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Introduction (1)

 Multi-loop amplitudes are core ingredients in higher-order 
calculations (see Andreas von Manteuffel’s talk)

 The last decade has seen huge progress in calculating 
these amplitudes at 2+ loops for multi-leg processes

 As we pursue ever more ambitious calculations, the 
computational difficulty grows very quickly

 More powerful and sophisticated techniques are vital for 
tackling these calculations

 Focus of this talk: the rational functions appearing in multi-
loop amplitudes. 
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Introduction (2)

 Calculation of large rational functions is a central 
bottleneck in multi-loop amplitude computations

 In recent years, finite-field numeric methods have widely 
been employed to calculate multi-loop amplitudes and 
IBPs

 In parallel, it has been observed that symbolic expressions 
can be significantly simplified by partial fractioning

 This talk: can we reconstruct directly in partial-fractioned 
form?
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Why numerical (finite-field) 
reconstruction methods?

 Long-used in computer algebra (e.g. Mathematica), now also used in physics
 e.g. [1406.4513 – Manteuffel, Schabinger], [1608.01902 – Peraro]

 Has enabled calculation of many new multi-loop multi-scale amplitudes

 Core idea: perform repeated numerical calculations and then interpolate result
 Bypasses large intermediate expressions

 Generic feature of symbolic calculations (not specific to physics)

 Use finite-field numbers instead of real numbers. (advantage: exact results)

 Most computing time is spent evaluating the numerical probes
 Number of probes is determined by the polynomial degrees of the 

expressions in the final result

 Reconstruct analytical results using interpolation and Chinese remainder theorem

 Various libraries e.g. FireFly, FiniteFlow
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https://arxiv.org/abs/1406.4513
https://arxiv.org/abs/1608.01902


A typical multi-loop toolbox

6

Lagrangian 
Feynman 
diagrams

Loop integrals

Master 
integrals

Special 
functions
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Integration By 
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Differential 
equations

Sample Sample 
numerically numerically 

and then and then 
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Partial fractioning

 Widespread use in recent years to simplify final (and intermediate) results of 
heavy calculations

 Popular libraries: Singular, MultivariateApart

 Example throughout this talk: the largest rational function in the (2nd-)largest 
IBP expression needed for 2-loop 5-point massless non-planar QCD 
amplitudes

 Analytic expression courtesy of authors (Agarwal, Buccioni, von Manteuffel, Tancredi) of [2105.04585]

 Partial-fractioned form is O(100) times smaller than common-
denominator form

 ~600 MB vs ~5 MB

 ~1,400,000 free parameters vs ~14,000 free parameters

 This talk: from numeric evaluations, reconstruct such expressions directly in 
partial-fractioned form
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Why reconstruct in partial-
fractioned form?

 Surprise: the 125-times simplification doesn't occur if, prior to 
partial fractioning, we randomise the numerical coefficients in 
the numerator of common-denominator form

 Therefore, simplification comes from physics, not computer 
algebra

 Can we exploit this?

 Yes, if we can reconstruct directly into partial-fractioned form

 Can we (fully) explain this?

 We will reconstruct piece-by-piece

 Added benefit: partial-fractioned terms have further structure, 
which we can spot - and (future work) exploit - on the fly
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A brief history of p-adic 
numbers

 Described/explored by Kurt Hensel in 1897

 Widely used in computer algebra for several decades

 Finding rational solutions to various types of equations

 Reconstruct a rational number from its p-adic expansion

 Appearance in particle physics too!

 p-adic / adelic quantum mechanics / string theory [since '80s/'90s]

 Ansatze for amplitudes [De Laurentis & Page, 2022]

 Constrained ansatze in common-denominator form, to then be fitted 
with standard finite-field methods

 This talk: interpolate rational functions directly in partial-fractioned 
form, from p-adic evaluations.
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Brief intro to p-adic
numbers

 p-adic numbers Qp are an alternative completion of the rationals Q

 Alternative absolute value: |(a * pn / b)|p = 1/pn , where p is prime and a,b,p 
are coprime

 For each prime p, a separate field Qp

 Nice results, e.g. Hasse’s local-global principle: certain equations have 
solutions in Q iff they have solutions in R and in each Qp

 Can expand any rational number x as a power series in p

 e.g. 80 = 3 + 4*7 + 1*72 

 e.g.  -1 = 6 + 6*7 + 6*72 + 6*73 + O(74)

 e.g. (2 / 21) = 3*7-1 + 2 + 2*7 + 2*72 + 2*73 + O(74)

 If x is integer then the coefficient of p0 is (x mod p)

 Expansion operation commutes with all arithmetical operations + * - /

12Herschel A. Chawdhry (University of Oxford)       p-adically interpolating rational functions          GGI workshop 2023          30/8/2023

Image by Heiko Knospe: th-koeln.de



Outline

1. Introduction

1. Why numerical reconstruction?

2. Why partial-fractioned form?

3. p-adic numbers

2. Details of interpolation strategy

3. Results

4. Conclusion

13Herschel A. Chawdhry (University of Oxford)       p-adically interpolating rational functions          GGI workshop 2023          30/8/2023



Strategy for interpolation
1. Assume denominator (in common-denominator form) is known, 

and factorised.

2. Make list of “candidates”: all possible subsets of the 
denominator factors

3. Use p-adic probes to filter the candidates

4. Use more p-adic probes to reconstruct numerator of a 
candidate

5. Repeat steps 3 and 4

 Gives more information that just doing step 3 once.

 See also [De Laurentis, Maitre, 1904.04067], which uses high-precision 
floating-point to calculate gggggg @ 1L. Also see [Campbell et al., 
2203.17170]
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 Select a subset of denominator factors (ignoring powers)

 Generate a p-adic point that makes each of those factors become p-
adically small (possibly with weights)

 e.g. {s12, s12-s23, s34} ~ {O(p2), O(p), O(p)}

 Evaluate the rational function at that p-adic point, and note the order 
of its "p-adic pole"

 e.g. rational function ~ O(1/p4)

 Note: small primes suffice, e.g. p=101

 For safety, repeat with ~2-3 more points, keeping same weights. 
(Preferably change p each time)

 Filter out any candidate factors whose p-adic pole is too strong
 e.g. 1/[s12

2 * (s12 - s23) * s34] ~ O(1/p5) at the above point

P-adic filtering
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P-adic reconstruction
 Select a subset of denominator factors (ignoring powers) and weights

 e.g. {s12, s12-s23, s34} ~ {O(p2), O(p), O(p)}

 Identify all candidates that could generate highest pole.
 Conjecture: with correct strategy, can always ensure there is only one candidate!

 e.g. [unknown numerator] / [s12 * (s12 – s23)3 * s34]

 Write down ansatz for numerator of that candidate
 Typically 1-50 free parameters

 As we'll see, numerators of partial-fractioned terms often turn out to be simpler than naïve 
expectation. Future work: smarter ansatz.

 For fixed p, generate several points that give the p-adic weights chosen above
 Evaluate the rational function at those points.

 Coefficient of leading pole = ansatz mod p

 Interpolate ansatz, mod p
 Repeat for other choices of p

 In this work, typically used ~5 primes of O(100)

 Use Chinese Remainder Theorem (+rational reconstruction) to reconstruct ansatz in Q
 Must do this before proceeding to other candidates
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Choice of probe weights

 Simple choice: exponential weights

 Naively, might expect to need large powers to uniquely pick out one partial-
fractioned term.

 e.g. if singularity degrees are known to be bounded to be below 10, we can set 
(s12, s23, s34) ~ (p100, p10, p). Then if the rational function diverges there like 
1/p273, we know we have picked out the term 1/(s12

2 s23
7 s34)

 But this strategy would require evaluating to very high p-adic precision.

 Smart choice: low weights

 Choose a limited set of small weights

 e.g. (s12, s23, s34) ~ (p,p2,p) or (p,p,p)

 Repeatedly cycle through this set, trying to find a probe point that picks out a 
single candidate partial-fractioned term.

 In this work, used ~6k probe points, with each kinematic weight always <5.

 Heuristically, seems to work
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A complication: relations / 
bases

 There are relations between partial-fractioned candidate terms
e.g.

 Choice of basis:
 Basis in MultivariateApart / Leinartas’s decomposition

 Chosen depending on a specified variable ordering

 Avoids introducing new spurious factors, but can still introduce spurious 
higher powers of existing factors

 Unique basis -> allows vectorised addition in symbolic calculations

 Basis in this work: prioritises avoiding introducing spurious higher 
powers 

 Basis customised to given rational function, so that no partial-fractioned 
term has stronger divergence than the overall function

 Further study needed to see which basis choices are “best”
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Results

 Reconstructed largest rational function in
(2nd-)largest IBP expression needed for all 
non-planar 2-loop 5-point massless QCD 
amplitudes.

 Number of free parameters: 52.5k (vs 1.37M in 
common-denominator form)

 Scope for further improvement: notice that out 
of the 52.5k, only 15.4k are non-zero

 Number of numerical probes: see later slide
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Results – preliminary

Representation Terms Size 
(ByteCount)

Free 
parameters

Cost

Common 
denominator form
(with denominator factorised, and 
numerator fully expanded)

1 605 MB 1.37M 1.37M finite-field 
probes per prime 
field

P-adic 
reconstruction
(this work)
(with each numerator fully expanded)

2.8k 5.5 MB 52.5k
(of which 15.4k 
turn out to be 
non-zero)

#p-adic probes: 
see next slide

MultivariateApart
(with default settings)

2.5k 4.7 MB 14.7k Input must 
already be 
analytically 
known
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Number of p-adic probes

 (preliminary) Number of p-adic probes during this calculation

 Filtering: ~6k probes per p-adic field (but fewer probes 
would probably suffice)

 Reconstruction: ~60k probes per p-adic field
 But can greatly reduce this by recycling probes

 e.g. probes with (s23, s34) ~ (p2, p1) can be used to 
reconstruct 1/(s23

3s34
3) but also 1/(s23

3s34
2),

1/(s23
2 s34

3), 1/(s23
 s34), etc

 Number of p-adic fields used: typically 5, e.g. Q101, Q103, 
Q107, Q109, Q113
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A closer look at the 
reconstructed result

 Recall that we must reconstruct only 52.5k coefficients (compared to 1.3M in 
common-denominator form). Of these 52.5k, find that only 15.4k are non-zero.

 e.g. some p-adically reconstructed terms:

                                                                (Notice: only terms ~ t51
5 are non-zero)

 Furthermore, these pieces can be combined to become: 

 Future work: exploit this to further simplify/speed up?
 Does this simplicity appear only at the highest poles?
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Further technical details: some 
options for performing p-adic 
probes

 One option: work directly with power-series in p up to some chosen p-adic order.

 Possible loss of precision during probe (albeit better controlled than in 
floating-point real numbers)

 Another option: evaluate at integer points which happen to match the desired p-
adic series at the desired p-adic order, then re-expand result as series in p

 No loss of precision at intermediate stages of calculation

 Size of integer probe result scales linearly with number of digits, and so with 
p-adic order

 Can use finite fields to perform integer probes
 The size of the finite field does not need to match the p of the p-adic field

 e.g. use 64-bit finite fields to evaluate at an integer point that is special 
when viewed in Q101 
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Summary and Outlook

 Method for p-adic reconstruction of rational functions directly in 
partial-fractioned form

 Demonstrated by reconstructing the largest rational function in largest IBP 
coefficient needed for non-planar 2-loop 5-point massless QCD amplitudes.

 Harnesses the major simplification of rational functions under partial 
fractioning

 This comes from physics, not from computer algebra

 (preliminary) Requires fewer numerical evaluations

 Produces simpler expressions

 Promising tool for exploring even further simplification.
 Seek sufficient analytic understanding of the source of this 

simplification, so that it can be used to further improve 
speed/reach/elegance of future calculations
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