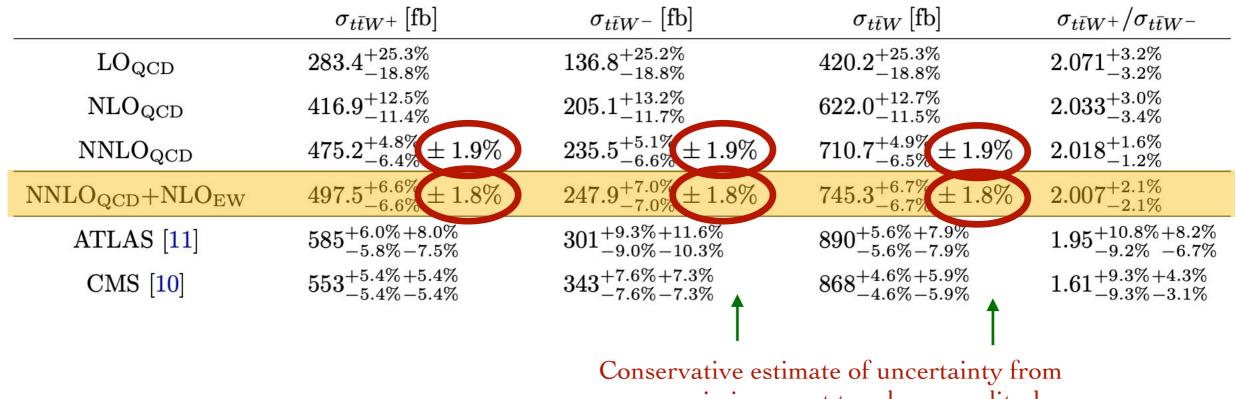
The four predictions are fully consistent within their uncertainties

Symmetrising the *M*/2 scale uncertainty we obtain an upper bound that is almost identical to that of $\mu_0 = M/4$ and $\mu_0 = H_T/4$

We find that the NNLO correction is dominated by virtual and real contributions in the qg channel: no new large contribution from channels opening up at NNLO (as gg)

We take the $\mu_0 = M/2$ as reference and use symmetrised scale variations as estimate of our uncertainties

ttW



missing exact two-loop amplitudes

Large NLO QCD corrections (+50%)

Moderate NNLO corrections (+14-15%)

All subdominant LO and NLO contributions at $\mathcal{O}(\alpha^3)$, $\mathcal{O}(\alpha_S^2 \alpha^2)$, $\mathcal{O}(\alpha_S \alpha^3)$, $\mathcal{O}(\alpha^4)$ consistently included and denoted as NLO EW: effect is +5%

 $\sigma(t\bar{t}W^+)/\sigma(t\bar{t}W^-)$ only slightly decreases increasing the perturbative order

ttW

	$\sigma_{t ar{t} W^+} [{ m fb}]$	$\sigma_{tar{t}W^-}[{ m fb}]$	$\sigma_{tar{t}W}[{ m fb}]$	$\sigma_{tar{t}W^+}/\sigma_{tar{t}W^-}$
$\rm LO_{QCD}$	$283.4^{+25.3\%}_{-18.8\%}$	$136.8^{+25.2\%}_{-18.8\%}$	$420.2^{+25.3\%}_{-18.8\%}$	$2.071^{+3.2\%}_{-3.2\%}$
$\mathrm{NLO}_{\mathrm{QCD}}$	$416.9^{+12.5\%}_{-11.4\%}$	$205.1^{+13.2\%}_{-11.7\%}$	$622.0^{+12.7\%}_{-11.5\%}$	$2.033^{+3.0\%}_{-3.4\%}$
$NNLO_{QCD}$	$475.2^{+4.8\%}_{-6.4\%}\pm1.9\%$	$235.5^{+5.1\%}_{-6.6\%}\pm1.9\%$	$710.7^{+4.9\%}_{-6.5\%}\pm1.9\%$	$2.018^{+1.6\%}_{-1.2\%}$
$NNLO_{QCD} + NLO_{EW}$	$497.5^{+6.6\%}_{-6.6\%}\pm1.8\%$	$247.9^{+7.0\%}_{-7.0\%}\pm1.8\%$	$745.3^{+6.7\%}_{-6.7\%}\pm1.8\%$	$2.007^{+2.1\%}_{-2.1\%}$
ATLAS [11]	$585^{+6.0\%}_{-5.8\%}{}^{+8.0\%}_{-7.5\%}$	$301^{+9.3\%+11.6\%}_{-9.0\%-10.3\%}$	$890^{+5.6\%+7.9\%}_{-5.6\%-7.9\%}$	$1.95^{+10.8\%}_{-9.2\%}{}^{+8.2\%}_{-6.7\%}$
CMS [10]	$553^{+5.4\%}_{-5.4\%}{}^{+5.4\%}_{-5.4\%}$	$343^{+7.6\%}_{-7.6\%}{}^{+7.3\%}_{-7.3\%}$	$868^{+4.6\%+5.9\%}_{-4.6\%-5.9\%}$	$1.61^{+9.3\%}_{-9.3\%}{}^{+4.3\%}_{-3.1\%}$

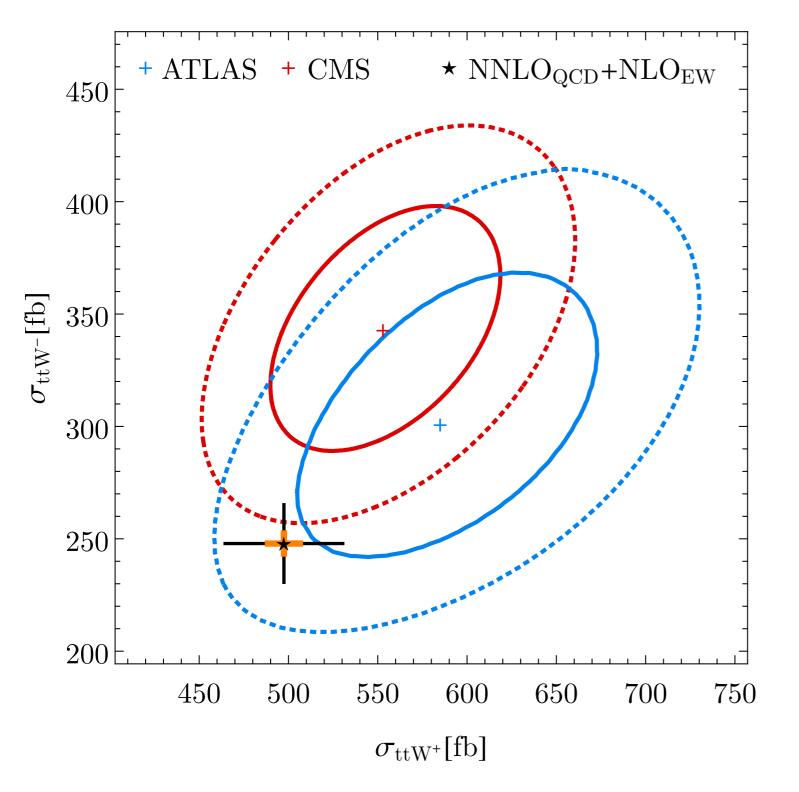
Large NLO QCD corrections (+50%)

Moderate NNLO corrections (+14-15%)

All subdominant LO and NLO contributions at $\mathcal{O}(\alpha^3)$, $\mathcal{O}(\alpha_S^2 \alpha^2)$, $\mathcal{O}(\alpha_S \alpha^3)$, $\mathcal{O}(\alpha^4)$ consistently included and denoted as NLO EW: effect is +5%

 $\sigma(t\bar{t}W^+)/\sigma(t\bar{t}W^-)$ only slightly decreases increasing the perturbative order

ttW



The comparison with the ATLAS and CMS results shows that discrepancy remains at the 1-20 level

Inclusion of NNLO corrections significantly reduces perturbative uncertainties

Our result is fully consistent with FxFx prediction but with smaller uncertainties

 $\sigma_{t\bar{t}W}^{\text{FxFx}} = 722.4^{+9.7\%}_{-10.8\%} \text{ fb}$

Summary

Processes in which a *tī* pair is produced together with a vector or Higgs
boson are crucial to characterise the top quark interactions but theoretical
prediction have still relatively large uncertainties

NNLO QCD predictions needed

For the hadronic production of heavy quarks the q_T subtraction method has proven to be extremely efficient

The recently completed evaluation of the soft-parton contributions at low transverse momentum allows us to compute NNLO corrections for heavyquark production plus a colourless system, provided the relevant amplitudes are available

We have now applied our framework to evaluate NNLO corrections to $t\bar{t}H$ and $t\bar{t}W$ production, by using suitable approximations of the two-loop contributions

Summary

- For $t\bar{t}H$ the approximation is based on a soft-Higgs factorisation formula that has been presented, for the first time, to NNLO accuracy
- In the case of *ttW* we have used both a soft approximation and a massification procedure and they give consistent results within their uncertainties
- Together with $b\bar{b}W$ these are the first computations for $2 \rightarrow 3$ processes with massive coloured particles at this perturbative order
- NNLO corrections are moderate and lead to a significant reduction of perturbative uncertainties
- In the case of $t\bar{t}W$ the tension with ATLAS and CMS data remains at the $1\sigma 2\sigma$ level

Backup

Stability of the subtraction procedure

$$d\sigma^{F}_{(N)NLO} = \mathcal{H}^{F}_{(N)NLO} \otimes d\sigma^{F}_{LO} \left(+ \left[d\sigma^{F+\text{jets}}_{(N)LO} - d\sigma^{CT}_{(N)LO} \right] \right)$$

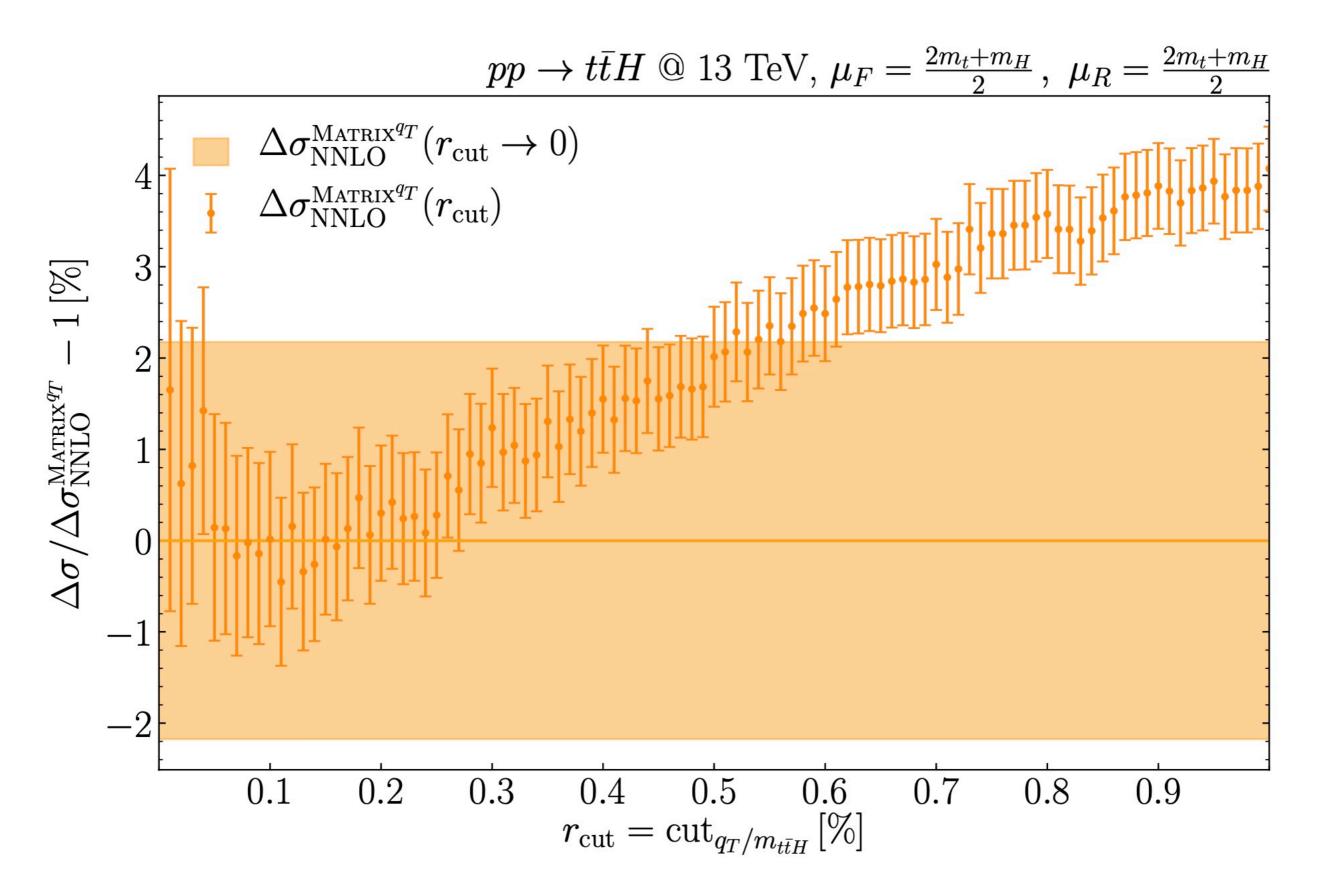
The q_T subtraction counterterm is non-local the difference in the square bracket is evaluated with a cut-off r_{cut} on the ratio $r = q_T/Q$

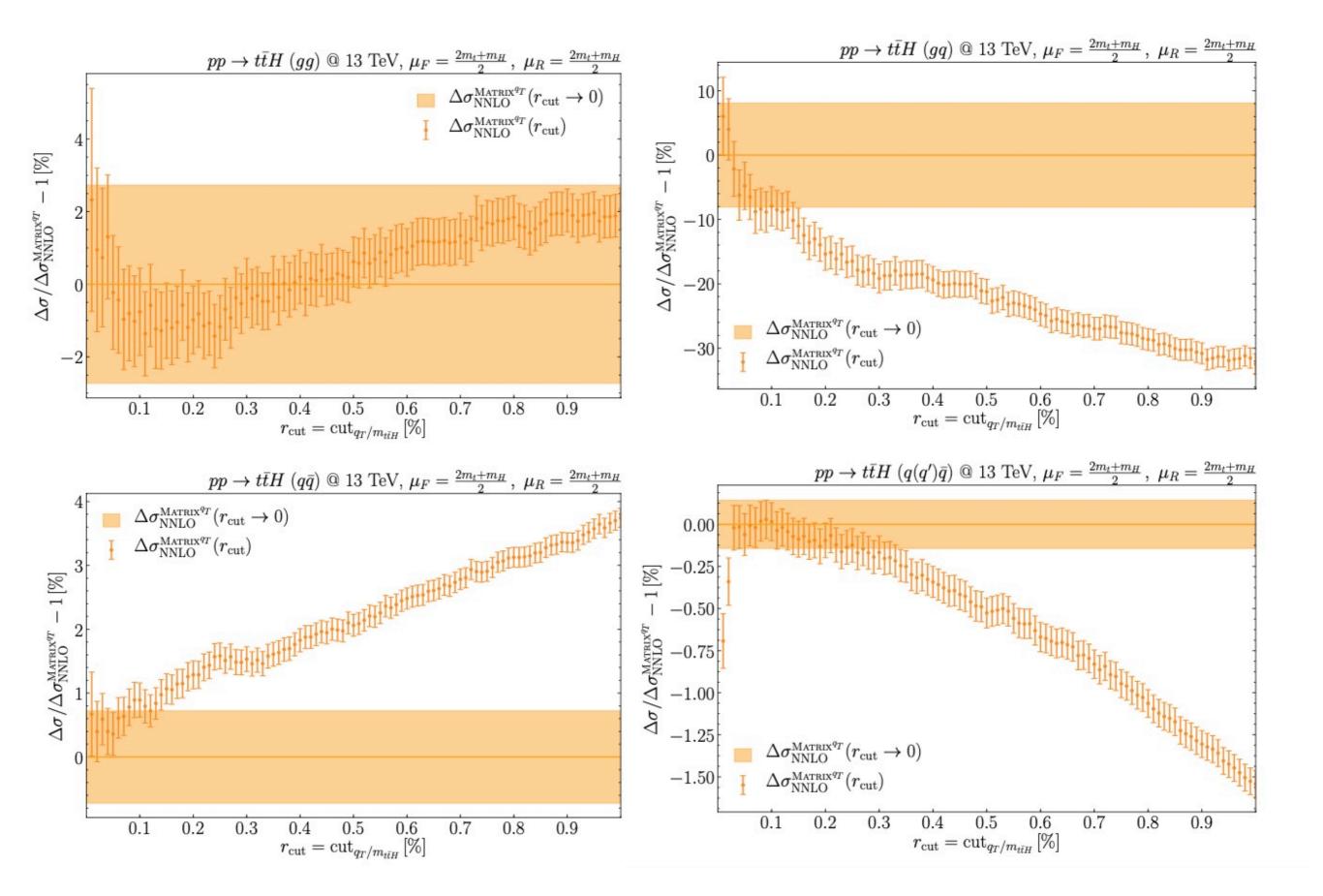
In MATRIX $q_{\rm T}$ subtraction indeed works as a slicing method

It is important to monitor the dependence of our results on r_{cut}

MATRIX allows for a simultaneous evaluation of the NNLO cross section for different values of r_{cut}

The dependence on r_{cut} is used by the code to provide an estimate of the systematic uncertainty in any NNLO run





NLO results

$$\mathbf{F}_{t}^{(1)}(y_{34}) = (\mathbf{T}_{3}^{2} + \mathbf{T}_{4}^{2}) \ln\left(\frac{m_{T}^{2}}{m^{2}}\right) + (\mathbf{T}_{3} + \mathbf{T}_{4})^{2} \operatorname{Li}_{2}\left(-\frac{\mathbf{p}_{T}^{2}}{m^{2}}\right) + \mathbf{T}_{3} \cdot \mathbf{T}_{4} \frac{1}{v} L_{34}$$

$$\begin{split} \mathbf{\Gamma}_{t}^{(1)}(y_{34}) &= -\frac{1}{4} \left\{ (\mathbf{T}_{3}^{2} + \mathbf{T}_{4}^{2}) \, (1 - i\pi) + \sum_{\substack{i=1,2\\j=3,4}} \, \mathbf{T}_{i} \cdot \mathbf{T}_{j} \, \ln \frac{(2p_{i} \cdot p_{j})^{2}}{M^{2}m^{2}} \right. \\ &+ 2 \, \mathbf{T}_{3} \cdot \mathbf{T}_{4} \left[\frac{1}{2v} \ln \left(\frac{1+v}{1-v} \right) - i\pi \left(\frac{1}{v} + 1 \right) \right] \right\} \quad . \quad v = \sqrt{1 - \frac{m^{4}}{(p_{3} \cdot p_{4})^{2}}} \end{split}$$

$$L_{34} = \ln\left(\frac{1+v}{1-v}\right) \ln\left(\frac{m_T^2}{m^2}\right) - 2\operatorname{Li}_2\left(\frac{2v}{1+v}\right) - \frac{1}{4}\ln^2\left(\frac{1+v}{1-v}\right) \qquad \text{Relative velocity} \\ + 2\left[\operatorname{Li}_2\left(1-\sqrt{\frac{1-v}{1+v}}\,e^{y_{34}}\right) + \operatorname{Li}_2\left(1-\sqrt{\frac{1-v}{1+v}}\,e^{-y_{34}}\right) + \frac{1}{2}y_{34}^2\right] \qquad y_{34} = y_3 - y_4$$

Extension to heavy-quark production

S.Catani, A.Torre, MG (2014)

$$(\mathbf{H}\,\boldsymbol{\Delta})_{c\bar{c}} = \frac{\langle \widetilde{\mathcal{M}}_{c\bar{c}\to Q\bar{Q}} \mid \boldsymbol{\Delta} \mid \widetilde{\mathcal{M}}_{c\bar{c}\to Q\bar{Q}} \rangle}{\alpha_{\mathrm{S}}^{2}(M^{2}) \mid \mathcal{M}_{c\bar{c}\to Q\bar{Q}}^{(0)}(p_{1}, p_{2}; p_{3}, p_{4}) \mid^{2}}$$

$$|\,\widetilde{\mathcal{M}}_{car{c}
ightarrow Qar{Q}}\,
angle$$

subtracted virtual amplitude

 $\Delta(\mathbf{b}, M; y_{34}, \phi_3) = \mathbf{V}^{\dagger}(b, M; y_{34}) \ \mathbf{D}(\alpha_{\mathrm{S}}(b_0^2/b^2); \phi_{3b}, y_{34}) \ \mathbf{V}(b, M; y_{34})$

$$\mathbf{V}(b, M; y_{34}) = \overline{P}_q \exp\left\{-\int_{b_0^2/b^2}^{M^2} \frac{dq^2}{q^2} \Gamma_t(\alpha_{\mathrm{S}}(q^2); y_{34})\right\} \qquad \alpha_{\mathrm{S}}^n L^m \text{ terms } n \ge m$$
soft anomalous dimension

 $\Gamma_t^{(1)}$ and $\Gamma_t^{(2)}$ directly related to singular structure of $|\mathcal{M}_{c\bar{c}\to Q\bar{Q}}\rangle$

Mitov, Sterman, Sung (2009) Neubert et al (2009)

 $\langle \mathbf{D}(\alpha_{\mathrm{S}}; \phi_{3b}, y_{34}) \rangle_{\mathrm{av.}} = 1$

 $\mathbf{D}(\alpha_{\mathrm{S}};\phi_{3b},y_{34})$

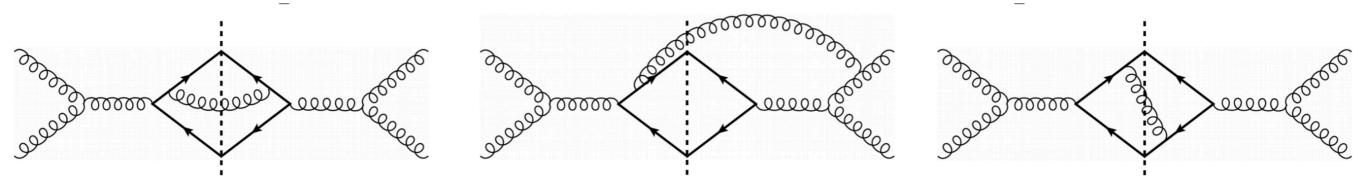
embodies azimuthal correlations at scale 1/b

Soft contributions at NLO

Catani, Torre, MG (2014)

We need to compute the integral of the subtracted soft current over the phase space of the unresolved gluon

 $\int d^d k \,\delta_+(k^2) \,e^{i\mathbf{b}\cdot\mathbf{k}_T} \,\mathbf{J}^2(k)|_{\mathrm{sub}}$

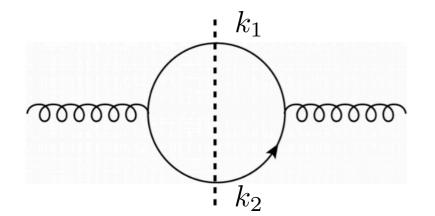


$$\widetilde{\mathbf{I}}_{c\bar{c}\to Q\bar{Q}}^{(1)}\left(\epsilon, \frac{M^2}{\mu_R^2}\right) = -\frac{1}{2}\left(\frac{M^2}{\mu_R^2}\right)^{-\epsilon} \left\{ \left(\frac{1}{\epsilon^2} + i\pi\frac{1}{\epsilon} - \frac{\pi^2}{12}\right) (\mathbf{T}_1^2 + \mathbf{T}_2^2) + \frac{2}{\epsilon}\gamma_c - \frac{4}{\epsilon} \mathbf{\Gamma}_t^{(1)}(y_{34}) + \mathbf{F}_t^{(1)}(y_{34}) \right\}$$

Singular structure from initial state radiation

Additional soft contribution obtained from integration of the subtracted soft current

1) Soft quark-antiquark pair



$$\mathbf{J}(k)|^{2} \longrightarrow \mathbf{J}_{\mu}(k_{1}+k_{2}) \Pi^{\mu\nu}(k_{1},k_{2}) \mathbf{J}_{\nu}(k_{1}+k_{2})$$
$$\Pi^{\mu\nu}(k_{1},k_{2}) = \frac{T_{R}}{(k_{1}\cdot k_{2})^{2}} \left(-g^{\mu\nu}k_{1}\cdot k_{2}+k_{1}^{\mu}k_{2}^{\nu}+k_{2}^{\mu}k_{1}^{\nu}\right)$$

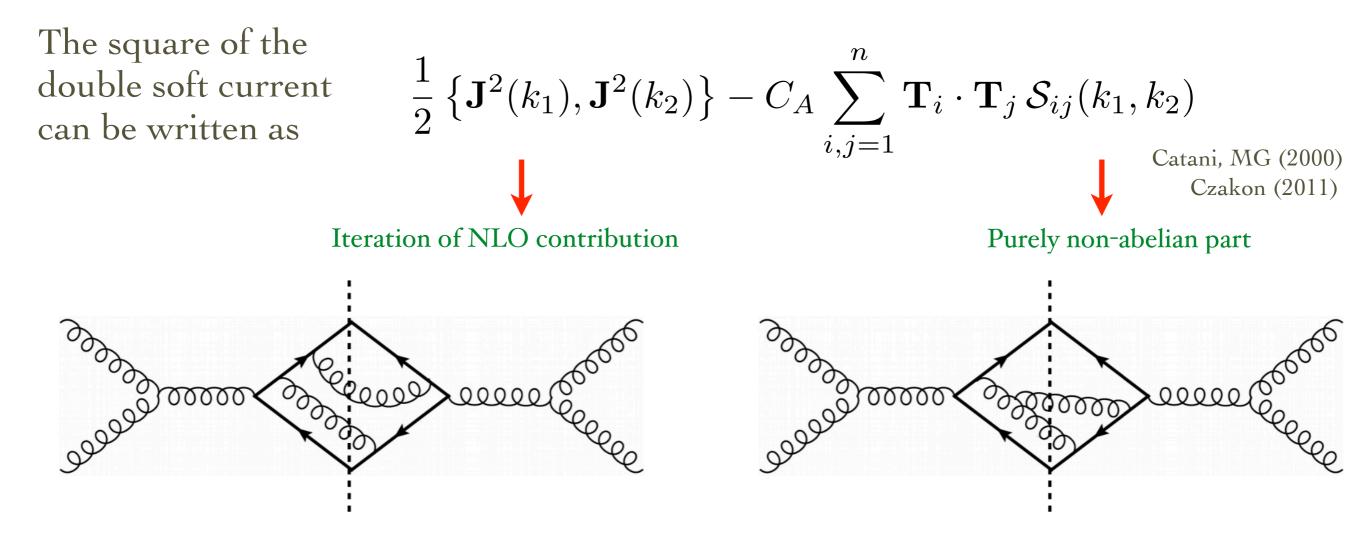
We integrate over k_1 and k_2 at fixed $k_1 + k_2$

$$\rightarrow \delta_+(k^2) \quad \text{replaced by} \quad \frac{F(\epsilon)}{(k^2)^{1+\epsilon}}$$

In practice we need to compute

$$\langle \int d^d k \, (k^2)^{-1-\epsilon} \, e^{i \mathbf{b} \cdot \mathbf{k}_T} \, \mathbf{J}(k)^2 |_{\mathrm{sub}} \rangle_{\hat{b}}$$

2) Two soft gluons



Some of the terms in $S_{ij}(k_1, k_2)$ can be treated like the quark-antiquark terms

$$\stackrel{\bullet}{\longrightarrow} \quad \tilde{\mathcal{S}}_{ij}(k_1, k_2) \to \tilde{\mathcal{S}}_{ij}(k_1, k_2) \quad \text{remaining terms} \\ \tilde{\mathcal{S}}_{ij}(k_1, k_2) = \tilde{\mathcal{S}}_{ij}^{m=0}(k_1, k_2) + \left(m_i^2 \, \tilde{\mathcal{S}}_{ij}^{m\neq 0}(k_1, k_2) + m_j^2 \, \tilde{\mathcal{S}}_{ji}^{m\neq 0}(k_1, k_2)\right)$$

2) Two soft gluons

Strategy: first integrate over k_1 and k_2 at fixed $k_1 + k_2$ in the CM frame of k

$$\int_{(12)} \tilde{\mathcal{S}}_{ij}^{m=0} = \frac{(k^2)^{-1-\epsilon} (p_i \cdot p_j)}{(p_i \cdot k) (p_j \cdot k)} \left[(1 + \vec{n}_i \cdot \vec{n}_j) \mathcal{A}_{11}^+ - 2 (1 - \vec{n}_i \cdot \vec{n}_j) \mathcal{A}_{11}^- + \mathcal{A}_{10} + \mathcal{A}_{01} \right]$$

$$\int_{(12)} \tilde{\mathcal{S}}_{ij}^{m \neq 0} = \frac{(k^2)^{-1-\epsilon}}{(p_j \cdot k)^2} \left[\left(1 - \vec{n}_i \cdot \vec{n}_j \right) \mathcal{A}_{11}^- - \left(1 + \vec{n}_i \cdot \vec{n}_j \right) \mathcal{A}_{11}^+ - \frac{1}{2} \mathcal{A}_{1,-1}^+ + 3\mathcal{A}_{10} - \frac{1}{2} \mathcal{A}_{00} \right]$$

Angular integrals defined as

$$\mathcal{A}_{i,j}^{\pm} = \int_0^{\pi} d\theta \int_0^{\pi} d\phi \frac{\sin^{n-3}\theta \sin^{n-4}\phi}{(1 - a_i \cos \theta)^i (1 \pm a_j \cos \chi \cos \theta \pm a_j \sin \chi \sin \theta \cos \phi)^j}$$
$$a_i = |\vec{n}_i| \qquad \cos \chi = \hat{n}_i \cdot \hat{n}_j \qquad \vec{n}_i = \vec{p}_i / E_i \quad \text{in CM frame of k}$$

$$\vec{n}_i^2 = 1 - \frac{k^2 m_i^2}{(p_i \cdot k)^2}, \qquad \vec{n}_j^2 = 1 - \frac{k^2 m_j^2}{(p_j \cdot k)^2}, \qquad \vec{n}_i \cdot \vec{n}_j = 1 - \frac{k^2 (p_i \cdot p_j)}{(p_i \cdot k)(p_j \cdot k)}$$

2) Two soft gluons

Then split the result in singular and regular part as $k^2 \rightarrow 0$

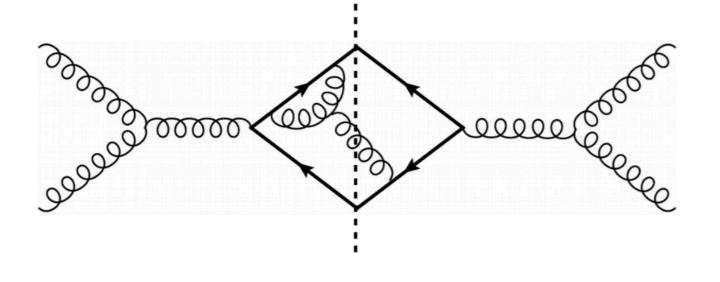
$$\int_{(12)} \tilde{\mathcal{S}}_{ij}^{m=0} = \frac{(k^2)^{-1-\epsilon}(p_i \cdot p_j)}{(p_i \cdot k)(p_j \cdot k)} \left\{ \frac{1}{\epsilon} \left[s(\vec{n}_i, \vec{n}_j) + \epsilon r(\vec{n}_i, \vec{n}_j) \right] \right\}$$

$$\text{Vanishing when } \mathbf{k}^2 \to \mathbf{0}$$

We managed to integrate analytically all singular and all regular parts except for S_{34} Results written in terms of MPL up to weight 4

Remaining contributions integrated numerically

3) Soft-gluon emission at one loop



- massless case

Catani, MG (2000)

- extension to massive emitters

Bierenbaum, Czakon, Mitov (2011) Czakon, Mitov (2018)

- simplified version

Bierenbaum, Czakon, Mitov (2011)

$$J^{(1)}_{\mu} J^{(0),\mu} + \text{c.c.} \sim \sum_{i,j} \mathbf{T}_i \cdot \mathbf{T}_j \sum_{n=-2}^{1} \epsilon^n R^{(n)}_{ij}$$

Explicit double poles in ε : we need up to $O(\varepsilon)$

All integrals computed analytically except for a subset of contributions to R34

1

Wbb

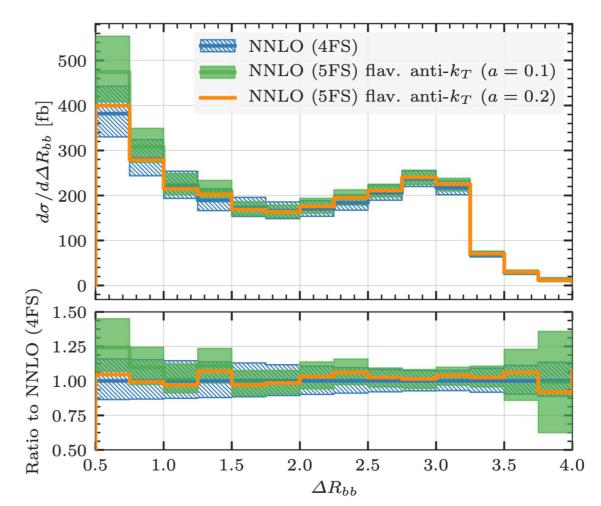
Buonocore, Devoto, Kallweit, Mazzitelli, Rottoli, Savoini (2023)

Massification procedure successfully applied to carry out first NNLO computation of Wbb with massive bottom quarks

order	$\sigma^{ m 4FS}[{ m fb}]$	$\sigma^{ m 5FS}_{a=0.05}[{ m fb}]$	$\sigma^{ m 5FS}_{a=0.1}~[{ m fb}]$	$\sigma^{ m 5FS}_{a=0.2}[{ m fb}]$
LO	$210.42(2)^{+21.4\%}_{-16.2\%}$	$262.52(10)^{+21.4\%}_{-16.1\%}$	$262.47(10)^{+21.4\%}_{-16.1\%}$	$261.71(10)^{+21.4\%}_{-16.1\%}$
NLO	$468.01(5)^{+17.8\%}_{-13.8\%}$	$500.9(8)^{+16.1\%}_{-12.8\%}$	$497.8(8)^{+16.0\%}_{-12.7\%}$	$486.3(8)^{+15.5\%}_{-12.5\%}$
NNLO	$649.9(1.6)^{+12.6\%}_{-11.0\%}$	$690(7)^{+10.9\%}_{-9.7\%}$	$677(7)^{+10.4\%}_{-9.4\%}$	$647(7)^{+9.5\%}_{-9.4\%}$

Using massive bottom quarks in the 4FS avoids ambiguities related to the use of flavoured jet algorithms

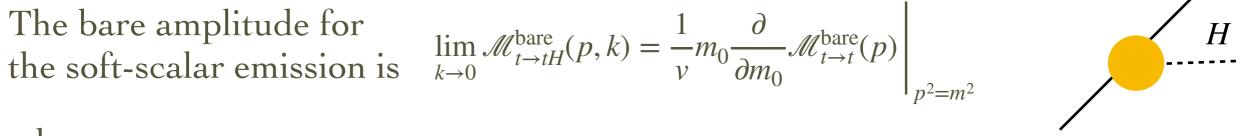
Comparison against the massless computation (using flavoured anti- k_T algorithm) shows overall good agreement within uncertainties



Soft-Higgs radiation

The basic observation is that at the bare amplitude level we have $\lim_{k \to 0} \mathcal{M}^{\text{bare}}(\{p_i\}, k) = \frac{m_0}{v} \sum_{i} \frac{m_0}{p_i \cdot k} \mathcal{M}^{\text{bare}}(\{p_i\})$

The renormalisation of the heavy-quark mass and wave-function induce a modification of the Higgs coupling to the heavy quark



where

$$\mathscr{M}_{t \to t}^{\text{bare}}(p,k) = \overline{t}_0(p) \left(-m_{t,0} - \Sigma(p)\right) t_0(p)$$

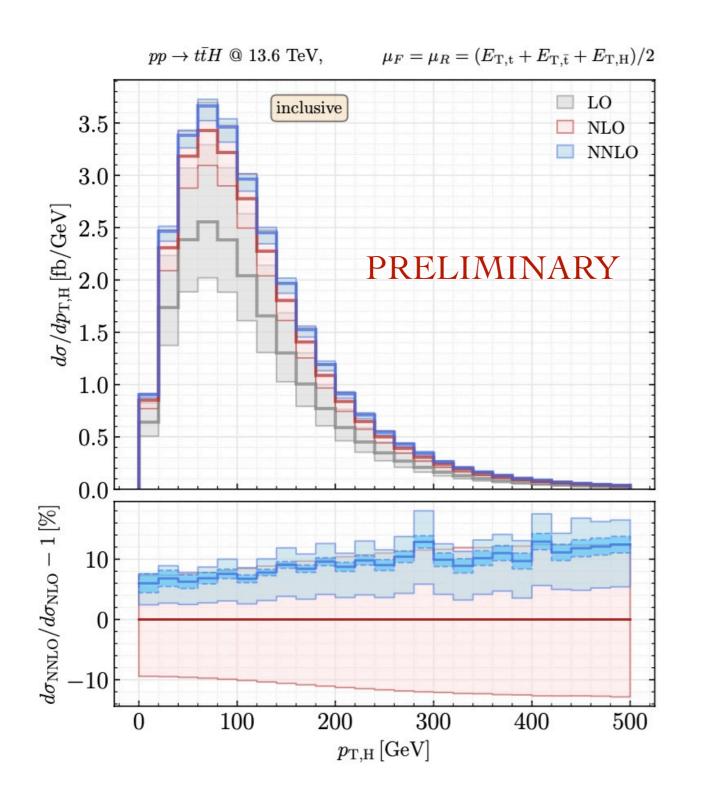
Broadhurst, Gray, Schilcher (1991) Gray, Broadhurst, Grafe, Schilcher (1990)

By using the results of the $O(\alpha_S^2)$ contribution to the Gray, Broadhurst heavy-quark self energy $\Sigma(p)$ and carrying out the wave function and mass renormalisation we recover the function $F(\alpha_S(\mu_R); m/\mu_R)$ discussed before

Check at $\mathcal{O}(\alpha_S^3)$ in progress

Fael, Lange, Schönwald, Steinhauser (2022,2023) Chetyrkin, Kniehl, Steinhauser (1997) Melnikov, Ritbergen (2000)

Higgs p_T spectrum



Uncertainties from soft-approximation over the Higgs p_T spectrum remain of the same order (a similar uncertainty is obtained by using μ_{IR} variations)

At first sight this is counterintuitive since at large $p_{T,H}$ the soft approximation is expected to become worse !

However at large $p_{T,H}$ the role of the *gg* channel is reduced and the $q\bar{q}$ channel, which is under better control, plays the major role

Differences with other approaches

The idea of a treating the Higgs as a parton radiating off the top quark was used already in the past

Effective Higgs approximation in early NLO calculations: introduce a function expressing the probability to extract the Higgs boson from the top quark

Dawson and Reina (1997)

Fragmentation functions $D_{t \to H}$ and $D_{g \to H}$ evaluated at NLO

Brancaccio, Czakon, Gerenet, Krämer (2021)

These approaches are based on a **collinear** approximation

Our approximation is **purely soft** (collinear non-soft emissions are neglected but soft quantum interferences are included)

Moreover, we apply it only to the finite part of the two-loop contribution

