European Research Council

p-adic reconstruction of rational functions in multi-loop amplitude calculations

Herschel A. Chawdhry
University of Oxford
Workshop at GGI, Florence, Italy:
"Theory Challenges in the Precision Era of the LHC"
Wednesday 30th August 2023

Introduction (1)

- Multi-loop amplitudes are core ingredients in higher-order calculations (see Andreas von Manteuffel's talk)
- The last decade has seen huge progress in calculating these amplitudes at 2+ loops for multi-leg processes
- As we pursue ever more ambitious calculations, the computational difficulty grows very quickly
- More powerful and sophisticated techniques are vital for tackling these calculations
- Focus of this talk: the rational functions appearing in multiloop amplitudes.

Introduction (2)

- Calculation of large rational functions is a central bottleneck in multi-loop amplitude computations
- In recent years, finite-field numeric methods have widely been employed to calculate multi-loop amplitudes and IBPs
- In parallel, it has been observed that symbolic expressions can be significantly simplified by partial fractioning

This talk: can we reconstruct directly in partial-fractioned form?

Outline

1. Introduction
2. Why numerical reconstruction?
3. Why partial-fractioned form?
4. p-adic numbers
5. Details of interpolation strategy
6. Results
7. Conclusion

Why numerical (finite-field) reconstruction methods?

- Long-used in computer algebra (e.g. Mathematica), now also used in physics
- e.g. [1406.4513 - Manteuffel, Schabinger], [1608.01902 - Peraro]
- Has enabled calculation of many new multi-loop multi-scale amplitudes
- Core idea: perform repeated numerical calculations and then interpolate result
- Bypasses large intermediate expressions
- Generic feature of symbolic calculations (not specific to physics)
- Use finite-field numbers instead of real numbers. (advantage: exact results)
- Most computing time is spent evaluating the numerical probes
- Number of probes is determined by the polynomial degrees of the expressions in the final result
- Reconstruct analytical results using interpolation and Chinese remainder theorem
- Various libraries e.g. FireFly, FiniteFlow

A typical multi-loop toolbox

Outline

1. Introduction
2. Why numerical reconstruction?
3. Why partial-fractioned form?
4. p-adic numbers
5. Details of interpolation strategy
6. Results
7. Conclusion

Partial fractioning

- Widespread use in recent years to simplify final (and intermediate) results of heavy calculations
- Popular libraries: Singular, MultivariateApart
- Example throughout this talk: the largest rational function in the ($2^{\text {nd }}$) Iargest IBP expression needed for 2-loop 5-point massless non-planar QCD amplitudes
- Analytic expression courtesy of authors (Agarwal, Buccioni, von Manteuffel, Tancredi) of [2105.04555]
- Partial-fractioned form is $\mathrm{O}(100)$ times smaller than commondenominator form
- $\sim 600 \mathrm{MB}$ vs $\sim 5 \mathrm{MB}$
- ~1,400,000 free parameters vs $\sim 14,000$ free parameters
- This talk: from numeric evaluations, reconstruct such expressions directly in partial-fractioned form

Why reconstruct in partialfractioned form?

- Surprise: the 125-times simplification doesn't occur if, prior to partial fractioning, we randomise the numerical coefficients in the numerator of common-denominator form
- Therefore, simplification comes from physics, not computer algebra
- Can we exploit this?
- Yes, if we can reconstruct directly into partial-fractioned form
- Can we (fully) explain this?
- We will reconstruct piece-by-piece
- Added benefit: partial-fractioned terms have further structure, which we can spot - and (future work) exploit - on the fly

Outline

1. Introduction
2. Why numerical reconstruction?
3. Why partial-fractioned form?
4. p-adic numbers
5. Details of interpolation strategy
6. Results
7. Conclusion

A brief history of p-adic numbers

- Described/explored by Kurt Hensel in 1897
- Widely used in computer algebra for several decades
- Finding rational solutions to various types of equations
- Reconstruct a rational number from its p-adic expansion
- Appearance in particle physics too!
- p-adic / adelic quantum mechanics / string theory [since '80s/'90s]
- Ansatze for amplitudes [De Laurentis \& Page, 2022]
- Constrained ansatze in common-denominator form, to then be fitted with standard finite-field methods
- This talk: interpolate rational functions directly in partial-fractioned form, from p -adic evaluations.

Brief intro to p-adic numbers

- p-adic numbers Q_{p} are an alternative completion of the rationals Q
- Alternative absolute value: $\left|\left(a^{*} p^{n} / b\right)\right|_{p}=1 / p^{n}$, where p is prime and a, b, p are coprime
- For each prime p, a separate field Q_{p}
- Nice results, e.g. Hasse's local-global principle: certain equations have solutions in Q iff they have solutions in R and in each Q_{p}
- Can expand any rational number x as a power series in p
- e.g. $80=3+4 * 7+1 * 7^{2}$
$>$ e.g. $-1=6+6 * 7+6 * 7^{2}+6 * 7^{3}+O\left(7^{4}\right)$
- e.g. $(2 / 21)=3 * 7^{-1}+2+2 * 7+2^{*} 7^{2}+2^{* 73}+O\left(7^{4}\right)$
- If x is integer then the coefficient of p^{0} is $(x \bmod p)$
- Expansion operation commutes with all arithmetical operations $+*$ - /

Outline

1. Introduction
2. Why numerical reconstruction?
3. Why partial-fractioned form?
4. p-adic numbers
5. Details of interpolation strategy
6. Results
7. Conclusion

Strategy for interpolation

1. Assume denominator (in common-denominator form) is known, and factorised.
2. Make list of "candidates": all possible subsets of the denominator factors
3. Use p-adic probes to filter the candidates
4. Use more p-adic probes to reconstruct numerator of a candidate
5. Repeat steps 3 and 4

- Gives more information that just doing step 3 once.
- See also [De Laurentis, Maitre, 1904.04067], which uses high-precision floating-point to calculate gggggg @ 1L. Also see [Campbell et al., 2203.17170]

Example of some reconstructed pieces:

$$
\begin{aligned}
& \frac{-\frac{693}{400} \mathrm{t} 23^{2} \mathrm{t} 51^{5}-\frac{693}{200} \mathrm{t} 23 \mathrm{t} 51^{5} \times 12-\frac{693 \mathrm{t} 51^{5} \times 12^{2}}{400}}{(-7+2 \mathrm{~d}) \mathrm{t} 45^{3}(\mathrm{t} 34-\mathrm{t} 51-\mathrm{x} 12)^{3}}+ \\
& \frac{-\frac{28}{225} \mathrm{t} 23^{2} \mathrm{t} 51^{5}-\frac{56}{225} \mathrm{t} 23 \mathrm{t} 51^{5} \times 12-\frac{28 \mathrm{t} 51^{5} \times 12^{2}}{225}}{(-8+3 \mathrm{~d}) \mathrm{t} 45^{3}(\mathrm{t} 34-\mathrm{t} 51-\times 12)^{3}}+\frac{-\frac{1}{144} \mathrm{t} 23^{2} \mathrm{t} 51^{5}-\frac{1}{72} \mathrm{t} 23 \mathrm{t} 51^{5} \times 12-\frac{\mathrm{t} 51^{5} \times 12^{2}}{144}}{\mathrm{t} 45^{3}(\mathrm{t} 34-\mathrm{t} 51-\times 12)^{3}}+ \\
& \frac{\frac{3 \mathrm{t} 23^{2} \mathrm{t} 51^{5}}{1400}+\frac{3}{700} \mathrm{t} 23 \mathrm{t} 51^{5} \times 12+\frac{3 \mathrm{t} 51^{5} \times 12^{2}}{1400}}{(-1+d) t 45^{3}(\mathrm{t} 34-\mathrm{t} 51-\times 12)^{3}}+\frac{\frac{160 \mathrm{t} 23^{2} \mathrm{t} 51^{5}}{63}+\frac{320}{63} \mathrm{t} 23 \mathrm{t} 51^{5} \times 12+\frac{160 \mathrm{t51} 5^{5} \times 12^{2}}{63}}{(-10+3 \mathrm{~d}) \mathrm{t} 45^{3}(\mathrm{t} 34-\mathrm{t} 51-\times 12)^{3}}
\end{aligned}
$$

P-adic filtering

- Select a subset of denominator factors (ignoring powers)
- Generate a p-adic point that makes each of those factors become p adically small (possibly with weights)
\Rightarrow e.g. $\left\{\mathrm{s}_{12}, \mathrm{~S}_{12}-\mathrm{S}_{23}, \mathrm{~s}_{34}\right\} \sim\left\{\mathrm{O}\left(\mathrm{p}^{2}\right), \mathrm{O}(p), \mathrm{O}(p)\right\}$
- Evaluate the rational function at that p-adic point, and note the order of its "p-adic pole"
- e.g. rational function $\sim O\left(1 / p^{4}\right)$
- Note: small primes suffice, e.g. $p=101$
- For safety, repeat with $\sim 2-3$ more points, keeping same weights. (Preferably change p each time)
- Filter out any candidate factors whose p -adic pole is too strong
${ }^{\text {e.g. }} 1 /\left[s_{12}{ }^{2} *\left(s_{12}-s_{23}\right) * s_{34}\right] \sim O\left(1 / p^{5}\right)$ at the above point

P-adic reconstruction

- Select a subset of denominator factors (ignoring powers) and weights
- e.g. $\left\{\mathrm{s}_{12}, \mathrm{~s}_{12}-\mathrm{s}_{23}, \mathrm{~s}_{34}\right\} \sim\left\{\mathrm{O}\left(p^{2}\right), \mathrm{O}(p), \mathrm{O}(p)\right\}$
- Identify all candidates that could generate highest pole.
- Conjecture: with correct strategy, can always ensure there is only one candidate!
- e.g. [unknown numerator] / [s $\mathrm{s}_{12} *\left(\mathrm{~s}_{12}-\mathrm{s}_{23}\right)^{3} * \mathrm{~s}_{34}$]
- Write down ansatz for numerator of that candidate
- Typically 1-50 free parameters
- As we'll see, numerators of partial-fractioned terms often turn out to be simpler than naïve expectation. Future work: smarter ansatz.
$>$ For fixed p, generate several points that give the p-adic weights chosen above
- Evaluate the rational function at those points.
- Coefficient of leading pole $=a n s a t z \bmod p$
- Interpolate ansatz, mod p
- Repeat for other choices of p
- In this work, typically used ~ 5 primes of O (100)
- Use Chinese Remainder Theorem (+rational reconstruction) to reconstruct ansatz in Q
- Must do this before proceeding to other candidates

Choice of probe weights

- Simple choice: exponential weights
- Naively, might expect to need large powers to uniquely pick out one partialfractioned term.
- e.g. if singularity degrees are known to be bounded to be below 10, we can set $\left(s_{12}, s_{23}, s_{34}\right) \sim\left(p^{100}, p^{10}, p\right)$. Then if the rational function diverges there like $1 / p^{273}$, we know we have picked out the term $1 /\left(s_{12^{2}} \mathrm{~S}_{23}{ }^{7} \mathrm{~S}_{34}\right)$
- But this strategy would require evaluating to very high p-adic precision.
- Smart choice: low weights
- Choose a limited set of small weights
$>$ e.g. $\left(s_{12}, s_{23}, s_{34}\right) \sim\left(p, p^{2}, p\right)$ or (p,p,p)
- Repeatedly cycle through this set, trying to find a probe point that picks out a single candidate partial-fractioned term.
- In this work, used $\sim 6 \mathrm{k}$ probe points, with each kinematic weight always <5.
- Heuristically, seems to work

A complication: relations / bases

- There are relations between partial-fractioned candidate terms e.g. $\frac{1}{x^{2} y}-\frac{1}{x^{2}(x+y)}-\frac{1}{x y(x+y)}=0$
- Choice of basis:
- Basis in MultivariateApart / Leinartas's decomposition
- Chosen depending on a specified variable ordering
- Avoids introducing new spurious factors, but can still introduce spurious higher powers of existing factors
- Unique basis -> allows vectorised addition in symbolic calculations
- Basis in this work: prioritises avoiding introducing spurious higher powers
- Basis customised to given rational function, so that no partial-fractioned term has stronger divergence than the overall function
- Further study needed to see which basis choices are "best"

Outline

1. Introduction
2. Why numerical reconstruction?
3. Why partial-fractioned form?
4. p-adic numbers
5. Details of interpolation strategy
6. Results
7. Conclusion

Results

Reconstructed largest rational function in ($2^{\text {nd }}$) largest IBP expression needed for all non-planar 2-loop 5-point massless QCD amplitudes.
Number of free parameters: 52.5k (vs 1.37M in common-denominator form)

- Scope for further improvement: notice that out of the 52.5 k , only 15.4 k are non-zero
Number of numerical probes: see later slide

Results - preliminary

Representation	Terms	Size (ByteCount)	Free parameters	Cost
Common denominator form (with denominator factorised, and numerator fully expanded)	1	605 MB	1.37 M	1.37M finite-field probes per prime field
P-adic reconstruction (this work)	2.8 k	5.5 MB	52.5 k (of which 15.4k turn out to be non-zero)	\#p-adic probes: see next slide
(with each numerator fully expanded)				
MultivariateApart (with defaut setings)	2.5 k	4.7 MB	14.7 k	Input must already be analytically known

Number of p-adic probes

(preliminary) Number of p -adic probes during this calculation

- Filtering: ~6k probes per p-adic field (but fewer probes would probably suffice)
- Reconstruction: ~60k probes per p-adic field
- But can greatly reduce this by recycling probes
${ }^{\square}$ e.g. probes with $\left(s_{23}, s_{34}\right) \sim\left(p^{2}, p^{1}\right)$ can be used to reconstruct $1 /\left(\mathrm{s}_{23}{ }^{3} \mathrm{~S}_{34}{ }^{3}\right)$ but also $1 /\left(\mathrm{s}_{23}{ }^{3} \mathrm{~S}_{34}{ }^{2}\right)$, $1 /\left(\mathrm{S}_{23}{ }^{2} \mathrm{~S}_{34}{ }^{3}\right), 1 /\left(\mathrm{S}_{23} \mathrm{~S}_{34}\right)$, etc
- Number of p-adic fields used: typically 5, e.g. $\mathrm{Q}_{101}, \mathrm{Q}_{103}$, $\mathrm{Q}_{107}, \mathrm{Q}_{109}, \mathrm{Q}_{113}$

A closer look at the reconstructed result

- Recall that we must reconstruct only 52.5 k coefficients (compared to 1.3 M in common-denominator form). Of these 52.5k, find that only 15.4 k are non-zero.
- e.g. some p-adically reconstructed terms:

$$
\begin{aligned}
& \frac{-\frac{693}{400} \mathrm{t} 23^{2} \mathrm{t} 51^{5}-\frac{693}{200} \mathrm{t} 23 \mathrm{t} 51^{5} \times 12-\frac{693 \mathrm{t51}^{5} \times 12^{2}}{400}}{(-7+2 \mathrm{~d}) \mathrm{t} 45^{3}(\mathrm{t} 34-\mathrm{t} 51-\mathrm{x} 12)^{3}}+ \\
& \frac{-\frac{28}{225} \mathrm{t} 23^{2} \mathrm{t} 51^{5}-\frac{56}{225} \mathrm{t} 23 \mathrm{t} 51^{5} \times 12-\frac{28 \mathrm{t51}^{5} \times 12^{2}}{225}}{(-8+3 \mathrm{~d}) \mathrm{t} 45^{3}(\mathrm{t} 34-\mathrm{t} 51-\times 12)^{3}}+\frac{-\frac{1}{144} \mathrm{t} 23^{2} \mathrm{t} 51^{5}-\frac{1}{72} \mathrm{t} 23 \mathrm{t} 51^{5} \times 12-\frac{\mathrm{t} 51^{5} \times 12^{2}}{144}}{\mathrm{t} 45^{3}(\mathrm{t} 34-\mathrm{t} 51-\mathrm{x} 12)^{3}}+ \\
& \frac{\frac{3 \mathrm{t} 23^{2} \mathrm{t} 51^{5}}{1400}+\frac{3}{700} \mathrm{t} 23 \mathrm{t} 51^{5} \times 12+\frac{3 \mathrm{t515} \times 12^{2}}{1400}}{(-1+\mathrm{d}) \mathrm{t} 45^{3}(\mathrm{t} 34-\mathrm{t} 51-\mathrm{x} 12)^{3}}+\frac{\frac{160 \mathrm{t} 23^{2} \mathrm{t} 51^{5}}{63}+\frac{320}{63} \mathrm{t} 23 \mathrm{t} 51^{5} \times 12+\frac{160 \mathrm{t} 51^{5} \times 12^{2}}{63}}{(-10+3 \mathrm{~d}) \mathrm{t} 45^{3}(\mathrm{t} 34-\mathrm{t} 51-\mathrm{x} 12)^{3}}
\end{aligned}
$$

- Furthermore, these pieces can be combined to become:

$$
-\frac{(-2+d)^{2} d(2+d) t 51^{5}(t 23+x 12)^{2}}{8(-1+d)(-7+2 d)(-10+3 d)(-8+3 d) t 45^{3}(t 34-t 51-x 12)^{3}}
$$

- Future work: exploit this to further simplify/speed up?

Does this simplicity appear only at the highest poles?

Further technical details: some options for performing p-adic probes

- One option: work directly with power-series in p up to some chosen p-adic order.
- Possible loss of precision during probe (albeit better controlled than in floating-point real numbers)
- Another option: evaluate at integer points which happen to match the desired padic series at the desired p-adic order, then re-expand result as series in p
- No loss of precision at intermediate stages of calculation
- Size of integer probe result scales linearly with number of digits, and so with p -adic order
- Can use finite fields to perform integer probes
- The size of the finite field does not need to match the p of the p-adic field
- e.g. use 64-bit finite fields to evaluate at an integer point that is special when viewed in Q_{101}

Outline

1. Introduction
2. Why numerical reconstruction?
3. Why partial-fractioned form?
4. p-adic numbers
5. Details of interpolation strategy
6. Results
7. Conclusion

Summary and Outlook

- Method for p-adic reconstruction of rational functions directly in partial-fractioned form
- Demonstrated by reconstructing the largest rational function in largest IBP coefficient needed for non-planar 2-loop 5-point massless QCD amplitudes.
- Harnesses the major simplification of rational functions under partial fractioning
- This comes from physics, not from computer algebra
- (preliminary) Requires fewer numerical evaluations
- Produces simpler expressions
- Promising tool for exploring even further simplification.
- Seek sufficient analytic understanding of the source of this simplification, so that it can be used to further improve speed/reach/elegance of future calculations

