"Power Corrections" for High Precision Event Generators

Davide Napoletano, GGI Workshop '23

Ministero dell'Università e della Ricerca

Introduction

• MC community devoted to describe

• The strength of MC generators lies in factorisation of energy regimes!

This makes it possible to separately improve each of the "components"!

Introduction

•To do this at NLO need subtraction of IR divergences!

[Catani-Seymour, FKS,...]

•At NNLO many methods, none implemented in general purpose tools... [Antenna, ColorFull, Slicing, Analitic...]

•Still, fixed order description misses something...

This has been the core focus of developments in MC over the last
years i.e. how to include higher fixed order correction!

Parton Shower

•Still need to run down to the GeV scale

Parton Shower

•Still need to run down to the GeV scale

A MODEL FOR PARTON SHOWERS IN QCD*

Geoffrey C. FOX and Stephen WOLFRAM¹

California Institute of Technology, Pasadena, California 91125, USA

Received 27 December 1979

A Monte Carlo model for the development of parton jets in QCD is described. Explicit low-order calculations are supplemented by leading logarithmic approximations for higher orders.

•Various implementation with various degrees of technical details

Accuracy of perturbative ingredients unchanged since the 90s

•Various implementation with various degrees of technical details

•Accuracy of perturbative ingredients unchanged for 20 or so years

•Pythia/Ariadne, Vincia, Herwig, Dire, CSS...

New generation showers

•LO splittings and CMW scheme not enough, be careful of t or recoil (PanScales, Alaric, Deductor, Herwig, Amplitude Evolution)

•Merging multiple multiplicities with Sudakov vetoes [CKKW-L, FxFx]

•Matching higher order calculations with standard showers already non-trivial (NN(N)LO + PS) -> what about even higher order showers?

- •Merging multiple multiplicities with Sudakov vetoes
- •Matching higher order calculations with standard showers already

[CKKW-L, FxFx]

non-trivial (NN(N)LO + PS) -> what about even higher order showers?

•Take e^+e^- , look at a global observable

•Take e^+e^- , look at a global observable

•The shower description is still not enough...

•We still need to parametrise what happens between 1GeV -> $\Lambda_{\rm QCD}$

Tuning!

[Strings, Clusters…]

•We still need to parametrise what happens between 1GeV -> $\Lambda_{\rm QCD}$

Tuning!

Really universal? Perturbative/NP?

[Strings, Clusters…]

•So far this amounts to replacing splitting functions and kinematics

•Clear interplay of scales...

Quark Masses

•Evolution of heavy quarks, take $\gamma^* - > qqQQ$, the matrix element reads

$$\frac{\mathrm{d}\sigma}{\sigma_0} \propto \frac{\mathrm{d}K_{\perp}^2}{K_{\perp}^2} \cdots$$

•If we take the QQ as if emitted from an off shell gluon

$$rac{\mathrm{d}\sigma}{\sigma_0} \propto rac{\mathrm{d}k_\perp^2}{k_\perp^2} \cdots$$
 However, the foll

[Seymour, Nuclear Physics B 436 (1995) 163-183]

lowing holds:

$$K_{\perp}^{2} = k_{\perp}^{2} + \left(1 - \frac{k_{\perp}}{\sqrt{s}} e^{-y}\right) m_{g}^{2} \sim k_{\perp}^{2} + m_{g}^{2}$$

•Evolution of heavy quarks, take $\gamma^* - > qqQQ$, the matrix element reads

$$\frac{\mathrm{d}\sigma}{\sigma_0} \propto \frac{\mathrm{d}K_{\perp}^2}{K_{\perp}^2} \cdots$$

•If we take the QQ as if emitted from an off shell gluon

$$\frac{\mathrm{d}\sigma}{\sigma_0} \propto \frac{\mathrm{d}K_{\perp}^2}{K_{\perp}^2 - m_g^2} \cdots$$

=> Cannot simply plug massive splitting functions!

•(The total integral is unaffected, but distributions do differ !)

Quark masses

$$d\sigma_{\rm NNLO} = \Delta [d\sigma_{\rm RV}^{\rm div}] + \dots = \left[\frac{\alpha_s(\mu)}{2\pi}\right]^2 \frac{2C_A C_F \pi^2}{\epsilon} \left[\frac{1}{2v} \ln\left(\frac{1-v}{1+v}\right) + 1\right] \left(\frac{1-v}{v}\right) d\sigma_{\rm LO} + \dots,$$

•(But retaining the full mass is necessary e.g. if an intrinsic charm is assumed)

•Absent at NNLO if ma or mb = 0

•Most GPMCG come equipped with some form of EW corrections, fixed order, or in the Sudakov approximation

•Still some work to do on fully fledged EW showers, EW final states?

•At high enough energies $Q^2 \gg m_W^2$

•Same issues as for the massive quarks!