Light-flavor parton distributions for new physics searches

Sven-Olaf Moch

Universität Hamburg

Based on work done in collaboration with:

- Exploring SMEFT Couplings Using the Forward-Backward Asymmetry in Neutral Current Drell-Yan Production at the LHC
 A. Anataichuk, O. Zenaiev, S. M., et. al. work in progress
- Impact of SeaQuest data on PDF fits at large x
 S. Alekhin, M.V. Garzelli, S. Kulagin and S. M. arXiv:2306.01918
- Z'-boson dilepton searches and the high-x quark density
 J. Fiaschi, F. Giuli, F. Hautmann, S. M. and S. Moretti arXiv:2211.06188
- NLO PDFs from the ABMP16 fit
 S. Alekhin, J. Blümlein and S. M. arXiv:1803.07537
- Strange sea determination from collider data
 S. Alekhin, J. Blümlein and S. M. arXiv:1708.01067
- Parton distribution functions, α_s, and heavy-quark masses for LHC Run II
 S. Alekhin, J. Blümlein, S. M. and R. Plačakytė arxiv:1701.05838
- Many more papers of ABM and friends ...
 2008 ...

QCD factorization

- Factorization at scale μ
 - separation of sensitivity to dynamics from long and short distances
- Hard parton cross section $\hat{\sigma}_{ij \to X}$ calculable in perturbation theory
 - cross section $\hat{\sigma}_{ij \to k}$ for parton types i, j and hadronic final state X
- Non-perturbative parameters: parton distribution functions f_i , strong coupling α_s , particle masses m_X
 - known from global fits to exp. data, lattice computations, ...

Hard scattering cross section

- Parton cross section $\hat{\sigma}_{ij \rightarrow k}$ calculable pertubatively in powers of α_s
 - known to NLO, NNLO, $\dots (\mathcal{O}(\text{few}\%)$ theory uncertainty)

- Accuracy of perturbative predictions
 - LO (leading order)
 - NLO (next-to-leading order)
 - NNLO (next-to-next-to-leading order)
 - N³LO (next-to-next-to-next-to-leading order)

 $(\mathcal{O}(50 - 100\%) \text{ unc.})$ $(\mathcal{O}(10 - 30\%) \text{ unc.})$ $(\lesssim \mathcal{O}(10\%) \text{ unc.})$

Parton luminosity

Long distance dynamics due to proton structure

Cross section depends on parton distributions *f_i*

$$\sigma_{pp \to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \left[\dots \right]$$

- Parton distributions known from global fits to exp. data
 - available fits accurate to NNLO
 - information on proton structure depends on kinematic coverage

Parton kinematics at LHC

Information on proton structure depends on kinematic coverage

- LHC run at $\sqrt{s} = 7/8 \text{ TeV} (\sqrt{s} = 13 \text{ TeV})$
 - parton kinematics well covered by HERA and fixed target experiments
- Parton kinematics with $x_{1,2} = M/\sqrt{S} e^{\pm y}$
 - forward rapidities sensitive to small-x
- Cross section depends on convolution of parton distributions
 - small-x part of f_i and large-x PDFs f_j

$$\sigma_{pp\to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \left[\dots\right]$$

Data in global PDF fits (I)

Data sets considered in ABMP16 analysis

Alekhin, Blümlein, S.M., Placakyte '17

• Analysis of world data for deep-inelastic scattering, fixed-target data for Drell-Yan process and collider data (W^{\pm} -, Z-bosons, top-quarks)

- inclusive DIS data HERA, BCDMS, NMC, SLAC (NDP = 2155)
- semi-inclusive DIS charm-, bottom-quark data HERA (NDP = 81)
- Drell-Yan data (fixed target) E-605, E-866 (NDP = 158)
- neutrino-nucleon DIS (di-muon data) CCFR/NuTeV, CHORUS, NOMAD

(NDP = 232)

- W^{\pm} -, Z-boson production data D0, ATLAS, CMS, LHCb (NDP = 172)
- Inclusive top-quark hadro-production CDF&D0, ATLAS, CMS

(NDP = 24)

Iterative cycle of PDF fits

- i) check of compatibility of new data set with available world data
- ii) study of potential constraints due to addition of new data set to fit
- iii) perform high precision measurement of PDFs, strong coupling $\alpha_s(M_Z)$ and heavy quark masses m_c , m_b , m_t ,

Data in global PDF fits (II)

DY data in ABMP16 analysis

- High precision experimental data from LHC ATLAS, CMS, LHCb and Tevatron
 D0 useful for determinations of parton distributions
 - statistically significant NDP = 172 in ABMP16
- Differential distributions in decay leption pseudo-rapidity extend kinematics to forward region
 - sensitivity to light quark flavors at $x \simeq 10^{-4}$
 - leading order kinematics with:

 $\sigma(W^+) \simeq u(x_2)\overline{d}(x_1)$ and $\sigma(W^-) \simeq d(x_2)\overline{u}(x_1)$;

 $\sigma(Z) \simeq Q_u^2 u(x_2) \bar{u}(x_1) + Q_d^2 d(x_2) \bar{d}(x_1)$

• cf. DIS: $\sigma(\text{DIS}) \simeq q_u^2 u(x) + q_d^2 d(x)$

ABMP16 PDF ansatz

- PDFs parameterization at scale $\mu_0 = 3 \text{GeV}$ in scheme with $n_f = 3$ Alekhin, Blümlein, S.M., Placakyte '17
 - ansatz for valence-/sea-quarks, gluon

$$\begin{aligned} xq_v(x,\mu_0^2) &= \frac{2\delta_{qu} + \delta_{qd}}{N_q^v} x^{a_q} (1-x)^{b_q} x^{P_{qv}(x)} \\ xq_s(x,\mu_0^2) &= x\bar{q}_s(x,\mu_0^2) = A_{qs} (1-x)^{b_{qs}} x^{a_{qs}P_{qs}(x)} \\ xg(x,\mu_0^2) &= A_g x^{a_g} (1-x)^{b_g} x^{a_g} P_{g(x)} \end{aligned}$$

- strange quark is taken in charge-symmetric form
- function $P_p(x) = (1 + \gamma_{-1,p} \ln x) (1 + \gamma_{1,p} x + \gamma_{2,p} x^2 + \gamma_{3,p} x^3)$,
- 29 parameters in fit including $\alpha_s^{(n_f=3)}(\mu_0=3 \text{ GeV}), m_c, m_b$ and m_t
- simultaneous fit of higher twist parameters (twist-4)
- Ansatz provides sufficient flexibility; no additional terms required to improve the quality of fit
- Large x part of all PDFs $\sim (1-x)^b$, where $b_{u_v} = 3.443 \pm 0.064$, $b_{d_v} = 4.47 \pm 0.55$, $b_{u_s} = 7.75 \pm 0.39$, $b_{d_s} = 8.41 \pm 0.34$, ...

Seaquest experiment

- Fermilab E-906/SeaQuest experiment is part of series of fixed target DY experiments
- Measurements of proton beam on deuterium target
- Invariant mass of observed γ^* decay products fixed to approximately $M_{\gamma^*} \sim 5 \text{ GeV}$

Seaquest parton kinematics

• Coverage of (x_1, x_2) plane by SeaQuest

Alekhin, Garzelli, Kulagin, S.M. '23

- DY data sets used in ABMP16 PDF fits extending to high (x)
 - Fermilab fixed-target experiment E866, E605
 - LHCb Z-boson rapidity distribution
 - D0 charged-lepton rapidity distribution

Light flavor PDFs from Seaquest data

- 1σ bands for sea distributions in PDF fit with Seaquest data compared to ABMP16 fit
 ABMP16 fit
 Alekhin, Garzelli, Kulagin, S.M. '23
 - left: $n_f = 3$ -flavor isospin asymmetry $x(\overline{d} \overline{u})(x)$
 - right: ratio $\overline{d}/\overline{u}$ as a function of x

\bar{d}/\bar{u} ratio from SeaQuest

- 1σ bands for $\overline{d}/\overline{u}$ ratio at scale $\mu^2 = 25.5 \text{ GeV}^2$ with comparison to SeaQuest extraction Alekhin, Garzelli, Kulagin, S.M. '23
 - SeaQuest data has been included in NNPDF4.0 NNLO PDF fit

Cross section ratio

- Pulls for SeaQuest data on ratio of pd and pp DY distributions over $x_F = P_L/P_{L,\max}$
 - theory predictions with code VRAP Anastasiou, Dixon, Melnikov, Petriello '03 and NNLO ABMP16 PDFs
- Comparison to different PDFs
 - NLO ABMP16 PDFs, NLO CJ15, NNLO MSHT20, NNLO NNPDF4.0, NNLO epWZ16 (based on SU(3)-symmetric quark sea model)

Deuteron nuclear corrections

- Valence quark PDFs $R_{
 m val} = u_{
 m val/d}/(u_{
 m val/p} + u_{
 m val/n})$
- Antiquark PDFs $R_{\text{sea}} = \overline{u}_d / (\overline{u}_p + \overline{u}_n)$
- DY cross sections $R_{\rm DY} = \sigma_{pd}/(\sigma_{pp} + \sigma_{pn})$
 - plot with lower horizontal axis over $x_F = P_L/P_{L,\max}$, upper horizontal axis over x values of deuteron target (x_2)
- Nuclear effects in deuteron are small $\mathcal{O}(1\%)$ Alekhin, Garzelli, Kulagin, S.M. '23

New physics searches

Searches at high scales

- Explore TeV region for deviations from Standard Model predictions
- Different theory approaches
 - parametrization of cross sections within the Standard Model as effective theory (SMEFT)

$$\mathcal{L} = \mathcal{L}^{(SM)} + \frac{1}{\Lambda^2} \sum_{j=1}^{N_6} C_j^{(6)} \mathcal{O}_j^{(6)},$$

- direct searches, e.g. new Z'-gauge boson
- Theory predictions depended on parton kinematics at high x
 - PDF uncertainty at high x can easily dominate overall error budget
 - estimates beyond measured kinematic range needed

Z-boson production at high invariant mass

• ABMP16 NNLO PDFs, but large x part of u and d modified

- parametrization $\sim (1-x)^b$ with variation of exponent $b \pm 0.3$ and 0.5 (recall $b \sim 3...8$) \longrightarrow ABMP16var
- keep vanishing $ar{d}/ar{u}$ as x
 ightarrow 1
- Differential cross section for Z-boson production in M_{ll} at LHC with $\sqrt{s} = 13.6 \text{ TeV}$
 - left: results for all ABMP16var members
 - right: comparison with results from standard PDF sets

Predictions for models with Z'-boson

• Differential cross section in M_{ll} at LHC with $\sqrt{s} = 13.6$ TeV for a series of single Z' benchmark models using ABMP16var PDFs

- left: results for $M_{Z'} = 6$ TeV, $\Gamma_{Z'}/M_{Z'} = 1\%$
- right:results for $M_{Z'} = 4$ TeV, $\Gamma_{Z'}/M_{Z'} = 20\%$

Forward-backward asymmetry

Forward-backward asymmetry A^{*}_{FB}

$$A_{\rm FB}^* = \frac{d\sigma/(dM_{\ell\ell}dy_{\ell\ell})[\cos\theta^* > 0] - d\sigma/(dM_{\ell\ell}dy_{\ell\ell})[\cos\theta^* < 0]}{d\sigma/(dM_{\ell\ell}dy_{\ell\ell})[\cos\theta^* > 0] + d\sigma/(dM_{\ell\ell}dy_{\ell\ell})[\cos\theta^* < 0]}.$$

• Asymmetry $A_{\rm FB}^*$ in M_{ll} at LHC with $\sqrt{s} = 13.6 \, {\rm TeV}$

- Ieft: results for all ABMP16var members
- right: comparison with results from standard PDF sets

Predictions for models with Z'-boson

• Asymmetry A_{FB}^* in M_{ll} at LHC with $\sqrt{s} = 13.6$ TeV for a series of single Z' benchmark models using ABMP16var PDFs

- left: results for $M_{Z'} = 6$ TeV, $\Gamma_{Z'}/M_{Z'} = 1\%$
- right:results for $M_{Z'} = 4$ TeV, $\Gamma_{Z'}/M_{Z'} = 20\%$

$A_{\rm FB}^*$ at high invariant mass

- Explaining the A_{FB}^* prediction by NNPDF4.0
- Recall leading order kinematics $\sigma(Z) \simeq Q_u^2 u(x_2) \bar{u}(x_1) + Q_d^2 d(x_2) \bar{d}(x_1)$
- Define slope of light quark PDFs $f_q(x, \mu^2) \sim (1-x)^{b_q}$

$$\beta_q(x) = \frac{\partial |x f_q(x, \mu^2)|}{\partial \ln(1-x)}$$

- positive A_{FB} require light flavor sea PDFs (\overline{u} and \overline{d}) to fall off faster at large-x than valence quarks (u and d)
- $\beta_{\bar{u}}(x) > \beta_u(x)$ and $\beta_{\bar{d}}(x) > \beta_d(x)$ for all values of x

Light quark PDFs at high x

• Plot of $\beta_u(x)$, $\beta_{\bar{u}}(x)$ (similar situation for d flavor PDF)

Ball, Candido, Forte, Hekhorn, Nocera, Rojo, Schwan '22

- large variation of high x exponent for sea quark PDFs for NNPDF4.0
- no predictive power for new physics searches

Outlook

Strategies for experimantal analyses

- New physics searches in TeV region need to minimize/cancel PDF depedence
 - data driven approaches
 - ratios with parton kinematics in control region, e.g. $M_{ll} \lesssim 1 \text{ TeV}$
- Extension of study from single Z' benchmark models to SMEFT Anataichuk, Zenaiev, S. M., et. al.
 - fits to data within XFitter framework
- Account for constraints on light flavor PDFs from other sources
 - lattice QCD

Lattice results (I)

• Recall $q(x) = q_{val}(x) + q_{sea}(x)$, $\bar{q}(x) = \bar{q}_{sea}(x)$

• n^{th} moment of the $q^{\pm}\equiv q\pm \bar{q}$ distribution at scale $Q^2=4~{
m GeV}^2$

 $\langle x^{n-1}(Q^2) \rangle_{q^{\pm}} = \int_0^1 dx x^{n-1} [q(x,Q^2)(\pm)^n \bar{q}(x,Q^2)].$

PDF fit	$\langle x \rangle_{u^+}$	$\langle x \rangle_{d^+}$	$\langle x \rangle_{u^+ - d^+}$
ABMP16 + SeaQuest NLO	0.3523 ± 0.0010	0.1813 ± 0.0023	0.1711 ± 0.0029
ABMP16 + SeaQuest NNLO	0.3535 ± 0.0026	0.1858 ± 0.0028	0.1677 ± 0.0036
ABMP16 NLO	0.3522 ± 0.0026	0.1814 ± 0.0027	0.1708 ± 0.0036
ABMP16 NNLO	0.3532 ± 0.0027	0.1858 ± 0.0029	0.1673 ± 0.0037
NNPDF4.0 NNLO	0.3468 ± 0.0026	0.1934 ± 0.0032	0.1533 ± 0.0041
CT18 NNLO	$0.3498 {}^{+0.0078}_{-0.0085}$	$0.1934 {}^{+0.0083}_{-0.0103}$	$0.1564 \begin{array}{c} +0.0123 \\ -0.0120 \end{array}$
MSHT20 NNLO	$0.3471 {}^{+0.0048}_{-0.0048}$	$0.1923 \begin{array}{c} +0.0046 \\ -0.0060 \end{array}$	$0.1548 \substack{+0.0062 \\ -0.0056}$
CJ15 NLO	$0.3480 \begin{array}{c} +0.0009 \\ -0.0012 \end{array}$	$0.1962 \ {}^{+0.0015}_{-0.0014}$	$0.1518 \substack{+0.0019 \\ -0.0024}$
epWZ16 NNLO	$0.3628 \substack{+0.0027 \\ -0.0028}$	$0.1741 {}^{+0.0047}_{-0.0039}$	$0.1887 {}^{+0.0041}_{-0.0050}$
lattice computation			
χ QCD18 ($n_f = 2 + 1$)	$0.307 \pm 0.030 \pm 0.018$	$0.160 \pm 0.027 \pm 0.040$	$0.151 \pm 0.028 \pm 0.029$
RQCD18 ($n_f = 2$)	-	-	$0.195 \pm 0.007 \pm 0.015$
ETMC20 ($n_f = 2 + 1 + 1$)	0.359 ± 0.030	0.188 ± 0.019	0.171 ± 0.018
PNDME20 ($n_f = 2 + 1 + 1$)	-	-	$0.173 \pm 0.014 \pm 0.007$
NME20 ($n_f = 2 + 1$)	-	-	$0.155 \pm 0.017 \pm 0.020$
Mainz21 $(n_f = 2 + 1)$	-	-	0.139 ± 0.018 (stat)

Lattice results (II)

- Second Mellin moments of isovector combination $(u^+ d^+)(x)$ and their uncertainties
 - comparison of several PDF fits and lattice QCD
 - vertical band denotes ABMP16 NNLO fit

Summary

- DY data from LHC and from fixed target experiments allow for good control of light flavor content in proton at high x
- Very good precision of experimental data leads to residual uncertainties in percent range in measured region
 - new Seaquest data compatible with u and d PDFs in ABMP16
- High x parton kinematics is important region for new physics searches
 - A_{FB} for Z-boson in the TeV range
- Dedicated analysis for new physics searches to control and reduce PDF uncertainities
- Future input on moments of PDFs from lattice QCD welcome