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Motivation

SIMONE ALIOLI  -  TORINO 16/12/2022

Motivation

I The increasing experimental precision of LHC measurements challenges
existing generators, pushing the request for higher accuracy

I The state-of-the-art is the inclusion of NNLO corrections into
parton-shower Monte Carlo

I Three main approach to the problem:

UNNLOPS
MiNNLOPS GENEVA

Simone Alioli | GENEVA | Oxford 27/5/2021 | page 3 Also NNLO+PS  with sector showers available  for e+e−
[Campbell et al. 2108.07133]



‣ Monte Carlo fully-differential 
event generation at higher-
orders (NNLO)

The Geneva method

‣ Resummation plays a key role 
in the defining the events in a 
physically sensible way

‣ Results at partonic 
level can be further 
evolved by different 
shower matching and 
hadronization models
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way of overcoming the problem is to adjust the free parameters of the smooth cone isolation

algorithm to reproduce the e↵ects of the fixed cone procedure so that a comparison is at

least feasible. A second viable possibility, which has been recently investigated in [10, 44],

is the introduction of a hybrid cone isolation procedure which is very similar in spirit to

the smooth cone isolation. In this case the theoretical calculation is initially carried out

using the smooth cone isolation with a small radius parameter Riso such that only a tiny

slice of phase space around the photon direction is removed. As second step, the fixed cone

isolation procedure with a larger radius R � Riso is applied to the events which passed

the smooth cone criterion. In other words one initially applies very loose smooth cone

isolation cuts which are then tightened by the fixed cone procedure. In this paper we use

both the smooth cone and the hybrid isolation procedures. The first method is used for the

comparison to the results obtained with the MATRIX code [26] in subsection 4.3, while the

second isolation requirement is instead used for the comparison to the LHC data in section

5. The precise values of the isolation parameters, the selection cuts and the set of parton

distribution functions (PDF) which are employed in our calculations will be specified in

the sections below.

3 Resummation in Soft-Collinear E↵ective Theory

The N -jettiness [25] resolution variable is used within the Geneva framework to discrimi-

nate between resolved emissions with di↵erent jet multiplicities. Given anM -particle phase

space point �M with M � N , it is defined as

TN (�M ) =
X

k

min
�
q̂a · pk, q̂b · pk, q̂1 · pk, . . . , q̂N · pk

 
, (3.1)

where the sum over k runs over all QCD partons and where q̂i = ni = (1,~ni) are light-like

reference vectors parallel to the beam and jet directions. The limit TN ! 0 describes a

N -jet event, where the unresolved emissions can either be soft or collinear to the final state

jets or to the beams. This observation translates into a factorization formula [23] for the

TN spectrum in this limit. In the case of color singlet final state processes (such as Drell-

Yan, HV , diphoton production,. . . ) the relevant resolution variable which is resummed to

NNLL0 accuracy is the 0-jettiness (beam thrust). Starting from the general definition in

(3.1), the expression for 0-jettiness is considerably simplified [25]

T0 =
X

k

|~pkT | e
�|⌘k�Y | , (3.2)

where |~pkT | and ⌘k are the transverse momentum and the rapidity of the emission pk. The

0-jettiness cross section for small T0 obeys a factorization formula which has been derived

in [23, 24] originally for Drell-Yan, but it holds for any final state color singlet production

process

d�SCET

d�0dT0
=
X

ij

H��

ij
(Q2, t, µ)

Z
dta dtbBi(ta, xa, µ)Bj(tb, xb, µ)S

✓
T0 �

ta + tb
Q

,µ

◆
, (3.3)
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[Stewart, Tackmann,Waalewijn `09,`10] 

Resolution parameters for N extra emissions

‣ The key idea is the introduction of a resolution variable  that measure the hardness of the 
-th emission in the  phase space. 


‣ For color singlet production one can have ,  , ,…. 


‣ N-jettiness is a valid resolution variable: given an M-particle phase space point with 


‣ The limit        describes a N-jet event where the unresolved emissions  are collinear to 
the final state jets/initial state beams or soft


‣ For color-singlet final states, it reduces  to 0-jettiness


‣ When an extra jet is present 1-jettiness used for   

rN
N + 1 ΦN

r0 = qT p j
T kT-ness

M ≥ N

τN → 0

r1

N-jettiness as jet-resolution variable

I N-jettiness is a good resolution parameter. Global physical observable
with straightforward definitions for hadronic colliders, in terms of beams qa,b

and jet-directions qj

TN =
2

Q

X

k

min
�

q1 · pk, . . . , qN · pk

 
) TN =

2

Q

X

k

min
�

qa · pk, qb · pk, q1 · pk, . . . , qN · pk
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I N-jettiness has good factorization properties, IR safe and resummable at
all orders. Resummation known at NNLL for any N in SCET [Stewart et al. 1004.2489,

1102.4344]I TN ! 0 for N pencil-like jets, TN � 0 spherical limit.
I TN < T cut

N limits the activity outside the jets
Simone Alioli | GENEVA | DESY 3/6/2021 | page 6
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Partitioning phase space with resolution cuts

The logarithms of the resolution parameters grow larger

and larger. They need to be resummed to give a physically-sensible 

description.  This takes care of their IR divergencies.

Generated events must have integrated cross section LO   accurate 

and the full N+2-body kinematics must be retained.


2

dσ
dΦ2

(r0 > rcut
0 , r1 > rcut

1 ) = r0 > rcut
0

r1 > rcut
1

NNLO example : start with two widely separated emission.

Can be described well with LO  matrix elements.

What happens when emissions start growing closer and closer ?

2
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Partitioning phase space with resolution cuts

dσ
dΦ1

(rcut
1 ) = {

r0 > rcut
0

r0 > rcut
0

r0 > rcut
0

r1 < rcut
1

When one emission becomes unresolved  must be resummed.  


Integrated quantities  require NLO  accuracy via local subtraction  .


 differential information below  is lost during projection to .


No difference for preserved quantities, in general can be made a power correction in .

Mapping that preserves  singular behavior is required for correct event definition.

rcut
1

1
dΦ2

dΦ1
θ(r1 < rcut

1 )

Φ2 rcut
1 Φ1

rcut
1

r0

r1 = 0

r1 = 0dΦ1 = dΦ0dr0dzdφ

Next: one hard and 
one unresolved 

SIMONE ALIOLI  -  GGI 31/8/2023



V

Partitioning phase space with resolution cuts

dσ
dΦ0

(rcut
0 ) = {

r0 < rcut
0

r0 < rcut
0

r0 < rcut
0

r0 = 0

r0 = 0

r0 = 0

r1 < rcut
1

 Zero jet bin must have 

NNLO  integrated accuracy.

N-jettiness subtraction used.


The resummation of both  

and  ensures physically 
sensible xsec and IR-finite 
events.  

0

rcut
0

rcut
1

Last: two unresolved 
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Resumming resolutions parameters not really a new idea, SMCs do it since the ‘80s with 
Sudakov factors


The key difference is that using the proper resummation at higher orders has several  
benefits:  systematically improvable (NLL,NNLL,N3LL,…), lowering theoretical uncertainty at 
each step. Including primed accuracy captures the exact singular behaviour at .


The higher the accuracy the lower the cuts can be pushed without risking missing higher 
logarithms being numerically relevant. The lower the cuts the smaller the nonsingular 
power corrections due to phase-space projections will affect the results differentially.


δ(rN)

For NNLO event generation 
one needs at least NNLL’  + 

NNLO accuracy to control 
the full  singular 
contributions. 

r0

α2
s gg → HH

LHC 13 TeV

Resummation of resolution parameters
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Resummed formulae need to be made 
more differential via splitting functions, 
capturing the singular behaviour of 
different resolution variables as best as 
they can.


Final GENEVA partonic formulae 
combine resummation and matching to 
fixed-order 


From resummation to event generation

SIMONE ALIOLI  -  GGI 31/8/2023

�300

�200

�100

0

100

d
�

/
d
T 0

[p
b
/
G

e
V

]

pp ! H + X

Geneva NNLO+NNLL�
�

S = 13 TeV rEFT

fixed order
singular � Pimpr

singular � Porig

10
�2

10
�1

1 10 10
2

T0 [GeV]

�4

�2

0

2

4

6

d
�

N
S

/
d
T 0

[p
b
/
G

e
V

]

nonsingular (Pimpr)

nonsingular (Porig)

�1500

�1250

�1000

�750

�500

�250

0

d
�

/
d
p

H T
[p

b
/
G

e
V

]

pp ! H + X

Geneva NNLO+NNLL�
�

S = 13 TeV rEFT

fixed order
singular � Pimpr

singular � Porig

10
�1

1 10 10
2

p
H

T
[GeV]

�200

�150

�100

�50

0

50

100

150

d
�

N
S

/
d
p

H T
[p

b
/
G

e
V

]

nonsingular (Pimpr)

nonsingular (Porig)

Figure 2: Comparison of the fixed-order, singular, and nonsingular distributions at

NNLO+NNLL0, both for T0 (left) and pH
T

(right). We show the singular and nonsin-

gular distributions both for the original and improved versions of the splitting function

implementation in Geneva.

mic behaviour of the NLO1 result, as it appears to miss a single logarithmic contribution

⇠ 1/pH
T
. This is implied by the fact that the improved nonsingular contribution converges

to a nonzero constant at low values of pH
T
. This must however be compared with the orig-

inal approach, Porig, where the divergent behaviour of the nonsingular plot suggests that

that implementation also fails to capture the logarithmic structure up to ⇠ ln2(pH
T
)/pH

T
.

We examine the e↵ects of the Pimpr implementation on the Drell-Yan process in App. A,

where we compare di↵erent Geneva results with the ATLAS experimental data.

3.2 Independent scale variations

In traditional implementations of fixed-order QCD calculations, a di↵erentiation is made

between the factorisation scale µF and the renormalisation scale µR. The former is associ-

ated with the scale of collinear factorisation, while the latter is introduced in dimensional

regularisation in order to render the strong coupling dimensionless.

To date, implementations of Geneva have assumed these scales to be equal. Doing

so facilitated the matching to the resummed calculation, where a sole “nonsingular” scale

µNS appears as the endpoint of the RGE running, typically taken to be a hard scale Q of

the problem. The two scales were then varied in a correlated fashion (“diagonal” in the

{µR, µF } space) when probing the higher order uncertainties. This approach, however,

can hinder a complete and thorough uncertainty estimation as it neglects those variations

– 15 –



Interface with the parton shower

 measures the  hardness of the 
N+1-th emission


‣ If shower ordered in , start from 
largest value allowed by N-jettiness


‣ Let the shower evolve unconstrained.

‣ At the end veto an event if after                  

shower emissions   
 and 

retry the whole shower.

𝒯N(ΦN+1)

kT

𝒯N(ΦN+M) > 𝒯N(ΦN + 1)

M ≥ 1

0-jet and 1-jet bins are treated differently: starting scale is resolution cutoff.

  Ensures  the relevant phase space is correctly covered to avoid spoiling the 
resummation accuracy for  and the shower accuracy for other observables.𝒯

 Method rather independent from shower used: PYTHIA8, DIRE & SHERPA.

z
=

1

ln
T

c N
ln

k ?
(T

c N
)

Ve
to

Resummation

Shower

ln
Q

ln 1
µ

𝒯N+M−1(ΦN+M) ≤ 𝒯N+M−2(ΦN+M) ≤ … ≤ 𝒯N(ΦN+M)
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Implemented processes

Method has been tested and validated with several color singlet production processes:

 DY, ZZ, , VH, , ggH, ggHH, Higgs decays using both zero-jettiness and 


  


Wγ γγ qT
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Using the jet pT as resolution variable
GENEVA recently extended to jet veto resummation in [Gavardi et al. 2308.11577]. 


Factorization most easily derived for cumulant of the cross-section. SCET II problem.

Numerical derivative to get the spectrum. For hardest-jet we have

  


Two loop Beam and Soft functions recently computed in [Abreu  et al. 2207.07037, 2204.02987]


Focus on  with jet veto, in 4-flavor scheme to avoid top contaminations.  

Massless two-loop hard function taken from qqVVamp [Gehrmann et al.  1503.04812]


Interface to SCETlib  [Tackmann et al.] allows to perform also resummation also for pT of the 
second jet at the cumulant level. Refactorization of soft sector into global soft, soft-coll and 
nonglobal contributions [Cal et al.]

W+W− → μ+νμe−ν̄e

SIMONE ALIOLI  -  GGI 31/8/2023
[Banfi et al. hep-ph/0206076]



Resumming second jet resolution at NLL’ in GENEVA
Extension of the GENEVA approach to include resummation of  to NLL’ accuracyrcut1

SIMONE ALIOLI  -  GGI 31/8/2023

NLL’ accuracy of the second jet only maintained 
in presence of an hard first jet. 


Resummation formula not able to handle the 
 hierarchy, double resummation 

required there.  
r0 ∼ r1 ≪ μH

Now truly capturing the correct 
nonsingular behaviour when 
approaching the single-jet limit
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 Validation of WW production
We include the resummation of the  
channel at NNLL’ and the  channel 
at NLL


Jet veto resummation available in 
MCFM up to partial N3LL accuracy. 
Different treatment of uncertanties.

qq̄
gg

[Campbell et al. 2301.11768]

NNLO validation 
against MATRIX
[Grazzini et al. 1711.06631]
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 Showering

Inclusive quantities well-preserved by the shower, pT of the hardest jet is extremely 
sensitive to shower effects and gets mildly shifted. Few percent effect at 30 GeV. 


This is entirely due to FSR emissions, choice of resolution variable preserves partonic 
accuracy when  only ISR emissions are allowed.
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 Data comparison

Inclusion of  
channel necessary for  
agreement with data. 


Extension of  
channel to NLO+NLL’ 
ongoing


gg

gg



Zero-jettiness factorization for top-quark pairs

dσ
dΦ0dτB

= M ∑
ij={qq̄,q̄q,gg}

∫ dta dtb Bi(ta, za, μ) Bj(tb, zb, μ) Tr[Hij(Φ0, μ) Sij(MτB −
ta + tb

M
, Φ0, μ)]

Factorization formula derived using SCET+HQET in the region where  are all 
hard scales.   [SA et al. 2111.03632]


In case of boosted regime  one would instead need a modified two-jettiness  
[Fleming, Hoang,Mantry,Stewart `07][Bachu,Hoang,Mateu,Pathak,Stewart `21]

Mtt̄ ∼ mt ∼ ̂s

Mtt̄ ≫ mt

Hard functions 

(color matrices)

Soft functions 

(color matrices)

Beam functions [Stewart, Tackmann, 
Waalewijn, [1002.2213], known up to N LO3

It is convenient to transform the soft and beam functions in Laplace space to solve the 
RG equations, the factorization formula is turn into a product of (matrix) functions

ℒ[ dσ
dΦ0dτB ] = M ∑

ij={qq̄,q̄q,gg}

B̃i(ln
Mκ
μ2

, za) B̃j(ln
Mκ
μ2

, zb) Tr[Hij(ln
M2

μ2
, Φ0) S̃ij(ln

μ2

κ2
, Φ0)]

ℒ[ dσ
dΦ0dτB ] = M ∑

ij={qq̄,q̄q,gg}

B̃i(ln
Mκ
μ2

, za) B̃j(ln
Mκ
μ2

, zb) Tr[Hij(ln
M2

μ2
, Φ0) S̃ij(ln

μ2

κ2
, Φ0)]
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Zero-jettiness resummation for top pairs
Resummed formula valid up to NNLL’ accuracy  

the resummed cross section in a compact form as

d�

d�0d⌧B
= U(µh, µB, µs, Lh, Ls)

⇥ Tr

⇢
u(�t, ✓, µh, µs)H(M,�t, ✓, µh)u

†(�t, ✓, µh, µs) S̃B(@⌘s + Ls,�t, ✓, µs)

�

⇥ B̃a(@⌘B + LB, za, µB)B̃b(@⌘0B + LB, zb, µB)
1

⌧1�⌘tot
B

e��E⌘tot

�(⌘tot)
. (3.1)

The derivative terms inside the arguments of the soft and beam functions act on the factor

in the last line of the previous equation, which we refer to as the generating function. In

the previous formula we have defined

U(µh,µB, µs, Lh, Ls) = (3.2)

exp


4S(µh, µB) + 4S(µs, µB) + 2a�B (µs, µB)� 2a�(µh, µB)Lh � 2a�(µs, µB)Ls

�
.

We have also introduced the quantities ⌘s ⌘ 2a�(µ, µs), ⌘B ⌘ 2a�(µB, µ), ⌘tot = 2⌘s +

⌘B + ⌘0
B
, and we explicitly write the beam, soft and hard logarithms as LB = log(M2/µ2

B
),

Ls = log(M2/µ2
s) and Lh = log(M2/µ2

h
). For the derivation of the formula above we have

used the relations

u(�t, ✓, µc, µa)u(�t, ✓, µb, µc) = u(�t, ✓, µb, µa) ,

a�(µa, µc) = a�(µa, µb) + a�(µb, µc) ,

a�i(µa, µc) = a�i(µa, µb) + a�i(µb, µc) ,

S(µa, µb)� S(µc, µb) = S(µa, µc)� a�(µc, µb) log
µa

µc

. (3.3)

to simplify the final expressions.

The expression in eq. (3.1) is our master formula and the primary outcome of this

work. It is formally valid at all logarithmic orders. It is possible to evaluate it at NLL0,

NNLL and NNLL0 depending on the order in ↵s at which the anomalous dimensions and

the boundary terms are available.

In order to evaluate u we first find the matrix ⇤ which diagonalises the LO non-cusp

hard anomalous dimension

�
h(0)

D
= ⇤�1

�
h(0)⇤ (3.4)

and define the vector ~�h(0) consisting of the eigenvalues of the diagonal matrix �
h(0)

D
. The

solution of the non-cusp evolution matrix in eq. (2.14) up to NNLL can then be obtained

perturbatively as an expansion in ↵s following App. A of Ref. [32] and the references

therein [73, 74]. We find

uNNLL(�t, ✓, µh, µ) =

2

4⇤
✓
1 +

↵s(µ)

4⇡
K

◆0

@

↵s(µh)

↵s(µ)

�~�h(0)

2�0

1

A

D

✓
1� ↵s(µh)

4⇡
K

◆
⇤�1

3

5

O(↵s)

(3.5)
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where

and , ,  and Ls = ln(M2/μ2
s ) Lh = ln(M2/μ2
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work. It is formally valid at all logarithmic orders. It is possible to evaluate it at NLL0,

NNLL and NNLL0 depending on the order in ↵s at which the anomalous dimensions and

the boundary terms are available.

In order to evaluate u we first find the matrix ⇤ which diagonalises the LO non-cusp

hard anomalous dimension

�
h(0)

D
= ⇤�1

�
h(0)⇤ (3.4)

and define the vector ~�h(0) consisting of the eigenvalues of the diagonal matrix �
h(0)

D
. The

solution of the non-cusp evolution matrix in eq. (2.14) up to NNLL can then be obtained

perturbatively as an expansion in ↵s following App. A of Ref. [32] and the references

therein [73, 74]. We find

uNNLL(�t, ✓, µh, µ) =

2

4⇤
✓
1 +

↵s(µ)

4⇡
K

◆0

@

↵s(µh)

↵s(µ)

�~�h(0)

2�0

1

A

D

✓
1� ↵s(µh)

4⇡
K

◆
⇤�1

3

5

O(↵s)

(3.5)
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The final accuracy depends on the availability of the perturbative ingredients
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NNLL   is our best prediction, it includes NNLO beam functions, all mixed NLO x NLO terms, NNLL evolution 
matrices, all NNLO soft logarithmic terms. Resummation is switched off via profile scales

′￼a

Figure 3: Resummed T0 distribution at successive unprimed (left) and primed (right)

orders. Compared to the full NNLL0 result, the approximate NNLL0
a prediction shown

on the right misses only finite O(↵2
s ) terms proportional to �(T0) in the hard and soft

functions.

In Geneva implementations at NNLL0+NNLO, it acts as a subtraction term local in T0,
which requires the fixed order calculation to use a T0-preserving mapping. This can have

the positive feature of reducing the impact of fiducial power corrections compared to a

simple slicing approach [80, 81].

Finally, in fig. 5 we present our best predictions across the whole spectrum. In order

to highlight the e↵ect of these higher-order corrections we show the resummed results

at various resummation orders matched to the appropriate fixed order calculations. We

divide the spectrum into the peak region, where resummation e↵ects are most important,

the transition, where resummed and fixed order contributions compete for importance, and

the tail, where the fixed order is dominant. Examining the peak region, we notice slightly

larger uncertainty bands for the NNLL+LO1 compared to the NLL0+LO1. The uncertainty

bands are, however, significantly reduced once NNLL0
a+NLO1 accuracy is reached. In the

transition and tail regions, a clear di↵erence between the NNLL0
a+NLO1 and the lower

order results emerges above ⇠ 60 GeV due to the additional contributions of the NLO1

calculation.

– 21 –

Resummed results
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Figure 4: Resummed T0 distribution with and without the expansion of U in eq. (3.2), at

both NNLL (left) and NNLL0
a accuracy (right).

Figure 5: Resummed predictions matched to the appropiate fixed order for the T0 distri-

bution at increasing accuracy in the peak (left), transition (centre) and tail (right) regions.

– 22 –

Figure 2: Comparison of the absolute values for the singular and nonsingular contributions

to the T0 distribution with fixed order results at LO (left) and NLO (right) accuracy.

also a sizeable reduction of the theoretical uncertainties. This highlights the need for full

NNLL0 accuracy in this process, which we hope to report on in future work.

As mentioned in sec. 3.2, for the production of coloured particles there is a certain

amount of ambiguity in whether one should expand terms or instead keep them inside the

exponential prefactor. This ambiguity starts at NNLL accuracy, since these terms are the

first to contribute at O(↵s) in the logarithmic counting of the exponent. Indeed, while it is

necessary to evaluate the non-diagonal evolution matrix u as a perturbative expansion, the

product between the diagonal evolution matrix U and the generating function appearing

e.g. in the first line of eq. (3.14) may be expanded in the same way or kept exact. We

choose the former by default; however, it is interesting to assess the (formally higher order)

e↵ect of making the other choice. In fig. 4, we compare the resummed distribution with

and without this expansion, at both NNLL and NNLL0
a accuracy. We observe very little

di↵erence between the expanded and unexpanded results, suggesting that the e↵ects of

these missing higher order terms in the expanded results are minimal.

We now consider the matching of the resummed and fixed order calculations. We per-

form an additive matching, following the same spirit as recent Geneva implementations

(see e.g. Ref. [49]). The appropriate combinations of resummed and fixed order accuracies

are given in Tab. 1. The total perturbative uncertainty is calculated by adding in quadra-

ture the previously discussed fixed order and resummation uncertainties. We define our

matched spectrum as

d�match

dT0
=

d�resum

dT0
+

d�FO

dT0
�

d�resum

dT0

�

FO

, (4.4)

where the final term removes double-counting between the resummed and fixed order pieces.

– 20 –

Matched results

Matching to  @NLO improves the 
perturbative accuracy across the whole 

spectrum

t t̄ + j

Extension to full NNLL’ and to event generation is in progress.
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‣ Focus of color-singlet plus jet 
production 

‣ To remove energy-dependence and minimize only along directions 
’s must be frame-dependent Qi = 2Ei

‣ The choice of the ’s determines the frame in which the one-jettiness 
resummation is performed. We focus on 3 choices:                                                                    
LAB ,     UB -frame      and    CS-frame 

ρi

YVj = 0 YV = 0

SIMONE ALIOLI  -  GGI 31/8/2023

Extension to processes with jets



Resummation of one-jettiness for Z+jet
Factorization formula in the region   hard scale𝒯1 ≪ Q

It is convenient to transform the soft, beam and jet functions in Laplace space to 
solve the RG equations, the factorization formula is turn into a product. 

The color factorizes trivially in soft and hard functions for 3 colored partons. 

,  s, Mℓ+ℓ−, MT,ℓ+ℓ− 𝒯0

We left the choice of the frame free, keeping in mind the issues for GENEVA.
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Hard, soft, beam and jet functions
 Hard functions known analytically up to 2-loops.  [Gehrmann, Tancredi et al. `12, `22] 

From NNLL’ accuracy include the loop-squared gg → Zg

We compute the one-loop soft 
boundary terms as on-the-fly 
integrals using results in 

The  2-loop contribution             is provided by SoftSERVE collaboration 
(thanks to Bahman Dehnadi), in the form of an interpolation grid  

We validated the approach comparing to the interpolation used in MCFM.

[Bell, Rahn, Talbert `18] 

[Campbell, Ellis, Mondini, Williams `18] 

[Jouttenus et al.  `11] 

Also studied for different jet 
measures in [Bertolini et al.  `17] 

 Beam and jet boundary conditions known up to 3-loop [Mistlberger et al.  `20] 

[Becher, Bell `10] [Gaunt et al. `14] 
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 Resummed formula

SIMONE ALIOLI  -  SCET 27/3/2023

We can combine the solutions for the hard, soft, jet and beam functions to obtain

where we have defined  



Resummation formula up to NNLL’ accuracy

Providing 


 3-loop cusp an. dim


 2-loop non cusp 


 2-loop boundary terms 
(Hard , Soft,  Beam,  Jet) 


we can reach  NNLL’ 
accuracy
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Nonsingular behavior
‣ Different  choices have different subleading PC𝒯1
‣ Investigated for one-jettiness subtraction at LL NLP [Boughezal, Isgro’, Petriello `20] 

‣ CS frame as good as UB across different 
cuts. LAB consistently worse  SIMONE ALIOLI  -  GGI 31/8/2023



Nonsingular behavior Dimensionless definition 

 τ1 = 2𝒯1/ M2
ℓ+ℓ− + q2

T

‣ Reduced differences when cutting on Z boson trans. momentum qT
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N LL resummation for 3 colored partons3
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N LL resummation for 3 colored partons3

SIMONE ALIOLI  -  GGI 31/8/2023

‣ Final 
resummation 
formula at 
N3LL



Resummed results
‣ Using profile scales to switch off resummation at μH = M2

ℓ+ℓ− + q2
T

‣ Summing in quadrature profile scales variations and fixed-order ones

SIMONE ALIOLI  -  GGI 31/8/2023

‣ Nice convergence and reduction of theoretical uncertainties



‣ Nonsingular divergent for . Joint 
resummation required to handle both divergencies  

𝒯0 → 0 (𝒯0, 𝒯1)

Matched results
dσmatch.

dΦ1d𝒯1
=

dσ res.

dΦ1d𝒯1
+

dσ f.o.

dΦ1d𝒯1
−

dσ res.exp.

dΦ1d𝒯1

‣  gives sizable contribution, important to include 
it for small values of    
𝒪(α3

s )
𝒯0
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Matched results

‣ Similar issues with nonsingular behaviour when  qT → 0

Dimensionless definition 

 τ1 = 2𝒯1/ M2
ℓ+ℓ− + q2

T
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Conclusion and outlook
‣ The inclusion of state-of-the-art theoretical predictions in SMC generators  

is mandatory to match the experimental precision and fully exploit the 
discovery potential of LHC measurements


‣ GENEVA method allows for interfacing higher-order resummation of 
resolution variables in event generation with NNLO accuracy and parton 
showers. 


‣ Several color-singlet processes implements, using different resolution 
variables: N-jettiness, qT, jet veto…


‣ First steps in extending the method to massive colored particles and jets 
presented. 


‣ Implemented one-jettiness resummation, prerequisite for Vj@NNLO+PS in 
GENEVA. Studied different  definitions, performed resummation up to 
N3LL and matched to corresponding fixed-order.  Observed nice 
convergence and reduction of theory unc.  in presence of an hard jet.


‣ EW and QED corrections will also play an increasingly important role. 

𝒯1

Thank you for your attention.SIMONE ALIOLI  -  GGI 31/8/2023



BACKUP



Spreading out the resummation to other variables

Splitting functions are required to make 
resummed spectrum fully-differential.


New on-the-fly evaluation and better 
functional forms captures better the  singular 
behavior of matrix elements also for different 
resolution variables.


dσ
dΦNdrN

PN→N+1 →
dσ

dΦN+1
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Figure 2: Comparison of the fixed-order, singular, and nonsingular distributions at

NNLO+NNLL0, both for T0 (left) and pH
T

(right). We show the singular and nonsin-

gular distributions both for the original and improved versions of the splitting function

implementation in Geneva.

mic behaviour of the NLO1 result, as it appears to miss a single logarithmic contribution

⇠ 1/pH
T
. This is implied by the fact that the improved nonsingular contribution converges

to a nonzero constant at low values of pH
T
. This must however be compared with the orig-

inal approach, Porig, where the divergent behaviour of the nonsingular plot suggests that

that implementation also fails to capture the logarithmic structure up to ⇠ ln2(pH
T
)/pH

T
.

We examine the e↵ects of the Pimpr implementation on the Drell-Yan process in App. A,

where we compare di↵erent Geneva results with the ATLAS experimental data.

3.2 Independent scale variations

In traditional implementations of fixed-order QCD calculations, a di↵erentiation is made

between the factorisation scale µF and the renormalisation scale µR. The former is associ-

ated with the scale of collinear factorisation, while the latter is introduced in dimensional

regularisation in order to render the strong coupling dimensionless.

To date, implementations of Geneva have assumed these scales to be equal. Doing

so facilitated the matching to the resummed calculation, where a sole “nonsingular” scale

µNS appears as the endpoint of the RGE running, typically taken to be a hard scale Q of

the problem. The two scales were then varied in a correlated fashion (“diagonal” in the

{µR, µF } space) when probing the higher order uncertainties. This approach, however,

can hinder a complete and thorough uncertainty estimation as it neglects those variations

– 15 –
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Interface with the parton shower

Effect of shower on  resolution variables different from what is resummed more marked,  
albeit shower accuracy is maintained.

GENEVA framework allows this comparison for DY when resumming  or 


Best approach here would be joint  resummation, avoids need of splitting func.

  


qT 𝒯0

(𝒯0, ⃗qT)
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One-jettiness in GENEVA

‣ For the correct IR definition of an NNLO 

event weight   one needs to 

preserve the resolution parameter when 
performing the  splitting in the 

 calculation,  - preserving  map 
required 

dσMC

dΦ1d𝒯1dzdφ

Φ2 → Φ3
NLO2 𝒯1

‣ We introduce a fully-recursive version of one-jettiness  which 
we use for the fixed-order calculation. The idea is that at each step 
one finds the closest particles in the one-jettiness metric, merge 
them and continue.  N-jettiness as a clustering procedure. 

𝒯FR
1

𝒯1(Φ2) = 𝒯1(Φ3)

‣ Using a jet-algorithm to find the directions or using the exact   
definition makes it impractical to find this map. Alternatively,  use  
similar variable that has the same log structure and different 

𝒯1

α2
s δ(𝒯1)

Φ2

Φ3
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